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Although more and more data is collected automatically, many interfaces still require manual input. When we, for example,
enter our daily calorie intake or calculate our ecological footprint, we often have to guess the weight of the food or what
distance we have covered with our car. In this paper, we propose a solution to overcome the problem of forcing users to
enter a single value when they are unsure about the actual input. On the basis of a slider, we designed four input controls
which allow the input of uncertain data in the form of probability distribution functions. To evaluate our input controls, we
conducted two studies collecting subjective and objective feedback. Based on the evaluation, we derived implications for
their usage. We additionally provide an open-source toolkit with the evaluated input controls that can be included in web
applications and customized for di�erent contexts and tasks.
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1 INTRODUCTION
Data uncertainty is a concept that everyone has to deal with in everyday life. Everyone makes decisions based on
the weather forecasts or the bus schedule, many people carry around devices that count their steps or track their
current activity, and nearly everyone uses navigation systems that recommend the best route. Most of this data,
which is used as a basis for decisions, is uncertain and can be wrong.

Although uncertain data is present everywhere, its uncertainty is seldom taken into account when developing
interactive systems, especially on the input side. Research has so far focused on the visualization of uncertain
data. Di�erent visualizations for experts such as glyphs [35] have been analyzed or compared [10, 24, 37]. For
laymen, quantitative and qualitative methods can be used to communicate uncertain data, but both methods
have their drawbacks. Even for well-educated adults it can be di�cult to understand quantitative information
such as easy probability questions [17], and qualitative formulations such as low risk or low uncertainty can be
misleading due to di�erent perceptions of qualitative terms [33].
One of the main problems of uncertainty visualization lies in the quanti�cation of uncertainty. Before the

uncertainty can be visualized, it has to be captured and modeled in a way that ensures data quality and correctness
[1]. This also includes the quanti�cation of uncertainty introduced through user input, e.g., uncertainty due to
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(a) Fixed Range Slider (b) Flexible Range Slider (c) Flexible Range Best Esti-
mate Slider

(d) Advanced Flexible Range
Best Estimate Slider

Fig. 1. Four slider controls each enabling users to enter a probability distribution function. The sliders have ascending degrees
of freedom (le� to right). The interaction cues shown in the pictures are displayed when hovering over an interactive element
(drag handle) of the slider control.

technical inaccuracy for touch interfaces or forms [28]. What is not captured by interactive systems so far is
the uncertainty directly introduced by the user. When tracking their calorie intake, for example, users have to
manually enter the weight of the food that they have eaten. But without a scale, it is hard to enter the exact value.
Another example is the calculation of the ecological footprint, where users have to specify how many kilometers
they have driven with their car each month. This could be very di�erent from month to month. Current interfaces
o�er number �elds to enter such data which forces users to enter a single value, although they probably do not
know this value. The uncertainty introduced through such an input can neither be quanti�ed nor visualized or in
any other way be re�ected in the output. Knowing whether a user is uncertain or even how much uncertainty a
manual input of a user contains makes it possible for systems to re�ect this in the output. This makes the output
more reliable, transparent, and easier for users as they can see how their uncertainty in�uences the output.

In this paper, we take a �rst step to explore standard interface controls for entering uncertain data. We designed
new user interface controls: sliders that allow the user to enter a probability distribution function (see Figure 1).
The sliders provide di�erent degrees of freedom. We evaluated the input controls in two steps; a subjective
evaluation in an online survey followed by an objective evaluation in a controlled user study. Based on the results,
we implemented a web-based toolkit containing the input controls, which allows researchers and developers
to easily use and customize the input controls for their projects. One goal of our work is to tackle a source of
uncertainty in interactive systems that is so far mostly overseen: the user input. The more speci�c goals of our
work are to understand how people interact with input controls that allow them to specify uncertainty, and to
enable other researchers and developers to use our input controls and insights in future work.

Based on these goals, our contributions include the following:

(1) Identi�cation of sources of uncertainty in interactive systems.
(2) Design and evaluation of probability distribution sliders for the input of uncertain data collecting

objective and subjective feedback resulting in recommendations and implications for when to use the
speci�c slider controls.

(3) Development of a web-based open source toolkit for web developers and researchers that allows easy
modi�cation of the probability distribution sliders for di�erent tasks and contexts.

Our work encourages researchers and developers designing interactive systems to take uncertainty in manual
user interfaces into account.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 2. Publication date: June 2017.



Input Controls for Entering Uncertain Data: Probability Distribution Sliders • 2:3

2 BACKGROUND & RELATED WORK
Our work is mainly based on three topics: de�nitions of uncertainty, visualization of uncertainty, and sliders.

2.1 Definitions of Uncertainty
Most previous work about the classi�cation and visualization of uncertain data was conducted in a speci�c
domain which leads to manifold de�nitions and references to the term uncertainty. The term is used inconsistently
across domains, because each domain focused on their research independently [18]. Specialized topologies could
assist analysts to make better decisions, for example for geospatial information [32].

Skeels et al. [30] built a classi�cation of uncertainty based on previous literature and by conducting interviews.
The classi�cation contains three levels of uncertainty: measurement precision, completeness, and inferences.
Gershon [6] discusses the manifold sources of imperfection of information; distinguishing between corrupt,
incomplete, inconsistent, complicated, and uncertain data. Clearly driven by the visualization domain, Pang et al.
focus [24] on a classi�cation of methods for uncertainty visualization by data type and visualization extent.

As seen, most of this work focuses on di�erent aspects when building classi�cations of uncertainty, but do not
fully address or apply to interactive systems.

2.2 Visualization of Uncertainty
The visualization of uncertain data has been explored in di�erent research areas. Pang et al. [24] and Zuk and
Carpendale [37] worked on glyph visualizations to visualize uncertainty in vector �elds and surfaces for experts.
Other work in the visualization domain focuses on a speci�c type of uncertainty (e.g., bounded uncertainty [22])
or a speci�c visualization such as line graphs [31], box plots [26], or bar charts [3].

Other work addresses domain-speci�c problems such as weather forecasting, in which the research focus lies
on the visualization of uncertainty information in weather forecasts and its in�uence on both meteorologists and
laymen. A study by Morss et al. [21] indicates that people are aware of the uncertain nature of deterministic
weather forecasts, although the perceived range of this uncertainty di�ers between people. This and further
studies clearly indicate that showing uncertainty information is not only preferred by people [21], but also helps
them to make better decisions [11, 27]. The same studies as well indicate that showing uncertainty increases
the perceived transparency and reliability due to the increased trust in a forecast [11, 27]. This does not only
hold for weather forecasts but can be applied in many situations, for example for body weight measurements
where missing uncertainty information decreases trust [14]. All these positive �ndings suggest that showing
uncertainty information should also be considered in interactive systems.

A large number of studies compared uncertainty visualizations for di�erent groups of people. Pappenberger et
al. [25] identi�ed quantiles as the representation most used by experts in meteorology. Ibrekk et al. [8] conducted
a study with laymen who had to �nd the mean of a probability distribution with nine di�erent visualizations.
They suggest displaying a normal probability distribution function and a cumulative probability function on top
of each other. This is in line with �ndings of Greis et al. [7], who found that laymen performed best in a game
when supported by a probability distribution function plot. Color gradients also proved suitable for visualizing
probability distributions [9], and have even been suggested as an alternative to bar charts with error bars [3].
Overall, visualizing uncertainty as a probability distribution function or gradient seems a promising direction to
communicate uncertainty both to experts and laymen.

Research in HCI has started to focus on uncertainty visualization and communication recently as well, for the
exploration of personal genomics data [29], data analysis [5], machine learning [15, 36], bus arrival predictions
[13], range anxiety in electric cars [12] and other applications.
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2.3 Sliders
Sliders are �exible input controls used for a variety of tasks. As visual analogue scales, they are for example used
in clinical trials and research [19]. Their design in this context has been studied thoroughly revealing that, for
example, tick marks introduce a bias while a banded design or dynamic feedback does not [20]. Sliders have an
even longer history of being used for data exploration. With the help of the alpha slider [23] words, phrases, or
names from textual lists can be selected. In this context, sliders are used as a selection input control.

Eick et al. [4] developed enhanced sliders that show the distribution of the data as a density plot in the slider
bar, thus the sliders are used as a �ltering mechanism for existing data. A similar approach is suggested by Willett
et al. [34] with their scented widgets, in which the sliders incorporate visual elements that help to select and
explore data. Sliders therefore can support �ltering and exploration of data by providing visual feedback of their
selection. Lasram et al. [16] visually showed the e�ect of a slider control on an image by enhancing the slider bar.
This served as a preview to allow users to intuitively use the sliders. Here, visual elements helped to understand
the outcome of the interaction while adjusting the sliders. Overall, sliders o�er a great potential to integrate
visual feedback on the selection.

3 DESIGN PROCESS
Research has shown that visualizing uncertainty information has many advantages, and the topic is also recently
gaining attention in HCI. In the following, we identify potential sources of uncertainty in interactive systems that
need to be addressed to quantify uncertainty. We observe that user input plays an important role and is so far
seldom taken into account when quantifying uncertainty. We therefore focus on designing for uncertain input
and present our design rationale for our input controls, the probability distribution sliders.

3.1 Sources of Uncertainty in Interactive Systems
Based on the related work we have presented and the architecture of interactive systems, we derived potential
sources of uncertainty for interactive systems based on real world models (see Figure 2). The following sources
should be taken into account: (1) Structural uncertainty is introduced because a model can only partially copy the
real world. During the modeling step, parts of the real world have to be left out deliberately and not considered
in the model. (2) Algorithmic uncertainty could be introduced when converting a model to source code as an
identical transformation can be di�cult. (3) Due to a lack of knowledge or imprecise measurements, e.g., of the
amount of consumed food, a user may enter wrong data when using an interactive system. (4) Additionally,
the user might have a wrong understanding of the input methods provided by the system or face technical input
method limitations (for example when using a slider with a �xed number of pixels). (5) The input method itself
might not support enough degrees on freedom (e.g., a number �eld instead of allowing probabilistic input) or
require data transformation (e.g., the input data could be transformed with an outdated measure such as an
outdated currency exchange rate). (6) As input methods, output methods can have restricted degrees of freedom
(e.g. not supporting uncertainty information). (7) The potentially wrong understanding of the output methods
and potential output method limitations apply, too. (8) Lastly, the user can misinterpret the presented data and
understand the output in a di�erent way.

User input plays an important role in interactive systems. So far, input controls do not support the degrees of
freedom necessary to support the input of uncertain data. In the following, we make a �rst step to explore input
controls for uncertain data.

3.2 Designing for Uncertain Input
In a prototyping session we designed low �delity prototypes for the input of uncertain data. We realized that
designs based on di�erent input controls such as number �elds, radio buttons, or sliders lead to completely
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Fig. 2. Schematic representation of an interactive system that includes a real-world model. Each number on an edge represents
a step in the process where uncertainty could be introduced specifying di�erent sources of uncertainty that have to be taken
into account.

di�erent prototypes that do not have any common features and therefore cannot be compared in a meaningful
way. As there is no former research which could be used as a baseline, we decided to focus on one speci�c
input control only, allowing us to compare the newly designed input controls against a meaningful baseline.
Additionally, we aimed to design input controls that had the greatest possible transparency by giving users
feedback on how their input would be interpreted by the system.
One input control that has a huge amount of �exibility and ful�lls these requirements is a slider. Sliders are

often combined with enhancing visualizations, which can be easily adapted for the input of uncertain data.
Adding enhancing visualizations to other input controls would be unusual for people. Additionally, people already
use di�erent versions of sliders for searching and �ltering data; sometimes even specifying a range instead of a
single number (e.g., on websites of online shops). Related work shows that probability distribution functions
either as function or gradient plots are a promising way to communicate uncertain data to non-technical people.
Other representations such as box plots or quantiles are not suitable for laymen but mainly used by experts.
The combination of sliders with probability function plots or gradient plots is therefore a promising �rst step to
design input controls for uncertain input.

3.3 Probability Distribution Sliders
A common input control allows users to enter a single value (e.g. a number), which could be either the mode, the
median, or the mean (expected value) of a probability distribution. Based on this, we �rst derived levels with
varying degrees of freedom for probabilistic input. A probability distribution function can be speci�ed by the
following four properties: mode, standard deviation, skew, and kurtosis. Each of these properties can be either
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SD Skew Kurtosis
Level 0 not included not included not included
Level 1 �xed �xed �xed
Level 2 adjustable �xed �xed
Level 3 adjustable adjustable �xed
Level 4 adjustable adjustable adjustable

Table 1. Deriving levels with varying degrees of freedom for
entering a probability distribution function.

Fig. 3. The basic slider used as baseline input control for the
probability distribution sliders.

not included, �xed, or adjustable by the users. As the properties have a rising complexity, we derived �ve levels
with rising �exibility listed in Table 1.

As a baseline, we used a standard slider (depicted in Figure 3), which just allows the user to enter a single
value (level 0). Based on the standard slider and the four additional levels, we developed four input controls
(abbreviated with IC in the following) for specifying a probability distribution function. The number of the IC
corresponds to its level.
IC1 allows the user to input a �xed range by moving a �xed part of the slider bar (see Figure 1a) which

corresponds to a probability distribution with �xed standard deviation, �xed skew, and �xed kurtosis.
IC2 allows the user to drag at the two ends of the selection (see Figure 1b) to create a range with a �exible size.
IC3 o�ers an additional selection of the mode on top of the �exible range selection of IC2 (see Figure 1c). By

selecting the mode of the probability distribution function, users can in�uence its skew to specify asymmetric
distributions.

IC4 additionally provides the possibility to specify two more values (half as high as the mode) of the probability
distribution function (see Figure 1d). This allows users to in�uence the kurtosis of the function.

All input controls were designed to have analogous features allowing them to be evaluated and compared. For
IC4, we could have chosen an arbitrary amount of additional values, but this would have introduced a completely
new input control not comparable to the others. To achieve transparency of the input process we added three
supportive visual elements: (1) A gradient plot providing the height information of the probability distribution
function to support the intuitive feeling of the user without understanding the details of a probability distribution
function; (2) A gradient height legend to determine the height of di�erent points on the function or at least the
height of the peak, which can be directly read from the top of the legend; (3) A plot of a probability distribution
function where the height of a certain point can be easily determined, although basic mathematical knowledge
might be required to fully understand the plot. In addition to the supportive visual elements, we added interaction
cues and tooltips. Tooltips are shown before users interact with a control while the interaction cues are displayed
when hovering over the interactive elements of a control.

4 SUBJECTIVE ASSESSMENT
To evaluate the probability distribution sliders, we �rst conducted an online survey. We collected subjective
feedback according to perceived e�ectiveness, e�ciency, ease of use, satisfaction, and learnability of the controls.

4.1 Tasks & Procedure
After a general introduction, participants were �rst asked to provide demographic information and assess their
knowledge about stochastics, statistics, probability theory, and probability distributions. We then presented the
base line slider and the probability distribution sliders randomizing the order of the ICs across participants to
reduce sequence e�ects. For each IC, we presented an exemplary task displaying a table that showed how often a
car was used over 36 months by “Sam Sample” to get to work, and provided the following question: “How many
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(e) User Ratings for Learnability

Fig. 4. Results of the online survey showing the agreements of 73 participants on a five-point Likert scale about the input
controls (IC0 to IC4). The exact formulation of the statements is provided in Section Tasks & Procedure.

IC0 IC1 IC2 IC3 IC4
M SD M SD M SD M SD M SD

E�ectiveness 3.66 1.15 3.10 1.18 3.45 1.17 3.27 1.20 2.89 1.19
E�ciency 3.82 1.21 3.60 1.05 3.63 1.16 3.07 1.18 2.63 1.21
Ease of Use 3.93 1.00 3.53 1.20 3.59 1.18 3.00 1.24 2.63 1.10
Satisfaction 3.12 1.26 2.96 1.11 3.19 1.09 3.11 1.09 2.63 1.17
Learnability 4.38 0.91 3.79 1.18 3.84 1.09 3.44 1.01 3.14 1.00

Table 2. Mean values and standard deviations for all Likert scale ratings of participants in the online survey.

times each month does Sam Sample use his car to go to work?”. The description made clear that the task was an
example and participants did not have to solve it. We additionally presented a short description of the control.
Participants were then asked to try out the control and indicate their level of agreement on a �ve-point Likert
scale with the following four items:

E�ectiveness: “I am con�dent that I am able to correctly enter data with this input method.”
E�ciency: “I was able to quickly enter data using this input method.”
Ease of use: “It was simple to use this input method.”
Satisfaction: “I liked using this input method.”
Additionally, we asked participants to judge the learnability of the input control by using a �ve-point Likert

scale ranging from “I could use this input method intuitively (without reading the description)” to “I doubt I will ever
be able to con�dentially use this input method (even after training)”. Participants were then able to optionally leave
positive and negative remarks, reasons for their judgments, and further suggestions, questions, or comments in a
text �eld. In the end, we asked participants to rank the ICs according to how much they liked them and how
useful they think they were. We additionally asked them to judge whether they understood, liked, and found the
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supportive visual elements (the probability distribution function plot, the gradient plot, and the gradient height
legend) useful.

4.2 Participants
In total, 75 participants (34 female, 40 male, 1 preferred not to say) answered the online survey completely.
They were recruited via social media and by e-mailing our list of volunteers. We decided to exclude two male
participants from the analysis: One asked us to remove his data in one of the comment �elds; the other took
less than �ve seconds to click through each page of the survey, which deviated too much from the average time
participants needed to answer the questions appropriately.
Finally, we analyzed the data from 73 participants who had an average age of 25.97 years (SD = 5.97) and

who were mostly students and employees with di�erent subjects and �elds of work. More than 90 % had a high
school degree or an even higher degree, such as a bachelor (31.51%) or master degree (17.81%). We also asked
participants about their previous stochastic and statistical knowledge and presented six di�erent levels from
which they should select: from “no knowledge at all” to “knowledge about stochastic, statistics, probability theory,
and probability distributions”. We converted the answers to a knowledge level with rising knowledge from 1 to 6.
Participants on average reported to have a knowledge level of 4.55 (SD = 1.85), which correlates to them having
some stochastic and statistics knowledge.

4.3 Results
For the analysis, we converted all Likert scale ratings of the subjective assessment to numbers, associating totally
disagree with the number 1 and totally agree with the number 5. We also converted the items for learnability to
the same scale. We then analyzed all of the statements independently.

4.3.1 Metrics for Input Controls. All Likert scale ratings for all statements are depicted in Figure 4 and for
easier comparison, means and SDs are depicted in Table 2. For each statement, we conducted a Friedman test
to show that there is a statistically signi�cant di�erence in the perceived e�ectiveness, e�ciency, ease of use,
satisfaction, and learnability of the input controls with a signi�cance level of � = 0.05. As a post hoc analysis, we
conducted Wilcoxon signed-rank tests with an applied Bonferroni correction, resulting in a signi�cance level of
p < 0.005 for each statement. In the following, we only report signi�cant results.

E�ectiveness.We found a signi�cant di�erence in terms of perceived con�dence to be able to correctly enter
data, � 2 (4) = 23.94,p < 0.001. IC0 and IC2 were rated signi�cantly better than IC1 and IC4.
E�ciency. We found a signi�cant di�erence in terms of perceived ability to quickly enter data, � 2 (4) =

61.56,p < 0.001. IC0, IC1, IC2, and IC3 were rated signi�cantly better than IC4. IC0, IC1, and IC2 were also rated
signi�cantly better than IC3.
Ease of Use.We found a signi�cant di�erence in terms of perceived ease of use, � 2 (4) = 63.85,p < 0.001. IC0,

IC1, and IC2 were rated signi�cantly better than IC3 and IC4.
Satisfaction. We found a signi�cant di�erence in terms of perceived satisfaction, � 2 (4) = 16.48,p = 0.002. IC2

and IC3 were rated signi�cantly better than IC4.
Learnability. We found a signi�cant di�erence in terms of perceived learnability, � 2 (4) = 73.74,p < 0.001.

Participants thought that IC0 would be signi�cantly easier to learn than all other input controls. IC1 and IC2
were also rated signi�cantly better than IC3 and IC4.

4.3.2 Rankings. For the rankings, we assigned the number of the rank to the input controls (see Figure 5 for
an overview of the ranking results). A lower number therefore corresponds to a better rank. We then performed
the same analysis as for the metrics.
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Fig. 5. Results from our online survey showing the rank that participants gave to the input controls (IC0 to IC4) in terms of
likeability and usefulness.

Likeability. We found a signi�cant di�erence in the ranking of the input controls for likeability , � 2 (4) =
31.46,p < 0.001. Participants ranked IC0, IC2, and IC3 signi�cantly better than IC4. Additionally IC2 was ranked
signi�cantly better than IC1.

Usefulness. We also found a signi�cant di�erence in the ranking of the input controls for usefulness , � 2 (4) =
62.18,p < 0.001. Participants found IC2, IC3, and IC4 signi�cantly more useful than IC0 and IC1.

4.3.3 Visual Elements. The majority of participants agreed to the statement of “I understood how ... works"
for all graphical elements. The probability distribution function plot was rated best with an average of 4.16
(SD = 0.90), followed by the gradient plot with an average of 3.64 (SD = 1.10) and the gradient height legend
with an average of 3.53 (SD = 1.17). We found that the same order applied for the statement of “I liked ...". The
function plot got an average rating of 3.70 (SD = 1.02), followed by the gradient plot with an average of 3.12
(SD = 1.00) and the gradient height legend with an average of 2.93 (SD = 1.08). For all elements, participants
agreed on the statement that they are useful with an average agreement of 3.92 (SD = 0.88) for the function plot,
3.36 (SD = 0.98) for the gradient plot, and 3.22 (SD = 0.99) for the gradient height legend.

4.3.4 �alitative Feedback. We analyzed the qualitative feedback for each input control and the overall
feedback related to the rankings of the input controls.

According to four participants, IC0 was easy to use. Although we neither assumed nor expected participants to
calculate the mean, three of them did calculate it. They complained that they were not able to enter the exact
value (15.67), because the slider only allowed integer input. Nevertheless, one participant found that “on the other
hand, Sam can only go by car 15 or 16 times, not 15,6666...so the input is alright".

On the one hand, IC1 was described as easy to use (three participants) and fast (two participants). On the other
hand, three participants complained about the low number of degrees of freedom that the input control o�ers.
Three others also mentioned that it could be a problem that the width of the range of the probability distribution
could not be adapted, because “[...] this restricts the input options and one is unable to vary the standard deviation
[...]. This could be either positive or negative depending on the purpose."
Participants described IC2 as “awesome for this type of question", visually appealing, good for entering the

lowest and highest value, and self-explaining. Two others stated that it was di�cult for them to �gure out how
to use the control. One participant complained about the degree of freedom, which was perceived too low in
comparison with other input controls.

Participants had very diverse opinions about IC3. Whilst one described that it was easy to enter data and that
usability and accuracy of the control were pleasing, another stated that “my stochastic knowledge is weaker than
the form of presentation. I guess it’s adequate and useful for people in the �eld."
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Participants had even more diverse opinions about IC4. On one hand, three liked it because of its degrees of
freedom and one participant each found it e�ective, a nice visualization, and a “very good input control". On the
other hand, three did not understand it, two thought that there were too many inputs, and one participant each
thought that it was too complicated, overloaded, and that it would be faster to draw the graph.
For all input controls, participants speci�ed that the tooltips helped them to understand how to operate the

sliders. Few of them provided us with speci�c feature requests such as directly clicking in the slider bar to set the
value, placing the numbers showing the value not below the bar, making more parts of the slider interactive,
including the ability to pull the left border across the right border to make the input easier, or styling the slider
more like a standard web slider.
For the graphical element, participants speci�ed that the function plot was very useful and better to judge

than the color gradient. The color gradient was found to be useful by two participants, but three mentioned that
it was hard to interpret. One stated that this is “only nice to have". The transition legend was not considered as
useful and two participants speci�ed that they did not even understand it. Also the unit of the legend and the
plot was hard to understand according to participants.

Participants’ comments about the rankings gave more insights in why they liked speci�c controls and which
controls they liked best. They stated that they ranked for di�erent properties such as provided details, number
of settings that can be adjusted (degrees of freedom), simplicity and straightforwardness, easy to handle and
understand, or rating from easiest to hardest. One participant again mentioned that “[...] the �rst two methods
[(IC0, IC1)] didn’t specify what should be the input. I assumed mean, which I can’t do in my head." Another one
speci�ed that he “[...] needed some time to �nd out how to adjust the di�erent sliders and which function they had."
Following the ranking, participants mostly disliked IC1. They found that “[IC1] is horrible, because the plot is
presented with an amount of detail (the pdf, which includes all kinds of assumptions on the shape) that is not at all
supported by the data that’s put in." and “[IC1] and [IC2] were somehow in between (too simple and too unspeci�c)".
By contrast participants speci�ed that they liked IC3, which o�ered the ability to enter a �exible range and
the peak of the probability distribution function. One participant stated that “The more power the methods hold,
the more complex and annoying the interaction got. Number [IC3] was a good compromise. Easy sliding and the
possibility to change the width." and another stated that “[... IC3] is where you provide the most information, while
not being very cumbersome at the same time." One participant also summarized all these �ndings by highlighting
that he “[...] liked [IC3] because you can adjust some features, but it’s still relatively quick. Method [IC2] and [IC1]
give less possibilities. But in [IC4] it’s too much you have to enter."

4.4 Discussion
We found that IC2 got the highest agreement for the item on satisfaction although IC0 got higher agreement
for all other statements. Participants realized that they could not provide a good answer for the task using IC0.
Additionally, IC2 outperformed IC1 for all statements. Participants did not like the �xed bar restricting them
in their input, making it more di�cult to adjust. Participants agreed less with the satisfaction statements for
IC1 than for IC2, IC0, and IC3. To improve IC1, an explanation about why this range was chosen could help to
make users more aware of good reasons for the choice and less miserable about the fact that the size could not be
changed. IC4 got the lowest agreement on all �ve statements. The control was perceived too cumbersome and
di�cult to handle. Although IC3 did not get good single ratings, it was ranked high and comments about the
ranking showed that the majority of participants liked it and saw it as the best compromise. Nevertheless, it was
already di�cult to handle for participants with low statistical knowledge. Although statistical knowledge was
needed to understand it, participants surprisingly perceived the probability distribution function plot to be the
most useful graphical support element. The gradient height legend was more di�cult to understand.
The subjective assessment showed that participants in general liked the idea of using input controls for

uncertain data. They especially liked IC2 and IC3, while �nding IC1 too restrictive and IC4 to cumbersome. One

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 2. Publication date: June 2017.



Input Controls for Entering Uncertain Data: Probability Distribution Sliders • 2:11

of the �ndings was that although we carefully formulated our question, three participants were not sure what to
enter: mean, median, or mode. This is also a problem of current interfaces that provide a single value input. In
most cases, there is no speci�cation whether the mean, the median, or the mode should be entered.

In addition to a subjective assessment, an objective assessment of the input controls is necessary to assure the
correctness of the input and get more insights in when to use which input control.

5 OBJECTIVE ASSESSMENT
As a second step of the evaluation, we conducted a user study as objective assessment of the �ve input controls.
We therefore focused on how long participants need to make an input, how much help is necessary, and how
well they were able to provide the required input.

5.1 Method
We invited prospective participants by sending out e-mails to a mailing list that volunteers for user studies could
subscribe to. When arriving, prospective participants were informed about the context and were asked to sign
a consent form. We used a within-subjects design, thus participants had to solve three tasks and complete a
System Usability Scale (SUS) questionnaire [2] for each input control. To minimize sequence e�ects, we randomly
assigned an order of input controls to each participant. The study instructor manually started a new task by key
press.

We used the following three tasks for each input control:
(1) For the �rst task, we modi�ed the question from the online survey learning from previous �ndings. We

adapted the question to “What is the most likeliest value ...” to make sure that participants knew that we
expected them to enter the mode. We prepared �ve di�erent tables and randomly assigned them to the
input controls to make sure that participants did not know the solution beforehand and were not in�uenced
by the values. We used this task to compare the actual input with the underlying probability distribution
function that was used for generating the tables.

(2) In the second task, we asked participants to specify how much money they spent when doing their grocery
shopping. This task allowed participants to enter information that they knew without needing to process a
table. The goal of the task was to give participants a feeling how to interact with the input control on a
free task.

(3) In the third task, we asked about the possible outcome of dice rolls. Multiple rolls produce a probability
distribution which can be well speci�ed by using the input controls.

For the study, we added the input controls to a web page containing a description of the task, the question that
needed to be answered with the input control, and �ve buttons where participants could judge their con�dence
about the correctness of their input with �ve options: “My input is correct”, “My input is nearly correct”, “I’m not
sure whether my input is correct”, “I doubt that my input is correct”, and “I don’t understand it”. The web page with
one of the input controls each time was opened in Firefox.
We recorded all clicks on the input controls, the input time, the clicks on the help button and the con�dence

buttons, and how long the help information was opened. Additionally, we logged the input and did a screen
recording.

5.2 Participants
30 participants (11 female, 19 male) with an average age of 26.03 (SD = 7.15) took part in the study. We recruited
them in a university setting, so the majority of them were undergraduate students with di�erent subjects
or university employees. None of them participated in the online survey. As in our online survey, we asked
participants for their knowledge of stochastics, statistics and probability theory. Participants reported to have an
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average knowledge level of 4.73 (SD = 1.68). As the majority had a high school degree as their highest educational
degree, the knowledge related to the knowledge acquired in school.

5.3 Results
For all e�ciency, con�dence, e�ectiveness, and usability metrics, we calculated Pearson’s r to detect possible
correlations between the statistical knowledge of participants and their performance in the study. We only found
moderate positive correlations (0.40 < r < 0.45) in terms of how often and how long the help was consulted
for task 2 and 3 of IC2 and IC4. The statistical knowledge did not signi�cantly correlate with any other metrics
(�0.35 < r < 0.35) for any other input control and task, thus no distinction between participants with low and
high statistical knowledge was made in the analysis. We analyzed the task separately, but as we did not �nd any
signi�cant di�erences between tasks, we merged them for the analysis.
For all metrics, we conducted a Friedman test to test for statistical signi�cance with a signi�cance level of

� = 0.05. As a post hoc analysis, we conducted Wilcoxon signed-rank tests with an applied Bonferroni correction,
resulting in a signi�cance level of p < 0.005 for each metric.

5.3.1 E�iciency. To compare the e�ciency of the input controls, we recorded all clicks on the input controls and
therefore how often the participants interacted with the controls. We divided the total number of clicks per input
control by the number of interactive elements (drag handles) to achieve a comparable value. The Friedman test
showed a signi�cant di�erence in how often participants clicked on the input controls, � 2 (4) = 43.54,p < 0.001.
Most clicks per element were recorded for IC1 with 2.89 clicks, which was signi�cantly clicked more often than
IC0, IC3 and IC2. IC1 was followed by IC4, which was also clicked signi�cantly more often than IC2 and IC3.

We additionally analyzed the total input time. The Friedman test showed a signi�cant di�erence in how long
the participants interacted with the input controls, � 2 (4) = 98.05,p < 0.001. Participants were fast using IC0,
IC1, and IC2. With IC3, it took them signi�cantly more time to enter data than with IC0 and IC2. Entering data
with IC4 took signi�cantly longer than with all other input controls.

5.3.2 Confidence. We recorded how many times the help button was clicked to open the help information.
Most help was needed for IC0, where in 20 of 90 tasks, participants opened the help information. For all other
input controls, help information was only opened for 11 up to 14 out of 90 tasks. How long participants opened
the help information was also di�erent, but the Friedman test showed no signi�cant di�erence. For whether the
help information was used or not, we did also not observe any ordering e�ects.

At the end of each task, participants rated their con�dence of the correctness of their input. We converted the
statements to numbers from 1: “I don’t understand it", to 5: “My input is correct". The Friedman test showed a
signi�cant di�erence in the con�dence, � 2 (4) = 16.85,p = 0.002. Participants were signi�cantly more convinced
of the correctness of their input when using IC3 than when using IC0 and IC1.

5.3.3 E�ectiveness. We calculated the absolute deviation of the answers for task 1 and task 3 by calculating
the mean deviation of all interactive elements, but the Friedman test showed no signi�cant di�erences for task 1
for task 3.

5.3.4 Usability. Each participant had to answer a SUS questionnaire for each input control which was adapted
by replacing the term system with the term input control. We found a signi�cant di�erence in the reported
usability, � 2 (4) = 33.64,p < 0.001. IC4 was rated signi�cantly worse than all other input controls with a SUS
score of 47.83.

5.4 Discussion
Recording the number of clicks per interactive element revealed that participants used most clicks for IC1 and
least clicks for IC2. This happened probably because participants were more unsure what to enter with IC1 and
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Fig. 6. Results of the user study showing the confidence of 30 participants about the correctness of their input sorted by
input control (IC0 to IC4) and task (T1 to T3).

IC0 IC1 IC2 IC3 IC4
M SD M SD M SD M SD M SD

Clicks per Element 1.86 1.63 2.89 2.81 1.43 0.98 1.84 1.72 2.53 1.56
Total Input Time (s) 33.2 32.4 35.5 30.1 31.4 21.8 45.6 33.7 63.3 32.5
Help Time (s) 8.90 26.67 5.71 17.24 5.71 17.24 7.18 27.49 10.99 27.81
Perceived Correctness 3.44 1.06 3.49 1.11 3.82 1.03 3.91 0.83 3.76 0.87
Deviation of Answers T1 2.37 1.90 2.63 1.97 2.59 2.08 2.64 2.14 2.39 1.82
Deviation of Answers T3 53.17 85.00 42.17 36.31 29.44 54.47 40.56 62.91 30.78 46.9
SUS score 65.25 20.05 65.67 16.00 70.92 17.43 72.5 16.19 47.83 21.52

Table 3. Results of the user study showing the means and standard deviations of all 30 participants for each of the used
metrics.

needed to correct their input several times. Additionally, participants on average needed the shortest input time
to enter results with IC2 although IC2 had one more interactive control than IC0 and IC1. For the participants,
IC2 was easier to use intuitively.

We additionally experienced that for IC0, the standard slider input control, help information was opened more
often than for all other input controls. Probably participants were unsure about what value to enter although
we changed the question after the online survey and did an informal pre-test with �ve potential participants to
see whether they could understand the intention of the question. The help time was also longer for IC0 than for
nearly all other input controls.
Regarding con�dence, participants were mostly convinced of the correctness of their input for IC3 and IC2,

although analyzing the e�ectiveness showed that IC3 had the highest deviation of the exact value. This could be
because participants with less statistical knowledge had more di�culties in understanding and using IC3, which
is also indicated by the highest standard deviation. Nevertheless, IC3 had the highest usability score, followed by
IC2.

6 RECOMMENDATIONS FOR USAGE
In the following, we outline implications and recommendations for the usage of the �ve input controls based on
the results of our evaluation.

Basic Slider (IC0): The basic slider can be used when the other input methods are not applicable or the
users have to be very fast. However, based on the question and the input data, an ordinary number input
box might provide similar or better results. Despite of what input control is used, it is very important to
clarify whether the interface expects users to put in the mean, median, or mode.
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Fixed Range Slider (IC1): The �xed range slider was rated negative in the survey and did also not compete
very well in the user study. Participants felt unsatis�ed with the interaction and were uncon�dent about
the range size, because it did not necessarily match their expectations. We suggest to preferably use the
�exible range slider, except for very speci�c situations where the range is known beforehand. Nevertheless,
the choice of range should be explained to participants to avoid confusion.

Flexible Range Slider (IC2): The �exible range slider is applicable in most scenarios and even people
without much knowledge of statistics were able to use it and correctly enter data. Specifying a minimum
and maximum value was an intuitive task for most participants that was easy to solve. In addition, they
were quite con�dent about their input and rated the usability high.

Flexible Range Best Estimate Slider (IC3): The dynamic range slider was seen as a good compromise for
our type of tasks by most of the participants. They stated in their comments that they preferred using
it, which also showed the good ranking for likeability and usefulness in the online survey as well as the
good usability score in the user study. However, the input control could be demanding for users without
statistical knowledge and should therefore only be used if it is very likely that users have basic statistical
knowledge.

Advanced Flexible Range Best Estimate Slider (IC4): The advanced �exible range best estimate slider
got the most negative ratings and also a very bad SUS score in the user study. We do not recommend
this input control for laymen. Nevertheless, participants with previous knowledge about statistics liked it,
which makes it usable for people with a high amount of statistical knowledge.

6.1 Limitations
Our input controls are limited to unimodal probability distribution functions. Other shapes are not supported
and we also use clipped probability functions. However, our input controls are clearly directed to people with an
average amount of statistical knowledge, not to experts of statistics who would probably like to enter bimodal
and more complex distributions. The development of more complex input controls for experts has to be analyzed
separately. We selected our sample of participants to be well-educated adults with a basic statistical knowledge
acquired in school. This is also the target group for our input controls.
We evaluated the sliders with three di�erent tasks, but only one task was related to real usage behavior. As

tasks related to user behavior are very di�cult to evaluate according to e�ectiveness, we decided to introduce
two other tasks to better understand how well people can enter data based on given data. We see this as one of
the �rst evaluation steps to compare the input controls against each other. Future work should also provide an
empirical investigation that compares real data of people with their input.

7 TOOLKIT
We implemented a toolkit that contains all �ve web-based input controls. The toolkit consists of a JavaScript and
a CSS �le that can be easily embedded in a web application or web page. To include one of the input controls,
developers have to create an HTML div-element (see Figure 7). By specifying parameters, the look and feel of
the control can be in�uenced. Figure 8 shows an overview about the basic parameters that can be chosen by
developers for IC3. Besides specifying the minimum value, the maximum value, the initial values, and the colors
of the slider bar, developers can also decide whether they want to show the color gradient, its legend, and the
distribution plot. Developers can also in�uence the type of distribution by specifying a distribution type (see
Figure 9). So far, we implemented four di�erent distribution types: triangular distribution, normal distribution,
wigner semicircle distribution and laplace distribution. In addition to the shown parameters, the control can also
be disabled and developers can enable or disable tooltips that provide supportive information on how to use the
input control. The documentation of the toolkit provides additional information on how to import the toolkit,
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Fig. 7. HTML code for including a probability distribution
slider in a web application. The slider is specified by a div-
element that contains all parameter information.

Fig. 8. Parameters for input controls.

(a) Triangular Distribution (b) Normal Distribution (c) Wigner Semicircle Distribu-
tion

(d) Laplace Distribution

Fig. 9. Di�erent types of probability distribution functions that can be used to describe the distribution of uncertain data.

include the input controls in a web application, how to choose the parameters for customizing the input control,
and how to fetch the input of a user.
The toolkit and its documentation is provided open-source and free to use as supplementary material and at

the following URL: http://probability-distribution-sliders.hci.simtech.uni-stuttgart.de/.

8 CONCLUSION
This paper addresses the issue of entering uncertain data in graphical user interfaces. With the help of input
controls that allow users to input such data, the uncertainty in the input can be quanti�ed and taken into account
in the calculation process of an application. We showed that non-probabilistic input controls are perceived less
usable and useful for tasks that force users to enter uncertain data. The �exible range slider proved to be suitable
for probabilistic input for users that have no or limited knowledge about statistics. This is supported by high
rankings in the online survey and a good usability score in the user study. Input controls with more degrees of
freedom did perform well for participants with basic statistical knowledge. The results of the user study also
indicate that participants are more con�dent about the correctness of their input when using input controls
for probabilistic input. We therefore implemented a toolkit containing the �ve input controls developed in the
context of these studies to make probabilistic input available for web developers. By including the controls in their
web applications, they can empower users to enter better input values. Based on the usage patterns, adaption
mechanisms and help mechanisms for untrained users could be established. The toolkit is additionally available
for other researchers which gives them the opportunity to empirically explore probabilistic user input in di�erent
contexts.
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