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1. Quality Metrics

1.1. M1 and M2 Scores

The scores as defined in [VK01, Eq.s 1–2] are:

M1(k) =1− 2
Nk(2N−3k−1)

N

∑
i=1

∑
x j∈Uk(xi)

(r(xi,x j)− k) (1)

M2(k) =1− 2
Nk(2N−3k−1)

N

∑
i=1

∑
x j∈Vk(xi)

(r̂(xi,x j)− k), (2)

The symbols and variables are the same as in the original work and
are reproduced in Table 1. The scores M1, M2 lie between 0 and
1, where a value of 1 is desirable; that is, M1 = 1 implies that the
low-dimensional k-neighborhoods are free from data vectors that
were not part of the high-dimensional k-neighborhood; and M2 = 1
implies that the high-dimensional k-neighborhoods are preserved
in the low-dimensional space.

Table 1: Symbols and variables used in Equations (1) and (2). Re-
produced from [VK01, Tab. 1].

xi ∈ R2, i = 1, . . . ,N Data vector
Ck(xi) The set of those k data vectors closest

to xi in the original space
Ĉk(xi) The set of those k data vectors closest

to xi after projection
Uk(xi) The set of data vectors x j for which

x j ∈ Ĉk(xi)∧ x j /∈Ck(xi) holds
Vk(xi) The set of data vectors x j for which

x j /∈ Ĉk(xi)∧ x j ∈Ck(xi) holds
r(xi,x j), i 6= j The rank of x j when the data vectors

are ordered based on their Euclidean
distance from the data vector xi, in the
original space

r̂(xi,x j), i 6= j The rank of x j when the data vectors
are ordered based on their Euclidean
distance from the data vector xi, after
projection

1.2. Metric and Non-metric Stress

Given n points {x1,x2, ...,xn} ∈R2 in the original space of our data,
and {x̂1, x̂2, ..., x̂n} ∈ R as the corresponding projections of these
points into the one-dimensional space. We define di j as a measure
of distance between xi and x j, and δi j as the distances between the
points x̂i and x̂ j. The metric stress Sm and the non-metric stress Snm
can be defined as

Sm =

√√√√∑i< j(di j−δi j)2

∑i< j d2
i j

(3)

Snm =

√√√√∑i< j(di j− d̂i j)2

∑i< j d2
i j

, (4)

where d̂i j are called disparities. The disparities are chosen such that
Snm is minimized under the constraint that all d̂i j have the same
rank order as the δi j. For both measures, a low value indicates a
good projection. Metric stress is 0 if all pairwise distances in the
projected space are equal to the corresponding pairwise distance in
the original space. Non-metric stress operates on the rank order of
the distances and is zero if the rank order of the distances in the
projected space is the same as the rank order in the projected space.
For the calculation of Sm we first normalize the distances matrices
to values between 0 and 1 by division with the maximum distance.

2. Projections on Artificial Datasets

We generated small test datasets programmatically and then pro-
jected the resulting datasets using our approach. The first two
datasets are generated on a regular grid, similar to the wildfire data.
The third dataset is generated on more randomly distribution points,
similar to the COVID-19 data.

2.1. Spreading Ring

The first test dataset we generated was of a hotspot that started as a
spot, and then spread outwards as a ring over time, with the values
falling off in the middle. We observed such patterns, for example,
in the wildfire dataset, where fires would start in one place, spread
outward, and run out of fuel in the center. We define an epicenter
~c and parameterize the ring-like value progression over time with a
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peak value p̂(t), the median radius of the ring µ(t), and the standard
deviation of the ring’s values σ(t):

µ(t) = µ0 +µat (5)

σ(t) = σ0 +σat (6)

p̂(t) = p̂0 + p̂at (7)

The value at point~x at time t is then defined as:

ring(~x, t) = p̂(t) · exp

[
1
2
·
(
‖~x−~c‖2−µ(t)

σ(t)

)2
]

(8)

The figures in the paper were generated over 40 time steps
(0..39), on a 14× 14 grid with cells of size 15× 15, with the fol-
lowing parameters:

σ0 = 12.16 σa = 0.05 (9)

µ0 = 0 µa = 1.94 (10)

p̂0 = 1 p̂a = 0.3 (11)

~c =
(

30.4
40.6

)
(12)

In Tables 2 and 3, we apply the projections to datasets with different
parametrizations of the spreading ring function. The parametriza-
tions are provided at the top of each column. We can observe that
the spreading pattern is clear in all parametrizations, but that it is
easier to detect for thicker rings (i.e., larger σ). We conclude that
the patterns we observe are stable for different shapes and sizes.

2.2. Wandering Hotspot

A second dataset generates a circular region of higher values, which
moves with a constant velocity and direction~v. The circular region
is a ring as defined in Equation (8), but with a constant value inside:

wander(~x, t) =

{
p̂(t) ‖~x−~c(t)+ t~v‖ ≤ µ(t)
ring(~x− t~v, t) otherwise

(13)

The figures in the paper were generated over 40 time steps
(0..39), on a 14× 14 grid with cells of size 15× 15, with the fol-
lowing parameters:

σ0 = 12.3 σa = 0.03 (14)

µ0 = 0.95 µa = 0 (15)

p̂0 = 2.3 p̂a = 0 (16)

~c =
(

36
38

)
~v =

(
0.416
2.63

)
(17)

In Tables 4 and 5, we apply the projections to datasets with dif-
ferent parametrizations of the wandering hotspot function. The
parametrizations are provided at the top of each column. We can
observe how the pattern is visible regardless of movement direc-
tion, speed, or size. We conclude that the patterns we observe here
are also stable.

Figure 1: The graph used for the graph-based spreading dataset in
the paper at t = 13.

2.3. Graph-based Spreading

For the third dataset, we generated 50 random points using a nor-
mal distribution random number generator with ~µ =

(
0.5
0.5
)

and
~σ =

(
0.2

0.21
)
. These points made the basis for the vertices of a k-

nearest-neighbors graph G(V,E) with k = 4 and a cutoff distance
dcut = 0.14. The specific graph is shown for t = 13 in Figure 1.
Using a cutoff radius meant that the resulting graph would not be
connected.

We picked a central vertex c of the graph (dark red in Figure 1),
and pinned its value dc to a normal distribution over time:

dc(t) = exp

(
−1

2

[
t−15

10

]2
)

(18)

For all remaining vertices i, the value di of the next time step was
calculated from its own value, as well as the values of all its con-
nected neighbors:

di(0) = 0 (19)

di(t +1) = di(t)+
1

|{e ∈ E | i ∈ e}| ∑
(u,v)∈E

u=i

dv−du

1+‖~u−~v‖2
2

(20)

In Tables 6 to 8, we apply the projections to datasets with differ-
ent graphs of different sizes of the graph-based spreading example.
As the graphs are constructed with a fixed cutoff radius, the AHC-
based projections work really well, because the clustering priori-
tizes entities that are closer together. The space-filling curve-based
projections introduce discontinuities, but the AHC-based ones, es-
pecially single linkage, perform really well and reveal a consistent
pattern.

3. Other Projections

During the evolution of our work, we tried out some other projec-
tions. In both cases, we were able to produce a proof of concept.
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(a) Projected timeline of countries of the world for the COVID-19 application scenario using air traffic passenger flow as an inverse distance metric between
countries.

(b) First-peak projection for countries of the world for the COVID-19 application scenario.

(c) First-peak projection for the US states for the COVID-19 application scenario.

(d) First-peak projection for the top-level entities of the wildfire application scenario.

Figure 2: Examples for projected timelines with the two other projections discussed in Section 3.

We could not produce anything worth discussing in the paper us-
ing our rudimentary methods, but got some insights that we wanted
to discuss and share in the supplemental material and show some
screenshots (Figure 2).

3.1. Passenger Flow

The passenger flow projection was suggested to us by one of the
experts. We produced a proof of concept using an air traffic dataset
by Huang et al. [HWG*13]. The dataset contains passenger num-
bers between countries for flights from 2010. It is fairly complete,
but there are pairs of countries for which no data exist. We calculate
our distance metric between countries c1, c2 as follows: If there is a
non-zero passenger flow fc1,c2 between the countries, the distance
between them is the inverse of that flow; otherwise, we fall back to
Euclidean distance:

dc1,c2 =

{
f−1
c1,c2 fc1,c2 6= 0
‖~c2− ~c1‖2 otherwise

(21)

Since the Euclidean distances are all > 1, this means that coun-
tries with non-zero passenger flow between them are always closer
together. Further, the flight data does not contain any data about
sub-country passenger flow, or other means of travel, for example,
by car between neighboring countries. Last, the data is not current,
and there is no guarantee passenger flows have stayed the same
since 2010. For applications concerning, for instance, epidemiol-
ogy, this type of projection can be very valuable. However, in order
to produce good results, a real-world application would require a

more complete and up-to-date passenger flow dataset, the likes of
which we did not have available for our proof of concept. We have
included a screenshot in Figure 2a. We notice that the pairwise dis-
tance indicators are very often dark, indicating larger geospatial
distances. This is probably due to the fact that air travel is not the
main mode of transport between adjacent countries.

3.2. First-peak

We also implemented a projection that orders geospatial entities
based on the first time its time series value crosses a threshold. In
our implementation, we set that threshold to 1 % of the maximum
time series value in all entities of the subtree. The rationale behind
this was that this eliminated the effects of slight noise that appear in
the data. Figure 2d shows this quite nicely: A clear front of higher
values can be seen in the right side of the timeline despite these
time series having non-zero values before the peaks.

We can see the usefulness of such a projection for the identifica-
tion of trendsetters in a dataset. However, we see a limitation with
the naïve approach in that a global first value is considered. For
time series with a continuously increasing nature, such as accumu-
lated COVID-19 cases, this might work very well. We can see this
for example with the countries of the world in Figure 2b and the
states of the US in Figure 2c. For time series that rise and fall, such
as the wildfire scenario, the global first peak might not be what we
want to look at, as we can see in Figure 2d. This projection could
be further improved to be applicable to more tasks by interactively
defining a time frame within which the first peak is considered,
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and by being able to interactively tweak the threshold. That would,
however, require projections to be calculated on the fly rather than
in a preprocessing step. We argue that this projection is useful for
very specific tasks and should only serve as an example for what is
possible for individual applications of our approach.
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Table 2: Different parametrization results for spreading ring dataset.

µ(t) = 1 t +0
σ(t) = 0.1 t +3
p̂(t) = 0.2 t +0

~c =
(

0
0

)
t +
(

20
20

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.628,Snm=0.539

M1=0.919,M2=0.913

µ(t) = 2 t +1.9
σ(t) = 0.3 t +4
p̂(t) = 0.1 t +1

~c =
(

0
0

)
t +
(

20
60

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.721,Snm=0.567

M1=0.780,M2=0.868

µ(t) = 1 t +3.3
σ(t) = 0.5 t +2
p̂(t) = 0 t +1

~c =
(

0
0

)
t +
(

40
40

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.573,Snm=0.512

M1=0.709,M2=0.912

µ(t) = 1 t +1.9
σ(t) = 0 t +12
p̂(t) = 0 t +2

~c =
(

0
0

)
t +
(

40
20

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.580,Snm=0.512

M1=0.865,M2=0.925
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Table 3: Different parametrization results for spreading ring dataset.

µ(t) = 3 t +0.5
σ(t) = 1 t +0.2
p̂(t) = 0.01 t +4

~c =
(

0
0

)
t +
(

0
50

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.737,Snm=0.565

M1=0.680,M2=0.877

µ(t) = 0 t +60
σ(t) = 0 t +20
p̂(t) = 0 t +1

~c =
(

0
0

)
t +
(

50
40

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.615,Snm=0.536

M1=0.745,M2=0.874

µ(t) = 2 t +2
σ(t) = 0.3 t +4
p̂(t) = 0 t +1

~c =
(

0
0

)
t +
(

97.5
97.5

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.756,Snm=0.571

M1=0.675,M2=0.810

µ(t) = 2 t +20
σ(t) = 1 t +4
p̂(t) = 0 t +1

~c =
(

0
0

)
t +
(

45
30

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.742,Snm=0.566

M1=0.719,M2=0.845
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Table 4: Different parametrization results for wandering hotspot dataset.

µ(t) = 0 t +0.95
σ(t) = 0.03 t +12.3
p̂(t) = 0 t +2.3

~c =
(

0.416
2.63

)
t +
(

36.4
38

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.695,Snm=0.562

M1=0.819,M2=0.919

µ(t) = 0 t +0.95
σ(t) = 0.03 t +12.3
p̂(t) = 0 t +2.3

~c =
(

3
0

)
t +
(

35
40

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.674,Snm=0.557

M1=0.870,M2=0.889

µ(t) = 0 t +0.95
σ(t) = 0.03 t +12.3
p̂(t) = 0 t +2.3

~c =
(

0
3

)
t +
(

35
40

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.625,Snm=0.539

M1=0.894,M2=0.944

µ(t) = 0 t +0.95
σ(t) = 0.03 t +12.3
p̂(t) = 0 t +2.3

~c =
(

3
3

)
t +
(

20
20

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.721,Snm=0.561

M1=0.716,M2=0.904



Franke et al. / Visual Analysis of Spatio-temporal Phenomena with 1D Projections: Supplemental Material

Table 5: Different parametrization results for wandering hotspot dataset.

µ(t) = 0.5 t +1
σ(t) = 0.02 t +8
p̂(t) = 0.01 t +1

~c =
(

3
1.2

)
t +
(

20
20

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.683,Snm=0.559

M1=0.842,M2=0.897

µ(t) = 4 t +1
σ(t) =−0.6 t +5
p̂(t) = 0 t +1

~c =
(

0.2
5

)
t +
(

50
10

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.605,Snm=0.531

M1=0.759,M2=0.899

µ(t) = 0.5 t +0
σ(t) = 2 t +12
p̂(t) = 1 t +1

~c =
(

2
0.5

)
t +
(

30
50

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.737,Snm=0.560

M1=0.693,M2=0.858

µ(t) = 0 t +30
σ(t) = 0 t +10
p̂(t) =−0.02 t +1

~c =
(
−4
−3

)
t +
(

200
200

)

t=5

t=15

t=25

t=35

Hilbert Sm=0.506,Snm=0.463

M1=0.995,M2=0.958

Morton Sm=0.488,Snm=0.444

M1=0.977,M2=0.969

AHCsingle Sm=0.557,Snm=0.493

M1=0.939,M2=0.969

AHCcomplete Sm=0.562,Snm=0.496

M1=0.975,M2=0.963

AHCaverage Sm=0.535,Snm=0.483

M1=0.972,M2=0.962

AHCcentroid Sm=0.532,Snm=0.483

M1=0.974,M2=0.952

AHCmedian Sm=0.577,Snm=0.503

M1=0.974,M2=0.964

AHCward Sm=0.579,Snm=0.510

M1=0.972,M2=0.957

DTWsingle,Itakura Sm=0.693,Snm=0.547

M1=0.812,M2=0.929
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Table 6: Different graphs and starting nodes for the graph-based spreading dataset.

AHCsingle Sm=0.607,Snm=0.499,M1=0.845,M2=0.921

AHCcomplete

Sm=0.634

Snm=0.522

M1=0.929

M2=0.948

AHCaverage

Sm=0.585

Snm=0.502

M1=0.912

M2=0.935

AHCcentroid

Sm=0.595

Snm=0.506

M1=0.902

M2=0.915

AHCmedian

Sm=0.538

Snm=0.486

M1=0.910

M2=0.920

AHCward

Sm=0.517

Snm=0.482

M1=0.919

M2=0.938

Morton

Sm=0.479

Snm=0.453

M1=0.921

M2=0.931

Hilbert

Sm=0.592

Snm=0.519

M1=0.963

M2=0.938

DTWsingle,Itakura

Sm=0.639

Snm=0.528

M1=0.779

M2=0.871

t=10

t=20

t=30

AHCsingle Sm=0.603,Snm=0.512,M1=0.900,M2=0.921

AHCcomplete

Sm=0.540

Snm=0.487

M1=0.930

M2=0.957

AHCaverage

Sm=0.608

Snm=0.519

M1=0.914

M2=0.951

AHCcentroid

Sm=0.525

Snm=0.483

M1=0.894

M2=0.933

AHCmedian

Sm=0.579

Snm=0.514

M1=0.922

M2=0.951

AHCward

Sm=0.601

Snm=0.511

M1=0.918

M2=0.947

Morton

Sm=0.476

Snm=0.448

M1=0.929

M2=0.934

Hilbert

Sm=0.513

Snm=0.481

M1=0.961

M2=0.933

DTWsingle,Itakura

Sm=0.644

Snm=0.537

M1=0.788

M2=0.851

t=10

t=20

t=30

AHCsingle Sm=0.567,Snm=0.495,M1=0.869,M2=0.935

AHCcomplete

Sm=0.491

Snm=0.470

M1=0.923

M2=0.941

AHCaverage

Sm=0.520

Snm=0.478

M1=0.936

M2=0.948

AHCcentroid

Sm=0.511

Snm=0.474

M1=0.915

M2=0.935

AHCmedian

Sm=0.540

Snm=0.495

M1=0.924

M2=0.933

AHCward

Sm=0.487

Snm=0.467

M1=0.932

M2=0.944

Morton

Sm=0.542

Snm=0.488

M1=0.916

M2=0.922

Hilbert

Sm=0.583

Snm=0.526

M1=0.953

M2=0.907

DTWsingle,Itakura

Sm=0.569

Snm=0.521

M1=0.768

M2=0.917

t=10

t=20

t=30
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Table 7: Different graphs and starting nodes for the graph-based spreading dataset.

AHCsingle Sm=0.561,Snm=0.507,M1=0.815,M2=0.853

AHCcomplete

Sm=0.626

Snm=0.533

M1=0.924

M2=0.930

AHCaverage

Sm=0.533

Snm=0.493

M1=0.901

M2=0.921

AHCcentroid

Sm=0.533

Snm=0.493

M1=0.901

M2=0.921

AHCmedian

Sm=0.494

Snm=0.470

M1=0.921

M2=0.913

AHCward

Sm=0.581

Snm=0.498

M1=0.916

M2=0.930

Morton

Sm=0.464

Snm=0.448

M1=0.921

M2=0.914

Hilbert

Sm=0.518

Snm=0.488

M1=0.952

M2=0.901

DTWsingle,Itakura

Sm=0.587

Snm=0.513

M1=0.821

M2=0.864

t=10

t=20

t=30

AHCsingle Sm=0.579,Snm=0.491,M1=0.785,M2=0.842

AHCcomplete

Sm=0.595

Snm=0.488

M1=0.887

M2=0.873

AHCaverage

Sm=0.614

Snm=0.509

M1=0.875

M2=0.868

AHCcentroid

Sm=0.495

Snm=0.452

M1=0.907

M2=0.868

AHCmedian

Sm=0.494

Snm=0.457

M1=0.917

M2=0.910

AHCward

Sm=0.596

Snm=0.502

M1=0.886

M2=0.908

Morton

Sm=0.445

Snm=0.423

M1=0.908

M2=0.905

Hilbert

Sm=0.580

Snm=0.510

M1=0.931

M2=0.890

DTWsingle,Itakura

Sm=0.641

Snm=0.511

M1=0.795

M2=0.830

t=10

t=20

t=30
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Table 8: Different graphs and starting nodes for the graph-based spreading dataset.

AHCsingle Sm=0.631,Snm=0.509,M1=0.823,M2=0.825

AHCcomplete

Sm=0.522

Snm=0.459

M1=0.917

M2=0.917

AHCaverage

Sm=0.558

Snm=0.481

M1=0.904

M2=0.909

AHCcentroid

Sm=0.557

Snm=0.479

M1=0.900

M2=0.901

AHCmedian

Sm=0.576

Snm=0.485

M1=0.902

M2=0.895

AHCward

Sm=0.601

Snm=0.504

M1=0.893

M2=0.904

Morton

Sm=0.533

Snm=0.467

M1=0.880

M2=0.894

Hilbert

Sm=0.544

Snm=0.478

M1=0.935

M2=0.864

DTWsingle,Itakura

Sm=0.626

Snm=0.513

M1=0.833

M2=0.845

t=10

t=20

t=30

AHCsingle Sm=0.559,Snm=0.487,M1=0.872,M2=0.938

AHCcomplete

Sm=0.612

Snm=0.536

M1=0.942

M2=0.951

AHCaverage

Sm=0.577

Snm=0.511

M1=0.924

M2=0.937

AHCcentroid

Sm=0.595

Snm=0.514

M1=0.924

M2=0.946

AHCmedian

Sm=0.561

Snm=0.509

M1=0.947

M2=0.956

AHCward

Sm=0.560

Snm=0.512

M1=0.943

M2=0.958

Morton

Sm=0.531

Snm=0.484

M1=0.936

M2=0.938

Hilbert

Sm=0.540

Snm=0.502

M1=0.969

M2=0.931

DTWsingle,Itakura

Sm=0.483

Snm=0.442

M1=0.847

M2=0.914

t=10

t=20

t=30

AHCsingle Sm=0.600,Snm=0.521,M1=0.874,M2=0.921

AHCcomplete

Sm=0.543

Snm=0.504

M1=0.942

M2=0.944

AHCaverage

Sm=0.590

Snm=0.521

M1=0.939

M2=0.952

AHCcentroid

Sm=0.493

Snm=0.476

M1=0.940

M2=0.955

AHCmedian

Sm=0.583

Snm=0.529

M1=0.943

M2=0.937

AHCward

Sm=0.590

Snm=0.522

M1=0.959

M2=0.958

Morton

Sm=0.543

Snm=0.499

M1=0.944

M2=0.942

Hilbert

Sm=0.516

Snm=0.494

M1=0.980

M2=0.947

DTWsingle,Itakura

Sm=0.664

Snm=0.545

M1=0.744

M2=0.877

t=10

t=20

t=30


