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Abstract—In this paper we introduce ParaGlide, a visualization system designed for interactive exploration of parameter spaces of
multi-dimensional simulation models. To get the right parameter configuration, model developers frequently have to go back and
forth between setting input parameters and qualitatively judging the outcomes of their model. Current state-of-the-art tools and
practices, however, fail to provide a systematic way of exploring these parameter spaces, making informed decisions about parameter
configurations a tedious and workload-intensive task. ParaGlide endeavors to overcome this shortcoming by guiding data generation
using a region-based user interface for parameter sampling and then dividing the model’s input parameter space into partitions that
represent distinct output behavior. In particular, we found that parameter space partitioning can help model developers to better
understand qualitative differences among possibly high-dimensional model outputs. Further, it provides information on parameter
sensitivity and facilitates comparison of models. We developed ParaGlide in close collaboration with experts from three different
domains, who all were involved in developing new models for their domain. We first analyzed current practices of six domain experts
and derived a set of tasks and design requirements, then engaged in a user-centered design process, and finally conducted three
longitudinal in-depth case studies underlining the usefulness of our approach.

F

1 INTRODUCTION

M ANY researchers seek to study real-world phenomena
by describing them using computational models. Such

models usually take a set of input parameters and map them
to a set of outputs that describe the behavior of the system.
Consider, for instance, modeling the aggregation behavior
of animals such as flocks of birds, swarms of insects, or
schools of fish (see Section 3.2). The input parameters for
a model in this domain might describe the social forces
between individual animals, such as attraction, repulsion, and
alignment. Based on a specific configuration, the model can
compute an output image that shows the collective group
behavior of animals.

A major modeling challenge is to guarantee a close corre-
spondence between the real-world system and the model. Ef-
ficient human interfaces have the potential to greatly improve
the fitness and applicability of computer simulations, because
they enable model developers, domain experts, and decision
makers to make adjustments and interpret model output ac-
cording to their real world experience and knowledge. Select-
ing relevant training data, assessing model output, choosing
among alternative model versions, adjusting preference or
constraints, and trading-off multiple performance objectives
are standard tasks for these types of users. Typical data mining,
machine learning, or image processing research strives to
ultimately automate all of these steps in order to improve
model performance and consistency of decisions. However,
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no single computational method is capable of handling all
varieties of possible modeling scenarios and especially early
stages of model development involve potentially costly tasks
that need to be carried out by human experts.

These challenges have motivated a number of recent con-
tributions in visualization research [2], [23], [29], further dis-
cussed in Section 4.1, that seek to make interactive model anal-
ysis feasible and more efficient. These approaches focus on
finding optimal input parameter configurations. By observing
real model developers we confirmed that optimization certainly
is a valid and very important task. However, we further found
an additional, yet unsupported need for input parameter space
partitioning. Specifically, model builders wanted to understand
and discover regions in the input parameter space that exhibit
qualitatively different model behavior in the output space.
In the animal aggregation example, certain regions in input
parameter space might, for instance, lead to the formation
of groups that may rest or move together. Other parameter
configurations may produce patterns that are not biologically
plausible or may not converge to a solution at all.

In this paper, we study the problem of and provide a solution
for input parameter space partitioning. Towards this goal, we
make the following contributions:

• the problem characterization and abstraction of parameter
space partitioning based on the in-depth analysis of three
application domains (see Section 3);

• ParaGlide, a system that supports interactive parameter
space exploration and partitioning (see Section 5).

• a field study of ParaGlide providing anecdotal evidence
for the benefits of interactive parameter space exploration
and partitioning (see Section 6).

ParaGlide’s system design proposes several distinct features
that support interactive exploration and partitioning of param-
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eter spaces (see Section 5): (1) The cost of uniformly sampling
parameter configurations inside a parameter region of interest
can be very high. We reduce these costs by offering user
control for iterative region refinement and provide alternative
region types that cover the same value ranges, but have a
smaller volume. (2) An important task in model analysis
is sensitivity analysis: the determination of how “sensitive”
model outputs are to changes in the input parameter space
[8]. We show that visualizing the shape of the parameter
partitions can support the task of sensitivity analysis. (3)
ParaGlide allows for manually clustering the output space into
groups of similar model results. Relating these output groups
back to their corresponding input configurations provides
the user with insight into the effect and importance of the
model parameters. (4) Furthermore, ParaGlide allows for a
close integration between visual model analysis and model
development environments, such as R or MATLAB. Hence, a
model developer can derive additional features of the outputs
of the model and test novel hypotheses on-the-fly without
the need to tediously switch back and forth between different
tools.

2 METHODS

ParaGlide was developed in a user-centered design process
with five users from three different target domains: biological
modeling, image segmentation, and fuel cell engineering. We
met with our users in person covering longitudinal time ranges
of four years (fuel cell engineering), two years (biological
modeling) with monthly meetings, and five months (image
segmentation) with weekly meetings.

Our collaborations were inspired by Design Study Method-
ology [27] and were roughly organized in three phases: First,
we engaged in a problem characterization phase in which
we analyzed current practices of our collaborators to get a
detailed understanding of needs and requirements. Second,
we used the insights from the problem characterization to
(further) inform the design of ParaGlide and discussed design
mockups and prototypes with our collaborators. Third, we
deployed ParaGlide and observed our collaborators working
with it. During these observations, we (1) gathered formative
feedback in terms of usability and feature requests that we used
to improve ParaGlide’s design, (2) refined our understanding of
user practices and design requirements (see Section 3), as well
as (3) gathered summative feedback and anecdotal evidence to
validate ParaGlide’s design. These field investigations can be
seen as a form of multi-dimensional in-depth long-term case
studies (MILCs) [28].

3 PROBLEM CHARACTERIZATION

We start this section with the data and problem abstractions
that we derived from our field investigations in the three ap-
plication domains. The abstraction introduces the terminology
that we will use throughout the paper. We then discuss our
three application domains as examples that illustrate our prob-
lem characterization and abstraction. The section concludes
with a list of abstract tasks and requirements that we derived
from our field investigations and that we supported/addressed

with ParaGlide’s design. We provide this abstract problem
description, including problem, data and tasks, as one of our
major contributions that can be used by others as a starting
point for further technical contributions.

3.1 Data Abstraction

In contrast to many other cases where data is given as a static
source that can be loaded into a tool for inspection, in our
case the data is dynamically sampled from running a model.
Data production and data analysis are therefore tightly coupled
together.

For our purpose, we define a model as the description
of possible states of a real world system via mathematical
relations among variables that at least partly represent observ-
able quantities. We call all variables that go into the model
input parameters and collectively refer to all model input
parameters as the (input) parameter space of the model. A
specific choice of values for the model parameters constitutes
the input to a piece of software, called the simulator that
can produce complex objects as outputs, such as time curves,
plots, or images. Collectively, these outputs characterize the
model (output) behavior. From the output of the model,
one can further extract particular features or compare one
output with others to measure their similarity using a distance
metric. We refer to these features as derived variables that
form the feature space of the model. A specific combination
of parameter values and their simulation output together is
referred to as an experimental point that due to deterministic
computation has a unique location in input and feature space
of the model.1 Figure 1 provides a conceptual sketch of
this computational pipeline. In Section 5, we discuss how
ParaGlide allows the user to interact along the pipeline.

Simulator

h g
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(e.g. Image)

RrRn D
Objectives
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Class labels

Sampling 
Region of 
Interest

Input space Output space

Fig. 1. Flow of processing steps when working with a simulation
model. The input parameter space is mapped to the output be-
havior via the simulator, which in turn can be further mapped to
a feature space that is comprised of derived variables. Mapping
functions are marked with a rectangle. Optimization objectives,
class labels, and also embedding coordinates as described in
Section 5.2 are represented as derived variables. Experimental
points that define input parameters for the computation of sim-
ulator outputs are generated within a user specified region of
interest as discussed in Section 5.1.

1. Vocabulary note: In other domains different terminologies are used
to describe models. For instance, input variables is used instead of input
parameters, or inputs are referred to as independent and outputs as depen-
dent variables [31]. We opted for a coherent terminology that reflects the
vocabulary used in the application domains that we analyzed.
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We now provide a more formal description of the outlined
problem: The overall computation of model behavior for given
input parameters can be summarized as a function f : Rn →
R
r, where f(x) = y. It is formed by composing a potentially

costly output computation h : Rn → D and derived variable
computation g : D → R

r to give f = g ◦ h. A particular
output captures the result of the computation for a particular
parameter configuration x ∈ Rn. It is possible to cache outputs
of h for later processing. Code to compute the output of h
is given as a black box, the simulator. While the function
abstraction imposes that the code is deterministic, uncertainties
of the system can still be modelled by specifying probability
distributions for some of the input parameters.

In simple computation pipelines the derived output variables
are computed directly and f and h are identical with D = R

r

and g being the identity. In other scenarios, g could also
depend directly on the input parameters x. The meaning of
g can be interpreted as a feature, but also as embedding
coordinate, cluster membership label, likelihood of the model
configuration for given training data, distance from a template
point, or objective performance measure—to give a few prac-
tical examples.

In order to obtain a data set of experimental points for
further analysis, the model computation can be invoked for
a set of parameter configurations (experimental points) X =
{xk} ⊂ R

n of finite size m = |X|. This set X is referred
to as a design [25, p. 15]. With a prescribed ordering of
input parameter configurations, choosing X amounts to the
construction of a design matrix X ∈ R

m×n. A sampling
method to produce a design X takes a region description
M ⊂ R

n as input from the user and, if adaptive, may also
be informed from certain outputs. The mapping f gives a set
of outputs Y = {f(xk)}. By concatenating these values as
[X Y] ∈ R

m×(n+r) the data table is obtained that can be
used in further processing or visualization. Its n+ r columns
represent the values of the n input parameters and the r
derived variables. We collectively refer to these columns as the
dimensions of the data table. Each of the m rows represents a
single experimental point, namely a specific instance of input
parameter settings and the derived variables that have been
computed for them.

3.2 Example: Biological Modeling

Background: Our first target users were two developers of
models that describe biological aggregations, including move-
ment and migration of flocks of birds, swarms of insects,
schools of fish, herds of quadrupeds, bacterial swarms, etc.
These aggregation models evolve a spatial distribution of
individuals over time and, therefore, form spatio-temporal
patterns. People seek to understand these patterns to better
predict animal migration behavior, for instance, to contribute
to more efficient fishing strategies [21] by determining when
and where fish aggregations form.
Model: The specific model employed by our users [12],
[16] consisted of partial differential equations (PDEs) which
represent the entire animal population as a continuous density
function in one spatial dimension and describe how this spatial

distribution changes over time. Movement of all individuals is
expressed for separate travelling densities of individuals that
move and may turn to the other direction. The basic idea
is to govern the movement via three kinds of social forces
— namely attraction, repulsion, and alignment — that act
globally among the densities of individuals. Attraction is the
tendency between distant individuals to get closer to each
other, repulsion is the social force that causes individuals
in close proximity to repel from each other, and alignment
represents the tendency to sync the direction of motion with
neighbors (see details in Appendix A.3). Altogether, there are
14 different input parameters to this model that include a set
of weights to balance the different forces. Solving the model
for different input parameter settings produces images show-
ing many complex spatial and spatio-temporal patterns (the
output). Ideally, these patterns then reflect patterns that can be
observed in nature, such as stationary aggregations formed by
resting animals, zigzagging flocks of birds, milling schools of
fish, and rippling behavior observed in Myxobacteria.

Practices and problems: To better understand the space of
possible outputs, our users manually explored the parameter
space of their model. By visually inspecting the resulting
output images, they were able to demonstrate the model’s
capability to reproduce a variety of complex patterns. Here, our
users were particularly interested in comparing two versions
of the model [12]. In the first one the velocity of movement
is constant. In the second one the individuals speed up or
slow down as a response to their social interactions with
neighbors. Comparing these models required to solve them
numerically for several different parameter configurations.
Each one of them corresponds to one specific choice of
the 14 input parameters. Yet, the computation of individual
output images and their visual inspection, which our users
did by running the model’s MATLAB implementation, was
a time consuming tasks. Iterating on individual parameter
adjustments, computation of outputs, and their inspection was
ineffective and tedious. By choosing the spatial and temporal
resolution of the simulation its computational complexity can
be adjusted to lie between 2 minutes and one hour per run
of the model. With 5 minutes each, it is possible to compute
close to 300 model outputs in the duration of a single day.

To produce parameter configurations, our user’s current
practices were simple random sampling and nested for-loops
that produce all combinations of values for certain input pa-
rameters (so-called factorial designs). While computed outputs
can be loaded and inspected individually, an overview of the
data space was desired but not available. In order to sufficiently
explore interesting outputs of the model, a method is required
to systematically construct sets of parameter configurations.

3.3 Example: Image Segmentation

Background: Medical image segmentation is concerned with
the identification of different anatomical shapes in a medical
image scan of a patient. A reliable method has great potential
to improve a physician’s diagnostic means to provide better
health care.
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Model: Researchers in this domain build models of how
different anatomical shapes are demarcated. The computa-
tional model here is therefore a segmentation algorithm that,
for a particular adjustment of input parameters, outputs a
segmentation of a medical image. The goal is to find input
parameter configurations that lead to “good” segmentation
outputs. Our user, for instance, used a kinetic model to devise
a segmentation algorithm for molecular image quantification
of dynamic-positron emission tomography (d-PET) data [24].
Such data is difficult to segment due to severe noise and partial
volume effects. Our user therefore developed an extension to
the random walk segmentation method [14] by adding input
parameters that account for desirable criteria, such as data
fidelity, shape prior, intensity prior, and regularization.

In order to attain a superior segmentation quality, a proper
choice of input parameters is crucial. To facilitate this choice
of input parameters, our user specified additional numerical
performance measures (derived variables) that assess the qual-
ity of each segmentation (the output). As one such measure
he picked the Dice coefficient [10], which gives a ratio of
overlap with labeled training data. Another measure expresses
an error of the quality of the kinetic modeling. Overall, the
algorithm is influenced by 8 input parameters, and overall 10
derived variables were used to provide quality measures for all
anatomic region. Figure 2 shows an example of output images;
the different anatomic regions are marked with different colors.

Practices and problems: Our user initially calibrated his
model by numerically optimizing the performance with respect
to the input parameters. However, a closer look at the Dice
coefficient revealed that this approach is not necessarily exact
and reliable. For instance, using the two configurations of
Figure 2(c) and (d), both have a Dice value above the 90th

percentile of all computed segmentations and are less than
0.003 standard deviations apart. Numerically, this situation
means that both segmentations are of the same, near optimal
quality. Yet by visual inspection, it becomes apparent that the
putamen (PN, dark red in the figure) shape in (d) is closer to
the ground truth in (b) than the one obtained in (c). Hence,
guidance of a human domain expert is desirable to visually sort
among several candidate solutions in order to find an improved
segmentation.

The decisions of whether the algorithm attains a good or
a bad solution in this example depends on taking multiple
derived features as well as the output images into account.
However, automatic optimization alone, as practiced by our
user, is challenging due to two reasons: First, it is hard to
properly account for multiple competing, sometimes contra-
dicting objectives. Second, for the model to work robustly, it
is important that the segmentation quality does not decay too
quickly for slight changes to the chosen parameter configu-
rations. A proper understanding of the sensitivity of certain
parameter settings is necessary. Hence, extracting the space
of solutions that lead to ’good’ segmentation results enables
the user to pick a robust solution within that space. These
challenges were not supported by our user’s current practices
though.

(a) raw data (b) ground truth

(c) config# 13, dice6 = .8136 (d) config# 44, dice6 = .8128

Fig. 2. Raw image data from a brain scan (a), ground truth
segmentation provided by a physician (b), and two output seg-
mentations from our user’s model from two different parameter
configurations (c/d). Anatomic regions are shown with different
colors: background (BG), skull (SK), grey matter (GM), white
matter (WM), cerebellum (CM), and putamen (PN). Labels can
be found in (c).

3.4 Example: Fuel Cell Prototyping

Background: A fuel cell takes hydrogen and oxygen as
gaseous input and converts them into water and heat, while
generating an electric current. Affordable, high-performance
fuel cells have the potential to enable more environmentally
friendly means of transport by greatly reducing CO2 emis-
sions. A reliable synthetic model that can simulate different
configurations, would allow for much broader exploration of
design options than real prototyping.
Model: Our users’ model can be used to describe individual
cells in a fuel stack [9]. The model takes 100 input parameters
and produces outputs of 43 different plots of various physical
quantities (see for instance Figure 8 below) characterizing the
behavior of the cell stack, such as current density, temperature,
or relative humidity variance across the geometry of the cell
stack.
Practices and problems: Our users’ main task was finding an
optimal setting for the input parameters. They found suitable
values for most of the input parameters from automatically
fitting the model to available derived variables. However, they
were also particularly interested in getting a deeper under-
standing of potential groups of parameters that represent the
geometry of the assembly (size and number of cells in a stack),
material properties (permeability), and running conditions
(temperature, pressure, concentration). Such an understanding
would allow for better studying failure mechanisms and further
optimize the model’s performance. This analysis was however
not supported by their current practices.

3.5 Tasks and Requirements
In the following, we describe abstractions for tasks and
requirements that generalize across the three use cases we
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Model analysis tasks (A)
A-view visually inspect data table in overview and

detail views of individual outputs
A-opt find parameter configurations for which a cer-

tain output feature is optimal
A-sa analyse sensitivity of feature values to a change

of input parameter configuration
A-cpr compare different model versions
A-psp find input regions that produce similar output

Data set generation (D)
D-roi specify region of interest (ROI) possibly span-

ning only a subset of dimensions
D-smp sample and generate set of experimental points

inside ROI
D-drv compute or enter manually: features, objec-

tives, embedding coordinates, cluster labels
D-dist construct a distance metric

Workflow support (W)
W-int integrate with existing practices and code
W-rep save/load state of the project for reproduction

TABLE 1
Summary of the task and requirements analysis.

observed. We used these tasks and requirements to inform
the design of ParaGlide (see Section 5) and offer them as the
second part of our problem abstraction. Table 1 summarizes
our findings and is organized in three categories:

1. Model analysis tasks (A) represent high-level objectives
that drive the investigation of model behavior. Viewing the data
table in an overview, as well as inspecting specific outputs
of the model in detail (A-view) are important tasks allowing
for a basic form of interactive model analysis. We found the
need for visual inspection in all three of our use cases: In
the biological modeling example the users looked at plots
of animal aggregation patterns; in the image segmentation
example images like Figure 2 were inspected; and in the fuel
cell example the users investigated model behavior via plots
such as the ones in Figure 8. Yet, while all users iteratively
analysed individual experimental points, none of their current
practices supported a way to directly view the correlation
between experimental points. ParaGlide successfully filled this
gap as discussed in Section 6. Specific for model tasks is that
the data has to be generated before it can be viewed. This
gives rise to a separate group of tasks (D) discussed below.

A very common task in modeling is finding optimal param-
eter configurations (A-opt) such as in the fuel cell stack case
and the image segmentation, also pursued by Torsney-Weir et
al. [29]. Two major goals of optimization are: a) to calibrate
the model to have a good fit2 with given measurements, and b)

2. For instance, a derived variable could be added that represents likelihood
(probability of a parameter configuration for given data). An optimization of
that variable w.r.t. the input parameters could be applied or the shape of the
likelihood surface be inspected.

to adjust further free parameters to optimize other objectives,
e.g., electric current output of the calibrated cell stack model.

Sensitivity analysis (A-sa) has been studied, for instance,
by Booshehrian et al. [8]. Our fuel cell users were also highly
interested in analysing the sensitivity of their model output
to changes in the input parameter space. While identified as
a separate task, it can be understood as optimization of an
additional derived variable representing a local measure of
sensitivity.

Model comparison (A-cpr) is a task that can be understood
on different levels, depending whether one considers different
parameter configurations to represent different models. Indeed,
a categorical parameter can choose among different model
families. One goal of the animal aggregation study was to
compare constant and non-constant velocity models, as de-
tailed further in Section 6.1.

Parameter space partitioning (A-psp) is a form of model
analysis that decomposes the input parameter space into a
number of regions where each represents similar output be-
havior. Once such a partitioning is obtained and the shape of
the partitions is inspected in the input space, it is possible to
answer questions about model complexity, sensitivity, allow
for qualitative comparison, and provide guidance for context-
dependent optimization. All of our users were interested in
understanding regions both in the (input) parameter space and
the (output) feature space, as well as how these input and
output regions relate to each other. We characterize a workflow
of tasks that support this need and offer it as an extension to
our knowledge of needs in model development. In contrast to
the general tasks discussed above, we did not observe these
tasks in our users’ current practices but actively designed this
workflow. We found it being adopted by our users as soon as
they had ParaGlide available (for more details see Section 6).

2. Data generation (D) refers to a number of steps to
choose parameter configurations (D-roi, D-smp) and compute
outputs of a computational model. Further processing of the
outputs leads to other derived variables (D-drv, D-dist) that
represent features, objectives, distances, embedding coordi-
nates, or labels for clusters of experimental points. A more
detailed discussion of this sub-task decomposition is provided
in Section 5 where we explain how data from a simulator is
produced and how further processing, such as parameter space
partitioning (A-psp) is enabled.

3. Workflow requirements (W) are meant to facilitate
adaptation of novel practices by avoiding technical hurdles.
In particular, we found a need for close integration (W-
int) between novel tools and the given model code. In line
with previous findings [26], close integration is particularly
important in our situation where a seamless transition between
data generation through the model and its exploration is im-
perative. Some collaborators reported difficulties to reproduce
findings that were made during past trial-and-error investi-
gations. Hence, saving and loading (W-rep) of system states
for later reproduction and documentation of results became
another important requirement. This requirement also includes
organization of a possibly large number of output files that are
generated in multiple sessions.
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4 RELATED WORK

In the past, a number of systems have been created specifically
to explore variations in rendering parameters. Some of these
systems are concerned with the capture of trajectories through
the multi-dimensional space and less with providing a global
view of parameter space (e.g., VisTrails [1], Jankun-Kelly et
al. [15], Bhagavatula et al. [6]). Design Galleries [18] on the
other hand, do not provide the connection between input and
output space required by our users.

In this section, we will focus on visualization systems that
support the exploration of parameter spaces for a general
simulation system. A particular emphasis is put on the problem
of parameter space partitioning.

4.1 Interactive Environments for Parameter Adjust-
ment in Computer Experiments
Computational steering adjusts parameters during execution
of time-dependent simulations [20]. Since our users do not
modify parameters during the run of a simulation, our problem
setting is different from classical steering in that we do not
need to handle live updates of parameters that are shared
between simultaneously running modules. However, there is
enough similarity to benefit from a comparison.

An evaluation of their computational steering environment
(CSE) by van Wijk et al. [30] recognizes major uses for
debugging, presentation, and assistance in technical discus-
sions that progress faster when ”What if?” questions can
be answered immediately. A follow-up survey by Mulder et
al. [20] identified further uses for model exploration, algorithm
experimentation, and performance optimization. While these
systems inspire numerous design decisions, they do not fulfill
several of our design requirements. These include efficient
specification and sampling of ROIs (D-roi and D-smp), an
easy integration of end-user codes for simulation (W-int), and
certain derived variable computation (D-dist).

Berger et al. [2] discuss a system to visualize engineering
and design options in the neighborhood around an optimal
point (A-opt) in parameter space of a computer simulation.
Based on a continuous function abstraction they provide a
local analysis method (A-sa) that benefits domain experts.
However, in order to not get stuck in local extrema, opti-
mization methods usually benefit from an additional global
perspective on the problem domain. The purpose of parameter
space partitioning is to enable such a global perspective by
decomposing the input parameter space of the model into
regions of distinct output (A-psp).

Tuner [29] is a system that supports a global view of the
parameter space through a Pareto pane, but their exploration is
focused on the local behavior (A-sa). Further, it is constrained
to only two derived variables and is solely focused towards an
optimization task (A-opt). Our discussion focuses on a global
partitioning of the parameter space.

The challenge of devising a user interaction for sampling the
parameter space has recently been taken on in the Paranorama
system of Pretorius et al. [23]. Their users can specify different
ranges of interest for individual parameters (D-roi) along with
the number of requested distinct values per range (D-smp).

Since their parameter configurations are constructed via a
Cartesian product and inspected through slices of the space
of outputs, it does not scale well. Section 5.1 will give some
consideration to the number of involved parameters and the
volume of the region of interest.

4.2 Parameter Space Partitioning
The computational model analysis cases of Section 3 benefit
from an overview of regions of distinct system behavior
marked out in their input parameter space (A-psp). While
there is no prior work in academic visualization research that
provides such a representation, there is further evidence in
physics and psychology that such a system is needed.

Bhatt and Koechling [7] study the behavior during im-
pact of two solid bodies with finite friction and restitution,
which results in a tangential sliding velocity that continuously
changes direction after impact. The problem is characterized
by 9 parameters. The first step of their analysis determines a
reduced set of three dimensionless parameters that completely
define the tangential flow of sliding velocities. An important
observation is that the qualitative behavior of the flow is
characterized by 4 main cases with up to 3 sub-cases each (A-
psp). An implicit expression of the boundary between the cases
is derived that is quartic in terms of the 3 dimensionless param-
eters. By fixing one parameter and showing slices through this
boundary, the enclosed regions can be visually distinguished
and are labeled with the different cases they represent (A-view).
These labeled slices provide a comprehensive overview of all
possible sliding behaviors.

Pitt et al. [22] also promote parameter space partitioning (A-
psp) and give an example analysis of a model that predicts,
whether visual stimuli are recognized as words or non-words.
In their overview of analysis techniques, they distinguish
two axes that separate quantitative from qualitative and local
from global techniques. In their view, partitioning is a global,
qualitative method, and sensitivity analysis (A-sa) a case of
more local, quantitative inspection. Their partitioning algo-
rithm proceeds from a given classifier function that determines
the type of a particular model output and a given set of valid
parameter configurations (seed points). The regions around
these configuration points are sampled using a Metropolis-
Hastings algorithm with uniform target distribution (D-smp).
Rejected points have fallen into non-equivalent regions and
are explored subsequently.

The studies they present determine the number and volume
of qualitatively distinct model behaviors and apply these
measures to reason about suitable model fidelity. However, a
discussion of user interactions and computational procedures
beyond sampling to obtain these results are not part of their
exposition. In a more interactive setting, our work emphasizes
the benefits that arise from a visual evaluation of a partitioning.

5 DESIGN OF THE ParaGlide SYSTEM

Figure 3 shows a screenshot of ParaGlide’s GUI. Like many
other visualization systems, ParaGlide supports multiple co-
ordinated views: The main window (Figure 3F) contains a
menu bar on top and, from left to right, (B) dimension group
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Fig. 3. ParaGlide GUI running inside a MATLAB session in the biological modeling use case of Section 3.2. An overview (A-view) of
the data is given with histograms (A1) and a scatter plot matrix (SPloM, A2), both for a chosen group of dimensions (B). Clicking the
experimental point highlighted in yellow in the SPloM, opens a detail view (C) and depicts a motion pattern of two groups that merge
and then progress upward in time in a ’zigzag’ movement. The view is produced with the show command as specified in the dialog
(D) that sets up the MATLAB compute node (W-int). The data set was obtained by combining two methods: A parameter region of
interest (D-roi) is selected within the light blue selection boxes (E) and a sampling method is chosen from the Experiment menu (F)
to produce a set of lattice points (D-smp). Also, manually created parameter configurations are imported from a switch/case script
(G) by sampling the case selection variable of that script and recording the parameters it sets. To add these sampling methods to
ParaGlide, a Jython command was issued inside the MATLAB command window (H) to import the experiment module.

selection tabs (see below), (A1) views for dimensions of the
chosen group in form of histograms and (A2) a scatterplot
matrix (SPloM), and on demand, (C) a separate window with
a detail view for individual outputs such as the ’zigzag’ pattern
image from the biological modeling example as shown in the
figure.

Grouping of dimensions: A visualization challenge that is
inherent due to the multi-dimensionality of our data (e.g., eight
dimensions in the case of the image segmentation study) is
the limited screen space and visual clutter. To address this
challenge, we provide a basic method that allows the user to
split the entirety of dimensions into smaller groups for more
focused inspection. We call them dimension groups. Grouping
decisions can be based on user preferences or previous analysis
and group membership can be dynamically changed by the
user. The dimension groups in Figure 3B are called “All”,
showing all dimensions—input parameters and derived output
variables—and “Simulation”, where only input parameters are
included. The multi-dimensional overviews per tab only show
parameters of the currently selected dimension group, which
reduces the required screen space. This approach of manual
selection proved sufficient in the first two use cases. In the
fuel cell case, the simulator already provides a division of
parameters into several meaningful groups that ParaGlide can
import and represent. Multi-dimensional data viewing (A-view)
is considered in more detail in Appendix A.

Simulation code integration: Since ParaGlide serves as inter-
face to the simulation model, no additional programming effort
is needed to enable the interactive generation and exploration
of the parameter space. This design simplifies interfacing with
the simulation and allows us to do so with a user dialog
(Figure 3D), called compute node that specifies the following
aspects: input parameter names (parameters) and their default
values; a command to compute outputs (run), a command to
produce a plot of the output (show), and commands to derive
variables from existing outputs. This simple interface directly
supports our requirement W-int. A more detailed example
of ParaGlide’s way of model integration that also explains
portions (G) and (H) of Figure 3 is given in Appendix A.2.

We designed ParaGlide to have a flexible analysis approach
that is able to adapt to a large variety of possible practical
settings. A design decision at the heart of our tool design was
to enable a human in the loop to take care of decisions that
are difficult to make algorithmically and leave other aspects
to automatic processing. In such a setting, ParaGlide allows to
address complex tasks through a number of basic interaction
steps that interoperate with the computational problem pipeline
shown above in Figure 1. These interactions tasks include

• Specifying and sampling a region of interest (D-roi and
D-smp—see Section 5.1)

• Clustering of high-dimensional outputs (D-drv, D-dist and
A-psp—see Section 5.2)
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5.1 Specifying and Sampling a Region of Interest
(D-roi, and D-smp)

ParaGlide is not initialized with experimental points and needs
to produce them first. Hence, a region of interest M ⊂ R

n

needs to be specified first, followed by parameter config-
urations inside M [11]. In this way, the choice of region
of interest (ROI) and the construction of a set of parameter
configurations inside it are closely related (D-roi and D-smp).

It is common, that the user specifies a multi-dimensional
region by its one-dimensional ranges for each parameter sepa-
rately. Combining these ranges via AND operations results in a
hyperbox-shaped region. It is comparably simple to display
and manipulate. Specifically, in the SPloM and histogram
interface of Figure 3E, a 2-dimensional selection box is shown
in light purple.

Further, the number of samples within the region could be
governed by concerns such as sampling density, but more often
is constrained by the available running time of the simulator.
Hence, our sampling strategy is to query the user for the total
number of parameter configurations to be created as well as
selecting from one of four sampling strategies [25, Ch. 5]:
simple random sampling, lattice sampling, Latin Hypercube,
and low-discrepancy sampling (Halton). All of these strategies
lead to a distribution that fill the region of interest with uniform
density. Lattice sampling gives a very regular structure in
the visual arrangement of sample points and allows users to
study model behavior changes along certain lines or regularly
spaced points. In cases where this sort of regularity would be
misleading, less structured sampling patterns may be preferred.

Managing sampling costs: To sufficiently sample an increas-
ing number of parameters poses numerical challenges (e.g.,
see effects of dimensionality in Bergner [3, §2.1]) and can be
very costly. ParaGlide’s design enables to address this issue
in several ways. Firstly, the separation of region specification
(D-roi) from sample construction (D-smp) in an interactive
loop illustrated in Figure 1 enables the user to adaptively
increase the sampling density only after the ROI has been
narrowed down to promising areas. In this phase, it is also
possible to use a sampling method that interprets the ROI box
as a range around a center point of focus and only places
experimental points in the part of the box that extend up to a
certain distance from the center. This allows to span the same
parameter value ranges with a much reduced volume and at
lower computational cost.

The computation of outputs can be adjusted between more
or less computationally expensive levels of output fidelity.
At the extreme end this completely bypasses running the
simulator and directly invokes a cheaper feature extractor that
can help with the initial region refinement. An application of
this approach in practice is documented in Section 6.1.

In terms of usability of region-based sampling, we found
that—in addition to the rough box selection—our users were
also interested to see and set exact numerical values of region
bounds. ParaGlide supports this requirement, which found
frequent use. This specific need for an intuitive manipulation
that is at times quantifiable should be kept in mind when
designing user interactions for multi-dimensional navigation.

5.2 Clustering of High-dimensional Outputs
(D-drv, D-dist and A-psp)

In this section we describe a workflow to obtain a clustering
of experimental points based on similarity of their correspond-
ing outputs. A parameter space partitioning (A-psp) is then
obtained by viewing the color coded clusters in the input
parameter space of the model.

To address the task of producing a meaningful decom-
position of the parameter space through a clustering of the
outputs into regions of distinct model behavior, Pitt et al. [22]
assume that a discriminant function that labels different types
of outputs is given. We do not make this assumption and
instead assist the user in the construction of a clustering, which
proceeds in three steps: First, to compare among experimental
points the user chooses or constructs derived variables (D-
drv) that pick up on meaningful features, possibly combining
multiple features into a single vector. To assess whether the
similarity or distance measure derived from these feature
vectors is meaningful, a distance preserving embedding of
points representing the feature vectors is computed and shown
(D-dist/A-view). In our case, we have found spectral embed-
ding [17] to work well using a similarity matrix that represents
cosine similarity (i.e. Pearson’s correlation coefficient) among
pairs of feature vectors. It is also possible to decide to only
include a subset of the output or derived variables in this
computation (see Appendix A.3 for more details). Examples of
the resulting embeddings are shown later in Figures 5 and 7. A
particular advantage of these embedding methods is that, once
a similarity matrix is determined, the complexity of computing
an embedding only depends on the number of experimental
points m. Hence, distance or similarity based data analysis is
very suitable in high-dimensional settings involving complex
outputs for many parameters.

If the detail inspection of different outputs that cluster
together in the spectral embedding agrees with the user’s
expectations, individual clusters can be labeled via interactive
brushing. Region selection comes again to aid for this purpose.

ParaGlide supports linking clusters of similar outputs back
into the input space by simply linking and brushing scatterplots
in the SPloM (A-psp). In the input space, these clusters can
have arbitrary, possibly disconnected shapes and manually
clustering the output space gives the user a rich opportunity to
explore potential relations between outputs and inputs. While
it might be possible to use one of various automatic clustering
methods [5] to replace manual clustering of outputs, it is (1)
impossible to select one of them and assume it to work for
diverse problems, (2) to provide a diverse suite of clustering
methods and hope that the user will find an appropriate one,
and (3) cover all—previously unknown—relations that might
be interesting for the user. Hence, we constrained ourselves to
a manual method to assign cluster labels.

For manual clustering, the user determines a plot in the
SPloM, e.g., the low-dimensional embedding, where the clus-
ters of interest are sufficiently separated (or not). After enclos-
ing the outputs (represented by points in the plot) by drawing
rectangular regions in the plot, it is possible to manually assign
cluster labels or to directly work with the multi-dimensional
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region description. Non-rectangular regions can iteratively be
constructed from smaller rectangular ones. If visible cluster
separation is not sufficient, the distance and embedding con-
struction described above can be adjusted to include more
features in the comparison that improve separation of clusters.
In order to be able to tell clusters apart visually, the derived
variable containing the cluster labels is mapped to different
colors. This is done by associating it with one out of several
prepared palettes of distinguishable colors.

Viewing clusters of similar outputs in parameter space
provides a point based view of the partitioning (A-psp). Direct
display of the underlying continuous relationships between
parameter and feature space is also a possibility [3, §2.4.2],
but is not pursued further in this initial system design.

6 VALIDATION
We present the summative findings in form of case studies
in which our users (a) were able to do something that they
were not able to do without ParaGlide, (b) could gather new
insights and improve their model by using ParaGlide, or (c)
felt to be able to conduct tasks more efficiently with ParaGlide
than with traditional methods.

6.1 Case Study: Biological Modeling
This case study is based on several sessions with one of our
users from the biological modeling example of Section 3.2.
Figure 3 further illustrates this case study.
Overview of previously computed experimental points: At
the beginning of the investigation our user had an implemen-
tation of the model and a set of example parameter config-
urations that were given as a MATLAB script with annotated
switch/case statements (see Figure 3G). Using ParaGlide, our
user imported all their previously defined parameter configu-
rations and presented them in a scatter plot matrix overview,
as shown in Figure 3A2. Each point in these linked views
represents one parameter configuration. Viewing the SPloM,
our user was able to get a quick overview of how they had
sampled the parameter space so far. This overview alone was
already an interesting insight for them, revealing dense and
sparse areas of sampling.

After triggering computation of outputs for all parameter
configurations (D-smp), our user then started to inspect pattern
images (A-view) by simply clicking on an experimental point in
the SPloM representing a particular parameter configuration.
Figure 3C shows an example of a zig-zag movement which
corresponds to the parameter configuration highlighted in yel-
low in the SPloM. Seamlessly transitioning between different
output images while being able to see them in context of their
location in parameter space, facilitated our users’ discussion
of hypotheses about the model. Prior practice was to manually
load simulator outputs and to iteratively inspect them together
with the parameter configurations for each output as numbers
in a script. Our way of visually supporting this reasoning,
made it less tedious as it did not force the users to recall
previously inspected outputs and parameter configurations.
Instead, ParaGlide offered them a way to mentally navigate
through “a map of parameter configurations”.

Finding interesting patterns using linear stability analysis:
To further facilitate parameter space exploration, our user
employed ParaGlide to set up an automated screening for
relevant patterns in the output. Performing a linear stability
analysis of steady states of the PDE system for a given
parameter configuration (further details in Appendix B) pro-
vided an indicator for possible pattern formation—without
requiring computation of the corresponding simulator output.
This screening allowed to sample more input configurations
without necessitating much of our user’s time.

She set up the screening as follows: After doing the analysis
and implementing a feature extractor (D-drv) that indicates the
stability type arising from a given parameter configuration, she
added stability type as a derived variable via the ComputeNode
interface (see Figure A.1 in the Appendix). Color coding ex-
perimental points according to this derived variable, as shown
in Figure 4, helped her to further focus more expensive pattern
computation in the interesting unstable parameter region.

Our user computed the more detailed, but also more costly,
output images only after carefully inspecting the relation be-
tween parameter configurations and the stability type derived
variable. In doing so, she roughly reduced the computation
time (full output images vs. stability feature only) by a factor
of 60. This procedure successfully demonstrated the use of
feature computation (D-drv) to address costs related to detail
inspection (A-view).
Iterative sampling of the parameter space: ParaGlide allows
to generate parameter configurations simply by specifying
the containing region, as proposed in Section 5.1. Our user
considered this approach a convenient way to generate input
configurations and manage a repository of computed outputs.
Aside from saving time, the interaction also put the user’s
focus on core questions of choosing and combining parameter
value ranges. Coarse sampling to provide an overview within
the selected range, followed by finer sampling in a more fo-
cused region to acquire details proved to be a good strategy—
the structure in Figure 4, for instance, was found in this
way and inspired our user to further analytic investigation. A
particular finding was that an increase in repulsion (horizontal
axis) leads to increased stability (dark dotted region) which
corresponded well with out user’s biological experience.

Fig. 4. Illustrating the parameter configuration creation in a
sub-region of the parameter space iterating from coarse to finer
sampling. (Un-)filled circles indicate parameter configurations
that lead to an (un-)stable steady state.
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Comparison of different model versions (A-cpr): Our user
successfully employed ParaGlide to compare two different
versions of the model with non-constant and constant ve-
locities respectively. Since both models have the same input
parameters, our user could use one simulator creating two
different derived variables (D-drv), one for each model, and
compare the different parameter configurations by color coding
them (A-view, A-psp). ParaGlide facilitated a main insight
in our user’s work: Visualizing the stability type parameter
for both model versions showed that the instability of most
steady states tends to increase in the presence of non-constant
velocities. The comparison task was not possible with prior
practices.

Overall, the user in this case found ParaGlide to be “a user-
friendly tool that makes creating the parameter configurations
and comparing the computations much easier [...] This tool
gives me a better intuition about different outputs that corre-
spond to various parameter configurations.”

6.2 Case Study: Image Segmentation

In the following, we evaluate the use of ParaGlide in the
context of the image segmentation use case described in
Section 3.3. During three recorded meetings of overall 6 hours,
our user employed ParaGlide to develop and implement a
workflow that finds a good parameter configuration. The user’s
overall goal was to find a robust setting for eight parameters
of a segmentation algorithm that produces good results for
different patients and noise levels, assessed by ten derived
variables (error measures). The term good, in the sense of
this discussion, refers to all segmentations on a plateau of
the (negative error) optimization landscape that have target
values close to the global optimum. His goal was therefore
not simply to find “the” optimal parameter configuration as
in a standard optimization task (A-opt). When chosen from
an initial, explorative sample of parameter configurations
good configurations are also referred to as candidates, or
representatives of a good cluster. Since the optimum is an
ambiguous term in the context of multi-objective optimization,
our method proceeds by first clustering all outputs that are
similar to each other. This clustering leaves the task of finding
out which cluster of outputs is a good one. The user found the
good cluster by manual inspection of detail views for different
outputs. The shape of the plateau of good outputs, viewed as
color coded points in the dimension group of input parameters,
informed the user about which parameters to keep and which
ones to drop. Ultimately, it also informed a choice of parameter
calibration for the algorithm.
Find good outputs by visual inspection: For easier inspec-
tion, our user initially focused on just the input parameters
and two performance criteria. A SPloM view of this custom
parameter group verified that the sampling method (D-smp)
indeed distributed samples evenly over the 2D scatterplot
projections. The user inspected the outputs by clicking on
points in the scatter plot. However, it was not possible to
improve all 10 performance criteria at the same time using this
manual exploration process. The user considered optimization
with this approach a “very difficult to infeasible task that

Fig. 5. Scatter plot matrix view that compares the point em-
bedding (lower left) with the objective measures that went into
computing its underlying similarity measure. The numbering of
the responses corresponds to the class labels of Figure 2.

needed to be simplified”. The interaction steps with ParaGlide
that allowed to address this task within a few meetings are
described in the following.
Construct the good neighborhood: For most configurations
of parameters, a small change in parameter values leads to
a small change in the output behavior of the segmentation
algorithm. This behavior means that for each good parameter
configuration, it is worthwhile to explore the neighborhood
around it to find additional good or even better configura-
tions [19]. With ParaGlide’s distinction of inputs and outputs
it is possible to construct and combine different notions of
neighborhood around a point. In order to obtain a notion of
distance (D-dist) for this purpose, our user created a vector-
valued derived variable that combined all performance criteria
and normalized their dynamic ranges. Dot products between
vectors in this feature space allowed to compute a similarity
measure that was used to produce the spectral embeddings
described in Section 5.2.

Our user then inspected the arrangement of outputs in the
embedding which enabled him to decide whether the similarity
measure was meaningful to sort out among “good” and “bad”
segmentation results. Figure 5 shows the similarity embedding
in the lower left plot, where the “good” cluster is highlighted
in yellow. Judging from the strong diagonal distribution in
two plots in the matrix, the horizontal embedding dimension
is dominated by dice6 and the vertical one by dice5. Since
both variables should be maximized by good results, it is not
surprising that visual inspection quickly identified the good
cluster in the upper right of the embedding. The user “found
it convenient to make the cluster selection in the embedding”,
which underlines the point that a manual, interactive clustering
method may improve the user’s confidence in the resulting
cluster decomposition (see Section 5.2). The embeddings
helped to simplify the selection of intervals for good parameter
configurations and proved as an aid in a number of tasks:

• find good candidates around which to refine the sampling
of configurations,
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• group adjacent good outputs into cluster(s), and
• check the embedding by inspecting it in a SPloM view

together with the feature variables as in Figure 5.

Assessment of multiple parameter effects: To determine the
relevance of each parameter for the overall performance of the
segmentation algorithm, our user viewed the distribution of the
good cluster in input parameter space. To do so, he simply used
the linking and brushing feature in the SPloM view. Being able
to see the shape of the cluster with respect to parameter axes
gave him a notion of sensitivity, where a large enough size
of the good region indicated stability of this behavior with
respect to parameter changes. This was particularly helpful
towards his goal of finding “good” parameter regions and not
just a single optimum:

Fig. 6. Scatter plot matrix view of the good cluster (yellow) iden-
tified in Figure 5 viewed in the subspace of input parameters.

When projecting the cluster onto each variable individually,
its extend was either spread out or localized in one or multiple
density concentrations, as for instance shown in Figure 6. If
the yellow good configurations in Figure 6 are spread out
along a dimension, the corresponding input parameter is not
impacting the quality of the output. For instance, parameters
alpha{1,2,7} are considered as not impacting the quality of
the output. While sigma and alpha3 indicate clear thresholds
beyond which the good parameter configurations are found.
This observation informed our user of parameters to drop and,
hence, directly influenced model development. Input parame-
ters showing more localized good outputs or a clear transition
were kept as part of the segmentation model and simply set
to some robust value inside the good region.

Robustness and refinement of good regions: Our user iden-
tified multiple potentially good regions. For a final decision,
he was particularly interested in how robust these regions were
when applied to different patients or noise levels. ParaGlide
directly supported his needs by allowing him to abstract region
specifications (D-roi) and export/import them via XML (W-rep).
He then applied and adjusted these region specifications for
data sets of experimental points where segmentations were
generated under different conditions, namely 2 different noise
levels and 2 patients. Inspecting good regions across these
multiple conditions not only allowed him to select among good
regions, but also to fine-tune the one he selected. This resulted
in a “good and robust parameter choice”.

Verify generalization to different patients: While the opti-
mum has been made robust by constructing it over different
experimental conditions, its performance has to generalize well

beyond the condition used during adjustment. To verify this,
the user performed a validation of the good configuration he
found by testing it for 10 previously unseen patients.

Compared to the best configuration, the 10 valida-
tion segmentations showed very good Dice coefficients
(mean=0.781, stdev=0.06) and excellent kinetic modeling
errors (mean=0.062, stdev=10−4) throughout. These results
indicate that this configuration overall delivers high shape
detection accuracy as well as low kinetic error. Two of the
10 data sets yielded just above average, yet acceptable, Dice
coefficients, which “inspired [me in] further investigation”.

Overall, this user appreciated that the interaction steps
suggested by ParaGlide greatly accelerated his daily practice.

6.3 Case Study: Fuel Cell Prototyping
The fuel cell case introduced in Section 3.4 was concerned
with a simulation model of a fuel cell stack that outputs
43 plots of different physical quantities characterizing the
behavior of a cell stack. Figure 8 shows one such plot for
6 different configurations. Here, we report on a case study, in
which the first author of this paper collaboratively with the
two analysts from this use case used ParaGlide to investigate
their model with parameter space partitioning. We use “we”
to refer to this group of analysts and particularly focus on
the use of low-dimensional embeddings that have only briefly
been discussed in the case studies above.

In a prototypical experiment, we chose a region of interest
over two input parameters: stack current (10A..400A) and
stack inflow temperature (333K..343K). In this region 204
parameter configurations were sampled with a uniform random
distribution shown in Figure 7a (x-axis: stack current; y-axis:
temperature). To interact with the simulation code, we used
ParaGlide’s network connection feature. Connecting the model
over the network allowed us to run multiple instances of the
simulator to compute outputs and, in doing so, to leverage the
computational power of parallel machines.

In Figure 7b the resulting 204 experimental points were
arranged according to their output similarity in cell current
density using spectral embedding as described in Section 5.2.
In this embedding, simulation outputs could be inspected
by clicking on points and we manually clustered, labeled
and color-coded this output space using ParaGlide’s rectangle
selection. Note, that the clustering shown in Figure 7b, which
was selected by our users, would have been hard to select with
automatic clustering algorithms.

The view of the input parameter space (Figure 7a) was
then encoded with the same color coding as the output space
embedding (Figure 7b). That is, when going back to the input
parameter space (Figure 7a), the color coding now reflected the
parameter ranges of distinct behavior in Figure 7b. Our users
explored this relation by inspecting cluster representatives as
the ones shown in Figure 8 (Clicking on different points in
either of these views). This exploration confirmed that within
each cluster of parameter configurations the plotted curves are
very similar. By comparing the representative behaviors of
different clusters with each other, however, it became apparent
that cell stack behavior between different parameter clusters
can change significantly.
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(a) x-stack current, y-in temp. (b) cell current density embedding

Fig. 7. Scatterplots showing 204 sampled experimental points
in the fuel cell example: a) input parameter space showing
two sampled parameters: current and inflow temperature, b) 2-
dimensional embedding of current density outputs where spatial
proximity reflects output plot similarity; the output space has
been manually clustered into six regions; the concrete output
plots are shown in Figure 8; These screenshots are from the
2007 C++ version of ParaGlide, and are also attainable in the
currently discussed Java implementation.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Cell current density output plots for the parameter
configuration, where (a-f) correspond to color-coded clusters in
Figure 7b. The clearly differing cluster behaviors shown in these
plots indicates that cluster boundaries in Figure 7 represent
significant changes in output behavior.

Our users found the parameter space partitioning of Figure 7
intriguing, giving them a new method to study their model.
For instance, they pointed out that while parameter cluster
representative Figure 8e may be physically unreasonable, the
corresponding yellow (e) region in Figure 7a was interpreted
as a “bad” region, where adverse reactions occurred. Another
useful observation was that response types (b, green) and (c,
dark blue) are much less sensitive to changes in current than,
for instance, (a, red), while all three of these clusters are
robust against changes in temperature. This can be seen from
the different size that these clusters have when viewed in the
input parameter space of Figure 7a, where large vertical extend
corresponds to robust behavior w.r.t. temperature and narrow
horizontal extend to high sensitivity w.r.t. changes in current.

We also created other embeddings of output behaviors,
for instance, showing the similarity of the water content of
the membrane-electrode assembly. Due to restricted space,
however, we do not report on these numerous other examples.

7 DISCUSSION AND SUMMARY
We now discuss insights and lessons learned from applying
ParaGlide in various settings of computational science.

7.1 Interaction

Human-in-the-loop: A key aspect of ParaGlide is the combi-
nation of user interactions for sampling the parameter space of
a computational model together with methods for interactive
analysis of the acquired data. We found that providing an inter-
active and intuitive way to explore a model a parametrization
can have large impact on researchers’ model development.
In the example on movement of biological aggregations, the
exploration possibilities offered by ParaGlide lead to a shift
in the initial research questions. The initial goal of surveying
types of patterns formed by different configurations (addressed
by D-roi, D-smp) was achieved by the construction of a feature
extractor (D-drv, A-view) that would help to accelerate this task
by guiding the search for outputs with desired characteristics.

From a more general perspective, naturally not all settings
in computational modeling require user interaction with the
model as we propose it. To better understand when interactive
modeling might be a fruitful path to go, we offer the following
guidelines that we observed in our own field work. A need for
interactive parameter space exploration might exist

• when user experience or knowledge has not been fully
integrated into the model yet (development setting);

• in cases where model based optimization requires visual
assessment of graphical output, e.g., if the model pro-
duces output images and these images are intended to be
ranked by a domain expert; or

• if the model, rather than providing one optimal solution,
is intended to inform domain experts about effects of
mechanisms represented in the model (e.g., biologists
reasoning about movement patterns, or a physician con-
sidering the shape of different possible segmented brain
regions for diagnosis).

In short, all these modeling scenarios require human interpreta-
tion to gain understanding of the real system. A fully calibrated
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model on the other hand that is only used in controlled,
automated settings, often may not require human interaction
at all. An exception might be for monitoring and verification
of the assumptions it relies on.

Region-based sampling: As discussed in Section 3.5, param-
eter space analysis comes with the characteristic that data
set generation is tightly interwoven with its exploration. In
ParaGlide, the data set creation is split into two steps of
region construction (D-roi) and the generation of experimental
points (D-smp). We found that this workflow enabled our users
to more consciously think about combining value ranges of
different parameters. Analyzing previous practices revealed
that most of our users simply used nested for-loops to gen-
erate uniform samplings across all dimensions. The important
benefit of region based sampling is the support for actively
steering the potentially expensive process of data sampling.
Standard sampling methods can then be simply invoked in
smaller regions, or iteratively to generate different granularities
of sampling density.

Based on our parameter space partitioning method, we
suggest that research efforts to further improve sampling
efficiency can now approach the topic from two somewhat
independent angles:

• by finding types of multi-dimensional ROIs that are un-
derstandable and intuitive to specify yet small in volume
(to minimize computation), and

• by devising methods to adaptively sample a partially
identified region by generating experimental points that
explore the cluster transition boundary and descending
into neighboring clusters. Currently, the arrow of Fig-
ure 1 that provides information of derived variables to
guide the sampling method takes effect only through
user interaction by relocating and refining the ROI based
on observations made from prior computation or other
context information.

Manual, high-dimensional clustering: Our partitioning
workflow approaches labeling via manual clustering and in-
volves the user in all stages of its construction. A by-product of
the procedure given in Section 5.2 is a domain specific distance
measure that can be used to partition computed outputs into
different groups. Being aware that it is possible to automate
some interaction steps, we were intrigued by the possibility
of a manual procedure that produces meaningful clustering
results for non-convex cluster shapes in a space with as many
as 1502 dimensions3, corresponding to the curves of Figures 8.

7.2 Impact of Parameter Space Partitioning

A major aspect of our work is to promote the idea of
interactive, visual parameter space partitioning. As pointed out
in Section 4, existing interactive systems to work with com-
puter models mainly focus on interactive model optimization.
While not originally intended for this purpose, a meaningful
segmentation of the model parameter space provided by our

3. Also, due to the functional dependency on the two varied parameters all
data lies in a non-linear, two-dimensional subspace of R1502.

partitioning method, may also have potential use in this con-
text. We saw the coexistence of optimization and partitioning
tasks, for instance, in our image segmentation, and fuel cell
examples. Pitt et al. [22] already identified one major benefit,
stating that the diversity of behavior that a model can produce
provides a measure of the power of the modeling mechanisms,
indicating possible risks of overfitting or oversimplification.

Building on these findings, our work showed that visual
exploration of parameter space partitions can provide users
with confidence that the right level of complexity of modeling
mechanisms has been chosen. An example is the parameter
assessment of Section 6.2. In particular, we identified two gen-
eral situations in which parameter space partitioning supported
our users’ needs:
Context-dependent optimization: Parameter space partition-
ing can become helpful in context-dependent optimization,
where depending on additional conditions (context) different
parameter configurations lead to the intended good results. For
instance, in our fuel cell example the engineers were interested
in fuel cell characteristics in two different situations, where
either very low or high current is drawn from a cell. Knowing
the shape of the parameter regions that perform well under
the respective conditions allows to choose a set of parameter
configurations that robustly lead to good results.
Visual sensitivity analysis: Another very promising property
of the visual partitioning approach we suggest, is its appli-
cation to global sensitivity analysis. Clustering the output
space and showing these clusters respectively in the input
parameter space, gives the user an intuitive way to learn
about the sensitivity of certain output behaviors. Since cluster
boundaries represent a significant change in output behavior,
the narrowness of an output cluster in the direction of change
of a particular input parameter can be interpreted as a measure
of sensitivity of the cluster behavior with respect to that param-
eter. An example of such a sensitivity interpretation is given
in our image segmentation case study (Section 6.2). Here, the
user leveraged the cluster boundary distance as a measure of
robustness. The interpretive power of viewing several such
regions is apparent in fuel cell case study (Figure 7a).

While parameter spaces in our examples are continuous,
our analysis operates on sampled configurations. Alterna-
tively, topological decomposition [13] and simplification [4,
§2] of multi-dimensional functions are possible continuous
approaches.

7.3 Conclusions
Developing, interpreting, and improving computer models can
be a time and resource intensive process. In this paper, we
propose parameter space partitioning and exploration as a
strategy to support this process. After studying, formalizing
and abstracting the problem of parameter space partitioning,
we engaged in developing ParaGlide, a system that enabled
us to address practical modeling settings, that have not been
properly supported before. ParaGlide was developed in a user-
centered design process and closely connects data generation
with its visual exploration. Studying ParaGlide in the field
revealed various examples in which our users could either
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speed-up their work or get new insights which informed model
development. We hope that others will find our work inspir-
ing and extend it with further innovations to support model
developers in their data-intensive and complex endeavors.
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