VIS- und Uni-Logo
Blindenversion home uni uni suche suche sitemap sitemap kontakt kontakt
unilogo Universität Stuttgart
Institut für Visualisierung und Interaktive Systeme

Thomas Müller

 

GeodesicViewer - A tool for exploring geodesics in the theory of relativity


Thomas Müller, Frank Grave

The GeodesicViewer realizes exocentric two- and three-dimensional illustrations of lightlike and timelike geodesics in the general theory of relativity. By means of an intuitive graphical user interface, all parameters of a spacetime as well as the initial conditions of the geodesics can be modified interactively. This makes the GeodesicViewer a useful instrument for the exploration of geodesics in four-dimensional Lorentzian spacetimes.

   The GeodesicViewer     
The most recent version of the GeodesicViewer can be downloaded here:

Linux source files gzip-compressed tar-file (3.0MB) md5: d051902f42f4be3b3472ef75329b0f28
Windows source files zip-archive (3.3MB) md5: fea3fe50f8738ffbb1d018929206d682
Windows binaries zip-archive (17MB) md5: 21d77f1d0ea99b379ea60509d37bf8f9
Version date: 25. Mar 2011

A brief documentation, some tutorials, and an installation instruction can be found here.

Note that the Windows binaries were tested only on 64bit 'Windows 7/XP' machines.

There is also an educational article about how the GeodesicViewer could be used in the classroom: click here.
   Screenshots     
   Links     
  • T. Müller, J. Frauendiener
    Studying null and time-like geodesics in the classroom
    European Journal of Physics 32, 747-759 (2011)
    DOI: 10.1088/0143-0807/32/3/011
  • T. Müller, F. Grave
    GeodesicViewer - A tool for exploring geodesics in the theory of relativity
    Computer Physics Communications 181, 413-419 (2010)
    DOI: 10.1016/j.cpc.2009.10.010
    Catalogue Identifier for the source code: AEFP_v1_0.
  • The orbits in J. Levin and G. Perez-Giz, "A Periodic Table for Black Hole Orbits," Phys. Rev. D, 77, 103005, 2008
    DOI: 10.1103/PhysRevD.77.103005
    can be reproduced by the GeodesicViewer. Please use the maxima-notebook for the parameter transformation and the GV-settings file.
    A MathematicaDemonstration by D. Saroff, G. Clifton, and J. Levin can be found here.
   Contact     
Visualisierungsinstitut der Universität Stuttgart (VISUS)
Allmandring 19
70569 Stuttgart, Germany
Email: Thomas.Muellervis.uni-stuttgart.de

1. Institut für Theoretische Physik, Universität Stuttgart
Pfaffenwaldring 57 // IV
70550 Stuttgart, Germany