
LUKe and MIKE:
Learning from User Knowledge and

Managing Interactive Knowledge Extraction

Steffen Metzger
Max-Planck-Institute for

Informatics
Campus E1 4

Saarbrücken, Germany
smetzger@mpi-

inf.mpg.de

Michael Stoll
Institute for Visualization and

Interactive Systems (VIS),
University of Stuttgart
Stuttgart, Germany

michael.stoll@vis.uni-
stuttgart.de

Katja Hose
Max-Planck-Institute for

Informatics
Campus E1 4

Saarbrücken, Germany
hose@mpi-inf.mpg.de

Ralf Schenkel
Saarland University and MPI

Informatics
Saarbrücken, Germany

schenkel@mmci.uni-
saarland.de

ABSTRACT

Semantic recognition and annotation of unqiue enities and
their relations is a key in understanding the essence con-
tained in large text corpora. It typically requires a com-
bination of efficient automatic methods and manual verifi-
cation. Usually, both parts are seen as consecutive steps.
In this demo we present MIKE, a user interface enabling
the integration of user feedback into an iterative extraction
process. We show how an extraction system can directly
learn from such integrated user supervision. In general, this
setup allows for stepwise training of the extraction system
to a particular domain, while using user feedback early in
the iterative extraction process improves extraction quality
and reduces the overall human effort needed.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology, Graphical User inter-
faces, Natural language; I.2.6 [Artificial Intelligence]: Learn-
ing—Knowledge Acquisition; I.2.7 [Artificial Intelligence]:
Natural Language Processing—Language Parsing and Un-
derstanding

Keywords

Information Extraction, Knowledge Acquisition, Learning,
GUI, User Feedback, Web Service

1. INTRODUCTION
With the growing amount of textual information digitally

available, an efficient analysis of large amounts of natural

Copyright is held by the author/owner(s).
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
ACM 978-1-4503-1156-4/12/10.

language text to grasp the essential content relevant for a
particular interest becomes increasingly important.

In several areas, e.g. the humanities, semantic informa-
tion is traditionally attached to source documents by ex-
pert users, e.g. by annotation, in order to allow automatic
evaluation and management of the data and the contained
semantic information. However human processing cannot ef-
ficiently deal with the large amount of documents digitally
available. There is a growing number of automatic informa-
tion extraction systems [1, 3, 6], which can support humans
in grasping the essential semantic information contained in
natural language texts. Typical systems support named en-
tity recognition (NER), e.g. identifying“Barack Obama”and
“US President” as references to the same unique entity, and
relation extraction, e.g. extracting an instance of an abstract
bornIn relation from the text “Barack Obama’s birthplace
Hawaii”. Such relational information is often represented
in RDF triple form, e.g. (Obama,bornIn,Hawaii). Informa-
tion extraction systems often follow an iterative approach,
expanding an initial knowledge base step by step. User in-
volvement is usually required to provide the initial basic do-
main knowledge, e.g. by providing examples for entity and
relation recognition. Although these extraction systems can
reach relatively good precision values in general[6], high pre-
cision usually comes at the price of lower recall, such that
many relationship instances are not found or at least not
found in all documents where they occur. Additionally, for
many use-cases there is a need for quality guarantees. This
is typically achieved by an additional manual filtering step
after the extraction is complete.

In this paper, we aim to close the gap between manual
annotation and automatic extraction by integrating large
portions of initial domain knowledge generation and man-
ual quality control into the extraction process. We present
LUKe, an extraction system based on [6] that can integrate
user feedback on-the-fly, and MIKE, a user-interface to con-
trol the extraction system, present the extraction results to



a human user and allowing for extension and correction of
recognized knowledge. The seemless integration of user feed-
back into the iterative extraction process allows the system
to learn early on. Hence, quality achieved is optimized while
human effort needed to ensure a given quality level is mini-
mized.

2. RELATED WORK
There are several other approaches to visualize semantic

information [1, 2, 4, 7, 8]. Traditional tools to model ontolo-
gies, e.g. WebProtégé [7], lack the capability to link infor-
mation extracted from documents back to their sources[2].
On the other hand, there are general semantic frameworks
like UIMA[4] and GATE[1] with especially the latter allow-
ing user interaction by modeling the extraction process as a
workflow where each step produces some sort of document
representation, e.g. a token stream, and this representa-
tion can potentially be modified before being fed into the
next step of an extraction pipeline. Semantic Wikis have
a stronger focus on user driven data generation, yet they
typically lack information extraction capabalities to sup-
port users in the annotation process. However, there has
been work on integrating existing ontologies and reasoning
capabilities as a background model into semantic wiki sys-
tems[8]. The most similar vision of an iterative learning
process is probably shared by the KiWi project1. It envi-
sions an integration of information extraction and knowl-
edge management with Wiki technology[5]. While we share
a similar architecture as envisioned in the project, our fron-
tend aims at a user base that is not accommodated to Wikis.
Still, since backend and frontend are independent, a Wiki-
frontend could as well be attached to our extraction API.

3. FUNCTIONALITY
A typical user workflow consists of two main iteratively re-

peated steps: 1) Information Extraction 2) Evaluation and
Modification of extracted information After each extraction
phase, the user can give feedback, such that in the next ex-
traction iteration the system can learn from user corrections
and apply any new insights on the whole corpus.
However, initially a user first has to select source files by

providing their URIs (e.g. web urls or WebDAV directories),
which will be added to a list of project files to work on. Next,
the user may configure the extraction run including the
choice of domain knowledge used and which extraction steps
(entity recognition, relation recognition) shall be performed.
Once the extraction process is started MIKE displays status
information on the extraction progress. When the extraction
process has finished, results are retrieved from the extrac-
tion system and provided as a listed overview, which may be
grouped and sorted by files, entities or statements (Figure
1, area 1). In case of grouping by files, the extracted entites
and the extracted statements within each file are indicated.
In both the other cases, for each entity/statement the files
where it is mentioned are listed.
A click on a list item opens the corresponding document

within an editor component. There, its textual content is
displayed enriched with highlighted entity and statement
mentions (Figure 1, area 3). This way, a user directly sees
the extracted information in context allowing her to judge
correctness and completeness of the extraction results. Both

1http://www.kiwi-project.eu/

entity and statement mentions can be filtered by a confi-
dence threshold (area 2). A click on an entity or statement
mention provides further information, such as its author (the
user or system name that found or last edited the mention),
the recognition confidence and its context (area 4). In case of
an entity mention also the referenced entity is shown, while
in case of a statement mention all relations recognized be-
tween the included entities (at that mention) are listed. En-
tity mentions may be corrected by changing the referenced
entity and/or by adjusting their bounds. For a statement
mention a user may support/refute a given relation and/or
add a new one. Both types of mention can be added by
selecting a text part and providing an entity reference or
at least one relation, respectively. After giving feedback a
user may restart the extraction on all or a subset of docu-
ments and the system can re-evaluate all findings based on
the given feedback.

Finally, the frontend allows for export of edited files in an
annotated XML format or of all extracted information in a
single dump.

Figure 1: Overview with opened Document

LUKe Learning Effects.
In our setup we use a pattern based extraction system

based on [6]. However, the system has been extended to
learn from user feedback and integrate it into its own it-
erative extraction process. This way the extraction system
learns from corrections of entity disambiguations to do it
correctly at other occurrences of the same entity represen-
tation. For instance, if “US President” has been manually
set to indicate the entity BarackObama then 1) in other cases
where “US President” occurs the system will tend towards
interpreting these as references to BarackObama and 2) all
other entity references that are ambiguous, but might refer
to Obama are more likely associated with the entity Barack-

Obama. Additionally, if the system did not even consider
BarackObama as the entity being adressed by “US President”,
e.g. because its database was outdated, then it will consider
this new possibility also in other texts. For the relations
the system manages pattern–relation associations with con-
fidence values, e.g. it might consider“X was born in Y”as an
expression of the bornIn relation between two entities X and
Y or “X ’s newest master piece Y”as a (less reliable) pattern
for a directed relation, but it might also indicate a actedIn,



wrote or painted relation. If a user adapts the interpretation
of an ambiguous pattern, the system can modify its confi-
dence in the corresponding pattern–relation association and
thus learn about the typcial interpretation within the cur-
rent domain. Additionally, as relations are typed, choosing
correct entities, e.g. by fixing disambiguation decisions or
by setting the relation, allows the system to also adapt the
entity’s type information. For instance, if the system only
knows about Quentin Tarantino being a director, a manu-
ally added instance of an actedIn instance can lead to him
being also known as an actor.

4. ARCHITECTURE
The architecture is divided into three main layers.

Figure 2: Architecture

The CORE layer consists of an adapted extraction system
and an efficient ontology store, such as a database or a triple
store. On top of these core components a REST Web service
API provides access to extraction, feedback and knowledge
management. That is, extraction jobs can be started via
the interface, results can be obtained, feedback be provided
and snapshots of all information extracted so far can be ex-
ported in an ontological format. Information is exchanged
either in HTML, XML or JSON format. Extraction results
mainly consist of entity and statement occurrences. Each
entity occurrence’s main components are 1) the position in
the text, 2) the original text and 3) the entity reference can-
didates along with confidence values. Similarly, statement
occurrences mainly consist of 1) the position in the text, 2)
the two entities involved and 3) the possible interpretations.
Finally, MIKE provides a web-based user-interface. It

wraps the functionality provided by the REST API in an
easily understandable graphical frontend.
The architecture is modular in nature, e.g. any extraction

system supporting the REST-API interface could be used
and similarly another visualisation frontend could access the
interface. In our demo setup we use LUKe, a modified ver-
sion of [6], and a PostgreSQL database as core components.
While in the demo a single system hosts all components (po-

tentially except the database), the extraction could also be
run in a distributed way. Both the extraction system in our
setup as well as the REST-API are written in Java with the
latter being run on a Tomcat server. MIKE is implemented
in PHP using cURL and openSSL for communication with
the REST-API.

5. DEMO OUTLINE
In our demonstration we will showcase the use of the

user interface and the underlying learning extraction sys-
tem by selecting a couple of documents, running the extrac-
tion, editing some entity and relation occurrences and then
re-running the extraction to show the learning effects. A
video outlining this procedure is available at http://bit.

ly/MdsU8F.

6. ACKNOWLEDGMENTS
This work has been partially funded by the BMBF (Ger-

man Federal Ministry of Education and Research) through
the WisNetGrid project2.

7. REFERENCES
[1] H. Cunningham, D. Maynard, K. Bontcheva, and

V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics (ACL’02), 2002.

[2] S. Elbassuoni, K. Hose, S. Metzger, and R. Schenkel.
ROXXI: Reviving witness dOcuments to eXplore
eXtracted Information. Proceedings of the VLDB
Endowment, 3, 2010.

[3] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld.
Open information extraction from the web. Commun.
ACM, 51(12):68–74, 2008.

[4] D. Ferrucci and A. Lally. Uima: an architectural
approach to unstructured information processing in the
corporate research environment. Nat. Lang. Eng.,
10(3-4):327–348, Sept. 2004.

[5] P. Smrz and M. Schmidt. Information extraction in
semantic wikis. In C. Lange, S. Schaffert, H. Skaf-Molli,
and M. Völkel, editors, SemWiki, volume 464 of CEUR
Workshop Proceedings. CEUR-WS.org, 2009.

[6] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: A
Self-Organizing Framework for Information Extraction.
In International World Wide Web conference (WWW
2009), New York, NY, USA, 2009. ACM Press.

[7] T. Tudorache, N. F. Noy, S. M. Falconer, and M. A.
Musen. A knowledge base driven user interface for
collaborative ontology development. In P. Pu, M. J.
Pazzani, E. André, and D. Riecken, editors, IUI, pages
411–414. ACM, 2011.

[8] D. Vrandecic and M. Krötzsch. Reusing ontological
background knowledge in semantic wikis. In M. Völkel,
S. Schaffert, and S. Decker, editors, Proceedings of the
First Workshop on Semantic Wikis – From Wikis to
Semantics, Budva, Montenegro, Juni 2006.

2http://www.wisnetgrid.org/


