Comparative Visualization of Molecular Surfaces Using Deformable Models

K. Scharnowski, M. Krone, G. Reina, T. Kulschewski, J. Pleiss, T. Ertl
Motivation

• Simulations of same molecule under different conditions (solvent, mutations) → ensemble
 – Potentially changes functionality
 – Goal: direct comparison of surface attributes (electrostatics, hydrophilicity/hydrophobicity)
 – Requires point-to-point mapping

• Local and global comparison

• Challenges
 – Surfaces with high frequency details
 – Different genus (holes, tunnels)
 – Dynamic behavior (folding, bending)
 – Parts of the surfaces might not be comparable in a meaningful way
Defining a mapping relation

• Find mapping between points on surfaces S and T
 – Pairs of correlating vertex positions can be used to sample attributes of both molecular surfaces

• Algorithm
 – Represent S by a triangle mesh
 – Apply rigid alignment
 – Deform the triangle mesh of S until it fits T
 – Vertices on original mesh and deformed one define mapping

1. Initial surface triangulation
2. Rigid alignment
3. Mapping deformation
4. Computation of heuristics
Surface representation

- **Metaballs**: Approximation for molecular surface (Blinn, 1982)
 - Each particle is associated with density distribution
 \[
 \rho_i(x) = e^{-\frac{\|x-p_i\|^2}{2\alpha^2}}
 \]
 - Surface implicitly defined by level set
- We use Marching Tetrahedra to obtain a triangle mesh
Rigid alignment

• Proteins have arbitrary orientations/positions
 – Rigid alignment necessary for meaningful mapping
 – Molecular surface is implicitly defined by particles
 – Standard technique in computational chemistry: RMSD (Root Mean Square Deviation)

\[
RMSD(P, Q) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} ||p_i - q_i||^2}
\]

– Find rotation/translation that minimizes RMSD (Kabsch, 1976)

• Molecular surface will be extracted from rotated/translated structure
Deformable models

- Originally for image segmentation and shape registration (Kass et al., 1988)
 - Shape is represented by an elastic model
 - Deformation is based on internal and external forces
- Internal forces F_{int}: maintain a smooth grid, prevent self-intersection
- External forces F_{ext}: pull the source shape towards the target shape
- Update position iteratively until net force is zero
 $$s(t + 1) = s(t) + (1 - \mu)F_{int}(t) + \mu F_{ext}$$
Internal forces

- Tension term: seeks to minimize surface area
- Rigidity term: emulates thin-plate behavior
- Approximation for the Laplacian in triangle meshes (Reuter, 2009): sum of all vectors from a point to its direct neighbors

$$F_{int} = (1 - \rho) \Delta s - \rho \Delta^2 s$$

with

$$\Delta s = \frac{1}{n} \sum (s_i - s_j)$$

$$\Delta^2 s = \frac{1}{n} \sum (\Delta s_i - \Delta s_j)$$

(Shen et al. 2011)
External forces

- **Gradient Vector Flow (Xu 1998)**
 - Initialize field at target borders
 - Essentially applies diffusion to individual vector field components
 - Smooth transition between target and source

- **We use a modification:**
 - Initialize field both at source and target surfaces
 - Symmetrical outcome
 - Takes surface orientation into account
 - Solve for all three vector components of \(\mathbf{v} \), respectively

\[
(1 - \|F_{\text{ext}}\|) \Delta \mathbf{v} - \|F_{\text{ext}}\| (\mathbf{v} - F_{\text{ext}}) = 0
\]
Mesh quality

- Problem: limited resolution leads to artifacts when mapping surface parts of different size
 - How to achieve consistent sampling
 - Start with mostly regular vertex distribution
- Additional subdivision step for more consistent sampling
- Prior mesh regularization

1. Initial surface triangulation
2. Rigid alignment
3. Mesh regularization
4. Subdivision
5. Mappign deformation
6. Computation of heuristics
Measuring differences

- Absolute difference of the surface potential
- Sign difference
- Geometry: path length for the vertices
 - Surfaces are less comparable if strong deformation is necessary for mapping
 - Local deformation can be seen as criterion for uncertainty
 - Quantified e.g. by vertex path length
- For global value: integrate over mapped target surface area
 - Local \rightarrow 3D Rendering
 - Global: Integrate value over target surface area 2D plot for an overview
Results: local dissimilarity

- Method applied to synthetic data sets
- Non-mappable parts can be identified
- → Rendered transparently in our visualization
Results: local dissimilarity

• Comparative rendering of two molecular surfaces
 – Difference value of electrostatic potential is color coded
 – Different surface geometry is indicated by increased transparency
Results: global dissimilarity

- Application to ensemble with 152 proteins in varying solvent
 - Difference in surface potential
- Global heuristics are overall symmetric
- Some cases of asymmetry in the geometrical comparison
 - Deformation process does not converge in some cases
 - Leads to very long vertex paths
Application

- Application to small ensemble of proteins (subset of the ones before)
- Joint work with domain scientists
- Subset with increasing MeOH activity \rightarrow correlation to electrostatics
Limitations

- Not meaningful for very different global geometry
- Questionable to what point an additional global deformation step would make sense (since it could change the SAS)
- Cannot guarantee handling of very complicated genus differences
- Saddles in velocity field
Conclusion & future work

- Comparative visualization of molecular surface attributes
 - Partial shape matching of molecular surfaces by using deformable models
 - Rigid and non-rigid alignment
 - Local and global comparison
- Future work
 - Apply to docking/binding problems
 - Combine more than one conformer in new visual representation
 - Use method to identify functional regions on protein surfaces
References

