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Fig. 1: Evaluation of four visualization techniques (a)-(d) that support the visual-interactive labeling process. Our study reveals
that Class Coloring (b) and Convex Hull (c) are the most useful techniques. Both capture characteristics of the input data and the
classification model in an intuitive way. Our study shows that they can compete with and even outperform active learning strategies.

Abstract—Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set
of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and
visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths
and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different
labeling strategies. In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) investigate strengths
and weaknesses of labeling strategies for different labeling tasks and task complexities, and (3) shed light on the effect of using different
visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at
a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of
active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension
reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings
that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.

Index Terms—Labeling, Visual-Interactive Labeling, Information Visualization, Visual Analytics, Active Learning, Machine Learning,
Classification, Evaluation, Experiment, Dimensionality Reduction

1 INTRODUCTION

Labeling follows the principle of attaching information to some object.
In data-centered disciplines labeling is often associated with querying
knowledge of users about data objects. As such, the labeling process
represents an essential prerequisite for algorithmic support in data
mining, machine learning, and visual analytics. Two goals of almost
any labeling process are being accurate and fast, i.e., effective and
efficient.

In the machine learning community, labeling traditionally represents
the basis for the creation of large ground truth data sets. Ground truth is
necessary to enable autonomous supervised learning. The most recent
and powerful supervised machine learning approaches, such as deep
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neural networks require large amounts of such labeled data to learn
successfully. The generation of such datasets is, however, expensive and
often requires extensive efforts from the users (e.g. crowdsourcing [28]).
Active learning (AL) is one promising approach to reduce the labeling
effort. The basic principle of AL is to query an oracle (the user) for
labels about individual objects (instances) in the dataset. Thereby the
active learner selects those candidates from which the classifier is
expected to benefit most. Various AL strategies have been proposed
and shown to improve over random sample selection [56].

One of the intrinsic characteristics of AL strategies is the model-
driven way to identify meaningful instances for labeling. A drawback
of this principle is that users, with their ability to identify patterns
very fast, have no influence on the candidate selection. Considering the
efficiency, strategies asking users for a single or multiple labels in an
iterative manner does not scale well for large data sets. Finally, a partic-
ular challenge for model-driven strategies is the cold start (bootstrap)
problem, i.e., starting the learning with no labeled instances at all [37].
The question arises whether or not classical AL approaches can benefit
from visual interfaces that take the user into the loop, not only for
labeling but particularly for selecting meaningful candidates [55, 57].

In the visual analytics community, interfaces for visual-interactive
labeling (VIL) become increasingly popular since they enable users to
express their information need. Additionally, visual analytics models
can support the users’ knowledge generation process by exploiting such
label information. Approaches differ in the type of acquired labeling
information ranging from interestingness scores, rules, similarity re-
lations to assignments of class labels. One common ground of many
approaches is the user-driven selection of instances provided with



visual interfaces for the exploration and identification of interesting
instances. The motivation of users for the selection of particular in-
stances can be diverse. It may be task-dependent but also the context,
application field, and more intrinsic backgrounds of users may motivate
the instance selection. These different motivations may lead to biased
selections of instances that result in suboptimally trained models. Fol-
lowing the principle of AL strategies, guiding users in the candidate
identification may be beneficial to mitigate subjective or suboptimal
instance selection.

Our research is motivated by observing the different strengths and
weaknesses of the respective principles and the idea of a substanti-
ated combination of mutual strengths in future approaches. Recent
developments in machine learning and visual analytics indicate that
the two fields are getting closer, see for example a recent survey that
exposes the considerable overlap [43]. Furthermore, there have been
first initiatives to combine active learning and visual-interactive label
selection [22, 23, 55, 57]. We share the vision that the strengths of both
principles can be seamlessly combined in visual-interactive labeling
systems, raising the effectiveness and efficiency to new levels.

From our literature research, we conclude that the strengths and
weaknesses of both principles have hardly been assessed in direct com-
parison. There is a lack in formalizations of AL and VIL strategies
and more generally of labeling approaches in machine learning and
visual analytics. Thus, reliable decisions on whether or not to choose
one or the other approach are hardly feasible. A core driving question is
whether or not visual interfaces can improve labeling tasks, or whether
AL performs so well that they render visual interfaces redundant. In
case that VIL is really helpful, other interesting questions arise: Do
users have particular strategies for the identification of labeling candi-
dates? How good are these strategies with respect to their performance?
Under which circumstances does VIL help, and when not? How does
VIL perform for differently complex tasks? And how much and what
information about data and machine learning models should be repre-
sented in visual interfaces? These questions have not been answered
yet and require a closer investigation.

To answer these questions and to provide a direct comparison of
VIL and AL labeling strategies, we perform an experimental study.
As a basis for the study, we develop a flexible evaluation toolkit that
integrates 16 different established AL strategies, five classifiers and
four visualization techniques (Sec. 3). Using this toolkit, we conducted
an empirical study with 16 expert participants. Our study sheds light
into (i) how VIL and AL techniques compare to each other, (ii) how
the complexity of the labeling situation impacts them, and (iii) the
differences between single- and multi-instance labeling approaches
(Sec. 5.1-5.2). We also (iv) characterize a set of labeling strategies
that we found our participants applying in VIL conditions (Sec. 5.3).
With these findings, we discuss lessons learned, insights gained, and
potential future work (Sec. 6).

Our investigation shows that VIL achieves similar performance to
AL and in some settings even outperforms AL. It further points out new
connecting points where VIL and AL may benefit from each other. The
presented investigation represents an important step towards a unified
labeling process that combines the individual strengths of user-centered
and model-centered strategies.

We present related work in the next section, followed by our baseline
approaches in Section 3, used for our experimental study. In Section 4,
we introduce the experiment design, and present the experiment results
in Section 5. We discuss follow-up insights in Section 6, and conclude
with a discussion on limitations and future work.

2 RELATED WORK

Related work for our study comes from different domains. Thus we
subdivide the presentation of related work into three sections: related
work on active learning (Section 2.1), visual interactive labeling (Sec-
tion 2.2) and previous studies on visual interactive labeling (Section
2.3)

2.1 Active Learning
Active learning (AL) is a special type of semi-supervised machine
learning which takes the user into the loop to query label information

to improve the training performance of a classifier. AL techniques
ask (query) an oracle (the user) for specific instances instead of, e.g.,
querying random instances. AL is especially useful in cases where
large portions of the data are unlabeled, or where manual labeling is
expensive. Thereby, the major goal of AL is to achieve high accuracy
with a minimum of manual labeling effort. The core component of
AL is the candidate selection strategy which aims at identifying those
instances which would contribute most to the learning progress of the
model. The different classes of AL strategies are described in several
surveys in detail [39, 56, 65, 68]. We partition AL strategies into four
major classes: (i) uncertainty sampling, (ii) error reduction schemes,
(iii) relevance-based selection, and (iv) purely data-centered strategies.

Uncertainty sampling aims at finding the instances that the learner is
most uncertain or unsure about. A widely used strategy is to search for
those samples near the decision boundary of margin-based classifiers
[72] also referred to as large-margin based AL [65]. Other strategies
measure the uncertainty of a committee of classifiers. In Query by
Committee (QBC) [60], each classifier of the ensemble is asked for
labelings. Instances are considered interesting when the committee
disagrees with respect to their labeling [36].

Error reduction schemes focus on the selection of those instances
which may change the underlying classification model most. Tech-
niques focus either on the impact on the training error (expected model
change) [59] or on the reduction of the generalization error (risk reduc-
tion [42] and variance reduction [24]).

The third group of AL strategies focuses on relevance [67]. Based
on a relevance criterion, those instances are selected which have the
highest probability to be relevant for a certain class. This strategy fosters
the identification of positive examples for a class. This is particularly
useful in systems that aim at ranking search results [68].

Finally, one of approaches is purely data-driven and independent
of the learning model. Examples for such data-driven strategies are
density- and diversity-based instance selection. The diversity criterion
fosters the selection of dissimilar instances for labeling to increase the
information gain for the learner [17]. In density-based selection, the
query candidates are selected from dense areas of the feature space
because those instances are considered as most representative [72].
Density-based selection of candidates is a promising strategy for initi-
ating an AL process in the case when no labels are available at all (cold
start problem).

In this work, we employ a heterogeneous set of 16 AL strategies to
obtain a representative baseline for AL (see Section 3.3).

2.2 Visual-Interactive Labeling and Classification
Labeling is a frequently supported task in visual analytics. Depend-
ing on the given task and approach, different types of labels may be
employed. A widely used label type are categorical labels which can
be either binary or multi-valued. Binary labels enable simple user
feedback, such as “yes/no” decisions or “relevant/not relevant” assess-
ments. Multi-valued categorial labels enable for example the tagging
of different classes of objects. Users can, e.g., label relevant textual
documents [22], interesting time series patterns [47], or occurrences of
objects in video streams [23]. Another important label type are continu-
ous labels, often used to assign more fine grained interestingness or rele-
vance scores. Example applications include relevance feedback [45,54],
candidate assessment and evaluation [71], patient well-being scores [4],
or distinguishing between relevant and irrelevant views [2]. Aside
from providing labels explicitly, another type of user feedback is to
directly provide weights (of features or data attributes), e.g., to build,
validate, or improve algorithmic models [38, 40, 70]. Another type of
label are similarity relations between instances, explicitly assigned by
users which are used, e.g., to learn distance functions to support the
visual-interactive re-allocation of instances [5, 10, 35].

Labeling is an upstream task for (visual-interactive) classification
approaches. Some approaches directly combine AL-based with
VIL-based instance identification and labeling [22, 23, 55, 57]. Seifert
and Granitzer [55] elaborate on user-picking strategies similarly as
we do in our experiment. In contrast, the baseline interface does not
aim for a similarity-preserving representation of instances. Heimerl
at al. [22] and Höferlin et al. [23] present visual analytics systems



Fig. 2: Visual-interactive interface for labeling instances. Four dimen-
sionality reduction techniques provide different perspectives on the data
set (default: t-SNE). In the center instances can be selected for labeling.
At the right, users can refine selections and label multiple instances at
once (in TR3). Four different VIL-support techniques can be included
to ease the visual-interactive labeling process (see Figure 1).

combining multiple views including VIL support, model visualization,
and instance labeling. We build upon these approaches for the
implementation of our study results. Unsupervised techniques can be
employed to ease the task of user-based labeling. Several approaches
provide visualizations of cluster results in 2D, in combination with
interaction tools like a ’lasso’ for multi-instance selection [12, 21, 38].
From clustering, we take up the idea to support users in labeling
instances in dense areas that are most representative. In this context,
we will also examine whether or not visual cluster structures and user
expectations [38] are beneficial for the labeling process.

2.3 Previous Studies on Visual Interactive Labeling
The number of experiments and studies regarding the performance of
VIL is scarce. At a glance, our experiment builds upon insights gained
from studies on the identification of human labeling strategies, the
comparison of labeling-support techniques, multi-instance labeling, as
well as measures of class separability. Möhrmann et al. measured the
applicability of SOM-based data clustering and visualization as a means
to support the generation of ground truth for image data [38]. Similar to
one of our experiment trials, the authors assess the increase in efficiency
when labeling multiple instances at once. However, the authors report
accuracy values that remained constant with a slight tendency to deteri-
oration. The experiment conducted by Settles measures the annotation
time of users versus accuracy [57]. We build upon the ideas to raise
baseline random performance measures as well as an upper limit of
performance to provide upper and lower bounds. In contrast to our ex-
periment, the comparison is between learning from instances, with and
without additionally learning from features. In their studies, Seifert and
Granitzer [55] simulated user-picking strategies for instance selection,
allowing the automation of user-based selection in a laboratory study.
The authors presented a VIL-support technique based on radially or-
dered axes of a classifier’s a-posteriori output probabilities and claimed
that their technique outperforms uncertainty based sampling (AL) [56].

In contrast to previous studies, we further focus on the comparison of
model-based (AL) versus human-based (VIL) label selection strategies.
In particular, we are interested in observing what drives users to select
particular instances in a given labeling interface. One way for humans
to enhance the labeling process is the ability to identify patterns such as
dense areas of instances and class distributions. Our experiment builds
upon the results of a study on visual cluster and class separability [53].
With the evaluation of techniques supporting VIL, we further inves-
tigate the effect of well-separable class distributions on effective and
efficient labeling. One inspiring side-aspect is entailed in an experiment
comparing the results of cluster validity measures with user evaluations

(experts and non-experts) [33]. Building on the basic assumption that
model-based and user-based strategies of candidate identification differ,
we will adopt the idea to further observe user preferences in candidate
selection. Finally, Lewis et al. [34] conducted an experiment on whether
humans are consistent in rating the quality of results of dimensionality
reduction algorithms. Similarly, a motivating aspect for our user exper-
iment is to investigate the consistency of user-based labeling strategies.

3 APPROACHES

The major goal of this work is to compare AL and VIL strategies for
data labeling tasks. For this purpose we have developed a toolkit that
allows for simulating AL experiments as well as performing visual
interactive labeling of data by users (identification, selection, and la-
beling of instances). Section 3.1 provides more details. We integrate
a number of AL techniques and classifiers into the toolkit which we
summarize in Sections 3.3 and 3.2. The visualization techniques that
we propose to support VIL strategies are described in Section 3.4. We
refer to them as VIL-support techniques in the following.

3.1 Visual-Interactive Labeling Toolkit
We present a visual-interactive toolkit that supports the visualization of
high-dimensional datasets, the integration and (automated) evaluation
of AL strategies, and the enrichment with VIL-support techniques to
ease the labeling process. The interaction loop of the labeling process
builds upon the visual-interactive labeling process presented by Bernard
et al. [7] which also contains a graphical representation of the process.
The design of the visual-interactive labeling interface fulfills the fol-
lowing three primary requirements: First, the toolkit provides a visual
representation of the entire data set in 2D in a structure-preserving way.
Second, the interaction design facilitates the selection and labeling of
single and/or multiple instances. A lasso-tool allows the selection of
multiple instances, i.e., a range selection in the 2D data representation.
Third, to enable the objective comparisons between AL and VIL, label-
ing interactions by users trigger the same mechanisms for model build-
ing and performance testing as automatically executed AL strategies.

The visual interface of the toolkit is presented in Figure 2. Inspired
by experiments on dimensionality reduction, scatterplots, and measures
of class separation [52, 53, 63], our toolkit uses dimensionality reduc-
tion techniques to map high-dimensional data into 2D. A total of four
techniques (PCA [27], non-metric MDS [30], Sammons Mapping [46],
and t-SNE [66]) are used in a small-multiples setting to provide differ-
ent perspectives on the data. This mitigates weaknesses of individual
techniques. An overview of dimensionality reduction techniques for
visualization is provided by Sacha et al. [44], parameter values used for
the four techniques are described in the supplemental material.

The three primary views of the labeling interface are as follows. In
the left view, users can select one of the four dimensionality-reduced
data representations (default: t-SNE). The selected mapping is subse-
quently presented in the center view. At the beginning, all data instances
are represented with small crosses in the center view, indicating that
they are unlabeled. Once users label individual instances, the instances
are depicted with small visual representations, in our case thumbnail
images. The right view allows the refinement of selected subsets and
multi-instance labeling, triggered by the label buttons at the bottom.
The labeling information is then fed back to the underlying machine
learning models which are re-trained on the enriched training set. The
interaction loop is closed as soon as the results of the learning model
are finished. The new classifier predictions are propagated to the center
view which is updated with the new results [7]. Section 3.4 provides de-
tails about visualization techniques used to represent the classification
output. Note that the same process is performed for AL strategies.

3.2 Classifiers and Classification Accuracy
We integrate five different classifiers into the toolkit (Support Vector
Machine (SVM) [13], Random Forest (RF) [9], Naive Bayes [18],
Multilayer Perceptron (MLP) [25] and Simple Logistic [31]). The clas-
sifiers are used for testing the performance of labeled sets of instances
in combination with the learned models in our study. With the use of
five different classifiers, we achieve robustness in the assessment of



Fig. 3: Accuracy of performance baseline strategies developing over
150 labeled instances (x-axis). The performance of 50 baseline random
sampling trials (black) is compared with 16 variants of AL strategies
(blue). Dashed lines represent the minimum and maximum perfor-
mance, filled areas depict 25% and 75% quartiles. In the result, we
identify a frequently observed pattern: AL strategies start poor (cold
start problem), but outperform the random baseline in later phases. The
upper limit of performance (green) performs exceptionally well.

labeling performance. The computation of classification accuracy is
always performed on a separate instance set for testing [19].

3.3 Active Learning Strategies
In active learning (AL) an algorithmic model proactively asks the user
for feedback (labels) about selected samples [56]. Basically, the algo-
rithmic selection of unlabeled instances is based on the result of an in-
cluded classification model in combination with a quality criterion (see
Section 2.1 and the supplemental material for details about the operat-
ing principles of AL). We integrate 16 supervised AL strategies into the
evaluation toolkit that build upon eight different AL techniques. Tech-
niques include Smallest Margin [48], Entropy-Based Sampling [58],
Least Significant Confidence [14], Simpson Diversity [62], Probabil-
ity Distance, Vote Comparison, Vote Entropy [16, 61], and Average
Kullback Leibler [37]. The first four techniques are combined with
the three classifiers (SVM, MLP, RF) each, yielding 12 different AL
strategies. The latter four techniques are query-by-committee (QBC)
approaches that use all three classifiers simultaneously and vote over
their individual decisions. This adds up to a total of 16 AL strategies.

3.4 VIL-Support Techniques
Related work in visual classification approaches reveals a series of tech-
niques that have the potential to support VIL. In this work, we define
a VIL-support technique as a visualization that assists the user in the
selection of candidates for labeling, i.e., VIL-support techniques may
facilitate VIL strategies. We present four VIL-support techniques that
we assume to be particularly interesting and beneficial for interactive la-
beling. Enlarged example figures of all four VIL-support techniques are
provided in the supplemental materials. The labeling toolkit presented
in Figure 2 serves as the baseline for all techniques. We apply voting
between the five classifiers included in the system to condense the
information of multiple classification results to a single class prediction
for every instance. Accordingly, this condensed information about the
current state of the learning models is exploited with the VIL-support
techniques.

2D Colormap Every data element is colored with respect to its 2D
location in the projection shown in the center view. The colors are
linked to the small multiples at the left to support the lookup of in-
stances in other views and the comparison of different perspectives
on the data. In this way, users can expose mapping distortions and
thus make informed decisions when selecting data elements. We use
a 2D colormap to represent position information with continuous and
similarity-preserving colors [6] (Figure 1a). Compared to the remaining
techniques, this VIL-support technique does not require any informa-
tion about the underlying classification model.

Class Coloring Each class is assigned a separate color [52, 53, 63].
Coloring classes or clusters in scatterplots is a frequently applied ap-

proach [10, 22, 23, 41, 51, 55, 64]. Here we evaluate if this technique is
also beneficial to support VIL (Figure 1b).

Convex Hull The convex hull is a prominent technique for the
visualization of class distributions and boundaries [41, 49, 51, 55, 64].
We employ convex hulls to visualize the boundaries of the classes
(Figure 1c) and investigate its suitability for VIL.

Butterfly Plot The butterfly plot technique [50] is an interesting
refinement of convex hulls that additionally provides information about
the center of gravity of class distributions (Figure 1d). While the but-
terfly plot tends to produce more complex shapes it better highlights
outliers than convex hulls.

4 EXPERIMENTAL DESIGN

We conducted an experiment with three main distinctive parts:
(PART1-3). Each part focused on a specific set of questions. The major
goal of our experiment was to examine the potential of VIL and how it
compares to AL. We first describe the general setup of the experiment,
before we provide details for each part (variables, setup, tasks, etc.).

4.1 Research Questions

We formulated six research questions for our experiment:
• RQ1 – Is VIL, facilitated with VIL-support techniques, able to

compete with state-of-the-art AL strategies?
• RQ2 – Is VIL effective even in complex labeling settings?
• RQ3 – Do VIL-support techniques perform differently?
• RQ4 – Can VIL facilitate the concept of labeling multiple in-

stances at once, to make the process more efficient?
• RQ5 – Do users develop strategies for the selection of meaningful

instances in VIL?
• RQ6 – How do these potential strategies relate to VIL-support

techniques and AL strategies?

4.2 Baseline AL Strategies

To obtain a representative and robust baseline a broad range of existing
state-of-the-art approaches is required. These approaches can be run
for comparison automatically and do not need to be tested by users
directly, so we are not restricted by the participants’ time here. We thus
selected 16 AL strategies as baseline conditions (cf. Section 3.3).

4.3 Data Set

To keep the study complexity manageable, we use a single, easy-to-
understand reference data set in our study. After reviewing a number
of data sets the decision was made for the MNIST data set represent-
ing classified handwritten digits [32]. The database contains 60,000
instances for training and 10,000 instances for testing from 10 distinct
classes (digits “0” to “9”). Each raw digit is represented by a 28x28
grayscale image yielding a 784 dimensional vector in the original space.
The grayscale values represent the luminance information of the digits,
while black color encodes the background (see, e.g., Figure 2 in the
top-right corner). To reduce the dimensionality for faster classification,
we extract a descriptor based on 11 horizontal, 11 vertical, and 20
diagonal slices carved out from the original grid. A detailed description
of the feature extraction is provided in the supplemental materials. The
final feature vector is applied as input for training and testing classifiers,
executing AL strategies, and applying dimensionality reduction.

4.4 Participants

We recruited 16 participants (2 female) in our lab. Each participant
performed all three parts of the experiment. The age of the participants
ranged from 26 to 58 (Median = 33.06, SD = 7.56). All participants
had normal or corrected-to-normal vision. Each subject had at least a
Bachelor’s degree and expertise in visualization, data mining, machine
learning, or combinations thereof. However, none of the participants
has either worked with the particular data set in detail, or has in-depth
experience in implementing classifiers.



4.5 Procedure
We prepared a workstation in a quiet lab with a color-calibrated monitor.
The evaluation toolkit (cf. Section 3.1) was installed and prepared for
the experiment. Figure 2 gives an impression of the toolkit. By de-
sign, all unlabeled (unknown) instances are represented with x, labeled
instances are depicted with the image of the handwritten digit.

At the beginning, the participants were introduced to the topic and
the goals of our experiment, accompanied by the possibility to ask
questions. Our toolkit was introduced in a short demo session, including
its interaction techniques and VIL-support techniques. In addition,
the concept of (baseline) AL strategies was described, as well as the
functionality of the classifiers to be trained in the course of each session.

The main part of our study consisted of three core parts then:
• PART1 – Users were asked to label the data under the 4 different

VIL conditions described in 3.4. Our goal was to learn about
how VIL techniques compare among each other, as well as to the
baseline AL strategies, and how they do so in differently complex
situations.

• PART2 – The users had to engage in a single and a multiple-
instance selection tasks, so we can compare single vs. multiple
instance labeling strategies for AL and VIL.

• PART3 – We gathered qualitative and subjective feedback from
the participants.

During PART1 and PART2, the participants were asked to think
aloud in the course of the labeling process, e.g., when they identify
special cases, difficulties, or interesting findings. We also observed
them and took notes on interesting behaviors and user strategies. Both
parts used a separate within-subject design, which will be described in
more detail below.

The overall time to perform the three parts was estimated with 75
minutes, depending on the extent of the interview. Participants were
allowed to take breaks between the three parts. We now describe the
experimental design of each part in more detail.

4.6 PART1: Performance Comparison VIL and AL
The first part of the experiment considered the question whether or
not the four VIL-support techniques can compete with state-of-the-art
AL strategies, how they compare among each other, and how they
perform in three different levels of complexity (RQ1-3). To answer these
questions, PART1 was organized as a 4 × 3 within subject design.

4.6.1 Independent Variables
We had two independent variables in PART1.
VIL. Our main variable of interest were the 4 different VIL-support
techniques as outlined in Section 3.4: 2D Colormap, Class Coloring,
Convex Hulls, and Butterfly Plot (cf. Figure 1).
Complexity. The second variable was task complexity. Complexity of
the labeling task at hand is a very important factor that can strongly
influence AL and VIL performance. Task complexity in itself, however,
is a multifaceted concept. It is influenced by model aspects such as the
number of different classes, how many data points it is operating on, the
chosen model type, etc. It also depends on the input data and the nature
of the labeling tasks, for instance, labeling digits might be easier than
labeling objects in video streams. No single study can investigate all of
these factors at once. Based on our pilot study (see suppl. materials),
we thus opted for a well-defined labeling task (labeling digits), and
focus on three different levels of model complexity:

1. Easy: 2 classes (0,1), 100 instances each class
2. Medium: 5 classes (0,1,2,3,4), 100 instances each class
3. Difficult: 10 classes (0,1,...,9), 100 instances each class

4.6.2 Task Description
We asked the participants to select data instances for labeling in a
meaningful way based on their preference. Depending on the provided
VIL-support technique additional information about data and/or classifi-
cation result was shown that possibly supported the process of selecting
instances for labeling. As a general rule, we asked the participants to
exploit relevant information about patterns explored in the labeling

interface, and use it for the selection (labeling) of instances. For every
condition, users were informed about the set of labels existing in the
data set (task complexity).

The focus of PART1 was on the selection of instances rather than
the actual process of assigning a label to the selected instance. We thus
setup our toolkit in a way that participants did not actually need to label
the digits of selected instances to save time. They could simply select
an instance by clicking on it. The label was then set automatically and
the image was revealed to the user. The registration of the true label of
for the selected instance was automatically triggered to the evaluation
bench (see the interaction loop in Section 3.1).

4.6.3 Setup
The independent variables of PART1 lead to 4×3 = 12 different con-
ditions. We decided for a within-subject design, so all 16 participants
were asked to perform all 12 conditions. We decided not to randomize
the order of VIL techniques as the conditions are building up on top
of each other (the number of visual variables depicting model infor-
mation was zero for 2D Colormap, one for Class Coloring, and two
for Convex Hulls and Butterfly Plot). The three different complexities
of the labeling task were always performed in the natural order from
easy to difficult. The data instances used for training and testing were
randomly chosen with a constant seed to achieve both comparability
and reproducibility. All other choices were based on the pilot study that
we describe in Appendix A in the supplemental materials.

4.6.4 Dependent Variables
Accuracy. To assess the performance of the 12 tested conditions out-
lined above, a measure is needed that is expressive and easy to under-
stand. To enable comparability, the measure should be applicable for
the 12 conditions and the baseline AL strategies. Based on these require-
ments, we select classification accuracy as the sole dependent measure
to compare how ‘good’ the different conditions are. We use the standard
definition of classification accuracy, that is, the portion of correctly clas-
sified instances compared to ground truth labels [19]. To achieve robust
(classifier-independent) accuracy estimates, we compute the accuracy
after every label operation for all five classifiers listed in Section 3.2
and average the results. This leads to robust performance estimates.

4.7 PART2: Labeling Single vs. Multiple Instances
In the second part of the experiment, we turn towards the assessment
of efficiency of the labeling process. To this end, we allow labeling
multiple instances with the same label in a single labeling iteration. We
investigate whether or not VIL can facilitate the concept of labeling
multiple instances at once to make the process more efficient (RQ4).

4.7.1 Independent Variables
Single vs. Multi Labeling. We were interested in the question of how
many labels should be set at once in the labeling interface. There are
essentially two options. Setting one label to a single instance, one after
another, or assigning a label to multiple instances at once.
VIL vs. AL Strategies. Assigning labels to multiple instances at once
can be facilitated with AL and for VIL as well. As a result, and in
contrast to PART1, AL now shifts from an automated baseline approach
to an independent variable as the participants need to get active in these
conditions as well.

4.7.2 Task Description
In contrast to PART1, the users’ task in PART2 was to explicitly assign
labels to instances. That is, users selected and labeled instances (in VIL
conditions), or they labeled suggested instances (in the AL condition).

4.7.3 Setup
Altogether, the two independent variables form four conditions. We
refer, to these four different conditions as:

• AL single labeling: AL suggests one item, labeled by the user
• AL multi labeling: AL suggests multiple items to be labeled by

the user; the user can select a subset of the suggestions and label
them with one class label, for example, all ”1s”.



Fig. 4: The accuracy of labeling strategies depends on the complexity
of the labeling task. The performance of all VIL results (orange) can at
least compete with the performance of AL (blue), and RB (black). ULoP
(green) substantially outperforms all remaining strategies. Dashed lines
represent minimum and maximum performances, area dyed with de-
creased alpha is used to depict 25% and 75% quartiles.

• VIL single labeling: The user selects a single item and labels it.
• VIL multi labeling: The user can select multiple instances with a

lasso and give a label to this selection after filtering false positives.
We provide dedicated interfaces for these conditions. For the VIL

conditions, we use the interface described in Section 3.1. For VIL
single, the user can only click select single items; for VIL multiple, he
can use the lasso as described in Section 3.1. The interface was based
on the Convex Hull design option, and is shown at the right of Figure 2.

In case of AL multi-labeling, we introduce a list-based interface,
which allows the user to see the AL-suggested instance(s) and label
them. In the AL single case, only one instance at a time is shown.
In the AL multiple, multiple instances are shown and the users can
select the items they think being to a certain class, and label them.
We chose Smallest Margin [48] in combination with a Support Vector
Machine (SVM) [13] classifier from the set of 16 AL strategies (cf.
Section 3.2), as it is well-known, easy to implement, and produced
consistently robust results with accuracies above average. Screenshots
of all interface conditions are in the supplemental material.

We decided again for a within-subject design, so every participant
was asked to perform all four conditions. The order of the conditions
was from simple to difficult regarding labeling single or multiple la-
bels at once. The order of VIL and AL was randomized. The data
instances used for training and testing were again randomly chosen
with a constant seed to achieve both comparability and reproducibil-
ity. The difficult labeling task was chosen (cf. Section 4.6), thus, all
labels from 0 to 9 were included in the data set. For each condition,
participants were asked to label as many instances as possible in 5
minutes.

4.7.4 Dependent Variables

Accuracy. The accuracy measure described in PART1 is again used to
assess the effectiveness of the labeling task.
Number of Labeled Instances. In addition, we are interested in a
performance measure assessing the efficiency. Thus, we also look at the
number of instances labeled over time as a second dependent variable.

4.8 PART3: User Strategies and Feedback

After the two main parts of the study, the moderator conducted a sum-
mative interview, including questions about preferences, informal feed-
back, and subjective estimates about the usefulness of VIL-support
techniques. We also handed out a short questionnaire to gather addi-
tional subjective feedback, with 5-point Likert scales regarding the
subjective preference on VIL-support techniques.

The rationale of this part (PART3) was to answer RQ5 and RQ6,
that is, whether or not users developed strategies for the selection of
meaningful instances in VIL, and how these potential strategies relate to
VIL-support techniques and AL strategies. Inspired by the algorithmic
formalization of AL strategies for the selection of instances, we sought
for formalizations of strategies performed by users when selecting
instances for labeling. This was further informed by the qualitative input
we got from the think-aloud protocols and our qualitative observations

Fig. 5: Performance comparison of four VIL-support techniques (or-
ange) with AL strategies (blue), RB (black), and ULoP (green) for an
easy labeling task (PART1). The overall insight is that all VIL-support
techniques outperform AL and RB. In many cases the accuracy was
around 0.95% after only three labeled instances.

(see Section 4.5). All sessions were audio-recorded. We used a light-
weight open/axial coding approach to analyze this qualitative data [11].
The analysis was done by one of the authors.

4.9 Data Analysis
To analyze our data, we mostly leverage visual representations of the
performance of the different VIL and AL strategies over the course of
many iterations, that is, line charts. Variations in the performances of
the 16 participants (and 16 AL strategies) are visually represented as a
“bundle” with an emphasis on statistical information represented over
time. The colored area around a mean curve represents the interquartile
range of the measured results ([Q0.25−Q0.75]), dyed with decreased
alpha. Dashed line charts depict minimum and maximum performances.
As a general rule, the color coding used to assess performance of curves
is orange for VIL and blue for AL. We superimpose AL and VIL results
to allow for an easy visual comparison (i.e., comparison of bundles).

We also wanted to contextualize our findings by providing upper and
lower bounds in the experiment. We thus provide two additional pieces
of information in the line charts: a random baseline (RB) shown in black,
and an upper limit of performance (ULoP) shown in green. For RB we
simply sample the items for labeling randomly. To achieve robustness,
50 RB trials are calculated for every evaluation. The expectation is that
the remaining strategies should at least perform better than this RB.
For a similar purpose, we provide ULoP, which simulates an optimal
labeling strategy where always the “best” (most beneficial) item is
selected in each iteration. The calculation is based on a Greedy search,
simulating the accuracy of the next labeling step for all remaining
candidate instances. Figure 3 shows the results of the AL strategies
compared to RB, and the ULoP line chart, and illustrates our approach
of visual data analysis.

We furthermore use confidence intervals (CI) for our analysis, fol-
lowing APA’s up-to-date recommendation for statistical analyses [1].
In the following, we use M for the sample mean as well as CI for the
confidence interval defined by M± Zscore ∗ SD/

√
n [15]. We define

Zscore = 1.96, representing the commonly used CI = 95%.

5 RESULTS

We report results for the visual-interactive user experiment structured
in three different parts. In Section 5.1, we take the factors of varying
complexities of labeling tasks and different VIL-support techniques
into account (PART1). Results of the comparison of single and multiple
instance labeling tasks are presented in Section 5.2 (PART2). Finally,
in Section 5.3, we report insights gained from the observation of partic-
ipants, summative interviews, and informal feedback (PART3). Large
figures of all results are provided assupplemental material.

5.1 PART1: Performance Comparison VIL and AL
The questions answered in PART1 are whether or not VIL is able
to compete with state-of-the-art AL strategies in different conditions



Fig. 6: Performance comparison of four VIL-support techniques (or-
ange) with AL strategies (blue), RB (black), and ULoP (green) for a
labeling task with medium difficulty (PART1). All VIL-support tech-
niques have accuracies at least as high as AL and RB in earlier phases
of the process. Convex hulls can compete with the AL performance for
the entire observed process. ULoP (green) substantially outperforms
all remaining techniques.

(RQ1,2,3). To that aim, we investigate the performance of four VIL-
support techniques in combination with three different task complexi-
ties (details about PART1 in Section 4.6).

5.1.1 Performance for Different Task Complexities

First, we assess the dependency of the labeling performance on the
complexity of the labeling settings. Three different task complexities
easy, medium, and difficult are evaluated and compared.

Results Figure 4 shows the overall results of the performance
comparison for easy (left), medium, and difficult (right) labeling tasks.
In general, the performance of virtually any strategy increases in the
course of the labeling process. Please note that the performances of
the four VIL techniques are aggregated for every complexity level.
The results show that from easy to difficult the accuracy decreases
substantially for all strategies, i.e., we infer that the complexity level
has an influence on the labeling performance. A more detailed analysis
reveals that the performance of VIL is at least as good as AL for all
three task complexities (RQ1,2). For easy tasks VIL outperforms AL
considerably. In early phases, the accuracy curve is very steep and
converges at higher levels. Using iteration 20 as an example, M =
0.96 (CI = [0.95 – 0.98]) for VIL whereas the performance of AL
only reaches M = 0.85 (CI = [0.82 – 0.88]). One explanation may be
that VIL enables faster capturing instances of all classes. This can be
seen as an indicator that human intuition (in combination with data
visualization) may be useful to solve the cold start problem of AL
approaches (AL even performs weaker than RB at start). The results of
the performance comparison for medium and difficult task complexities
are similar. VIL performs slightly better than AL, RB can compete with
AL. In the difficult case after 20 iterations, VIL performs with M = 0.42
(CI = [0.38 – 0.45]) in contrast to AL (M = 0.35, CI = [0.33 – 0.38]).
However, we ascertain that VIL shows higher variations (Figure 4
center, right). We draw the conclusion that, with VIL, human control
over the labeling process is beneficial, but may also lead to weaker
performances for individuals. In general, we ascertain that VIL can
compete with the remaining strategies (RQ1), even for complex labeling
settings (RQ2). The comparison of all strategies with the results of the
ULoP indicates remaining potential. Even for the difficult condition,
ULoP still achieved outstanding performance (M = 0.70 at iteration 20).

5.1.2 Comparison of VIL-Support Techniques

The second factor in PART1 was the comparison of the 4 VIL-support
techniques. The core question is whether VIL-support techniques per-
form differently (RQ3). According to the 4×3 experiment conditions,
we compare VIL-support techniques for the easy, medium, and difficult
complexity level, Section 4.6 provides additional details.

Fig. 7: Performance comparison of four VIL-support techniques (or-
ange) with AL strategies (blue), RB (black), and ULoP (green) for a
difficult labeling task (PART2). For difficult labeling tasks, the per-
formance of AL and VIL is more similar, with VIL having slight
advantages over AL. RB performs surprisingly well. All VIL-support
techniques have a good starting performance. Convex Hulls and Butter-
fly Plots perform well over the entire labeling process.

Results In Figure 5, results of the four VIL-support techniques can
be compared for the easy task. Thus, we now explicitly distinguish the
performances of different VIL-support techniques. One finding that can
be identified without effort is the substantially better performance of all
four candidates compared to AL. Compared to results of more difficult
tasks VIL strategies are closer to the ULoP. We assume that, given an
easy task, a clear separation of classes in 2D eases the identification of
instances, leading to high accuracies very quickly. We conclude that
differences between the four VIL-support techniques are negligible.

Figure 6 shows the performances of the VIL-support techniques
for the medium task complexity. Again, it becomes apparent that VIL-
techniques are able to compete with AL strategies (RQ1), particularly
at the start of the process. In early phases of the labeling process (e.g.,
iteration 10), we assess the best performance for the Class Colors
technique (M = 0.73, CI = [0.71 – 0.75] in contrast to the 2D Colormap
(M = 0.68, CI = [0.64 – 0.73]), Convex Hull (M = 0.70, CI = [0.65 –
0.74]), and the Butterfly Plot (M = 0.70, CI = [0.66 – 0.73]). Another
insight for late iterations is the good performance of the three techniques
displaying classifier information (Class Colors M = 0.83, Convex Hull
M = 0.85 and Butterfly Plot M = 0.84), the Convex Hull approach
performs best and keeps track with AL (M = 0.85) (RQ1,3). In turn, the
2D Colormap approach cannot compete with the remaining techniques
(M = 0.82). Finally, the ULoP outperforms all remaining strategies
substantially which shows that there is still room for improvements.

The situation is similar for the difficult labeling task (see Figure 7).
All VIL-support techniques perform comparatively well at the begin-
ning. Here, the 2D Colormap (no model information provided) slightly
outperforms the remaining techniques (RQ3). In the course of the
process, the two shape-based techniques (Convex Hull M=0.61 and
Butterfly Plot M=0.60) achieve the highest accuracies. Overall, the VIL
strategies perform at least as good as AL and RB, AL again seems
to perform weaker than RB at first. One explanation is that AL has
problems to capture representatives of all classes (cold start problem)
which is may be more severe for a complex tasks. To further investigate
the cold start problem, we refer the reader to Figure 3 which compares
the accuracy of AL and RB for substantially more iterations. Here,
we identify a break-even point at approximately 50 instances where
AL starts to outperform RB. The observation strengthens the rationale
to combine the strengths of AL and VIL, using the latter for entirely
unlabeled data. One final insight gathered from Figure 7 is the again
outstanding performance of ULoP.

In summary, we identified that VIL can compete with AL (RQ1)
especially in early phases of the process. In addition, we ascertain a
slight tendency of VIL-support techniques with classifier visualization
to outperform the 2D Colormap technique (RQ3).



Fig. 8: Comparison of AL with VIL in combination with labeling single
and multiple instances at once (PART2). The duration of the labeling
process is mapped to the x-axis ([ms] - 300k = 5 min). Left: AL achieves
higher accuracies (y-axis) than VIL for both single and multi-instance
labeling. Right: the number of labeled instances is mapped to the y-
axis. Assigning a label for multiple instances at once works particularly
fast for VIL. In 5 minutes users were able to label approximately 450
instances on average.

5.2 PART2: Labeling Single vs. Multiple Instances
PART2 considered the question of whether the process can be made
more efficient when multiple instances are labeled at once. In particular,
we were interested whether or not VIL can make the process more
efficient (RQ4). The four candidate interfaces for PART2 are AL single
labeling, AL multi labeling, VIL single labeling, and VIL multi label-
ing, Section 4.7 provides additional information about the experiment
design.

Analysis of Effectiveness We analyze the progression of accu-
racy of the four candidates measured over time (see Figure 8, left). The
duration (300,000 ms) of the labeling process is mapped to the x-axis.
The analysis of the accuracy (mapped to the y-axis) provides three in-
sights. First, in the beginning of the process the four candidates perform
fairly balanced. Second, both AL strategies (blue colors) achieve higher
accuracies in less time in the remaining phase of the process. Third, la-
beling multiple instances at once improves the efficiency. This accounts
for AL as well as for VIL. Overall, with respect to the accuracy over
time, VIL cannot compete with AL. One explanation of the lower accu-
racy values is associated with an observation we made several times in
the study. Selecting and filtering a large number of identical instances
requires a considerable portion of time. Thus, many participants did not
label all of the classes (leading to weaker accuracies), as this was not
subject of the task introduction.

Analysis of Efficiency We analyze the number of labeled in-
stances over time for all four candidates (see Figure 8, right). We
make two observations. First, the efficiency of VIL multi labeling is
considerably better than the three remaining candidates. Thus, labeling
multiple instances at once with a VIL-based interface can substantially
increase the efficiency of the labeling process (RQ4). We observed that
users partially labeled 50 or more instances at once leading to a mas-
sive increase of efficiency compared to the other interfaces. Even the
minimum performance of all users is considerably better than the maxi-
mum performance of any user using the remaining interfaces. Second,
both AL-based candidates outperform VIL single labeling. This can be
explained with the overhead of VIL approaches requiring additional
exploration, identification, and selection of single candidate instances.

5.3 PART3 User Strategies and User Feedback
In PART3, we focus on the question whether or not users develop
strategies for the selection of instances in VIL (RQ5) and if so, how
these strategies relate to VIL-support techniques and AL strategies
(RQ6). The experimental setup of PART3 follows the description in
Section 4.8.

5.3.1 User Strategies for Labeling Data
The observation of participants during PART1-2 revealed a series of user
strategies for selecting labeling candidates (RQ5). We classified these

strategies into data-centered and model-centered strategies in a joint
discourse of the authors. Data-centered strategies focus on characteris-
tics of data instances (elementary or synoptic level). Model-centered
strategies are based on visual feedback of the current state of the classi-
fication model.

Data-Centered Strategies Dense Areas First: Collections of
instances that form dense clusters are preferred during the labeling
process. This supports the classification performance by learning the
information for many instances at once. Centroid First: Special type
of Dense Areas First. Instances that are at the center of clusters are
labeled first, in order to assign labels to instances that are representative
for a cluster. Equal Spread: The user tries to assign labels to instances
that are well distributed (in 2D), to make sure that there are no areas
in the original (high-dimensional) space that do not contain labeled
instances. Cluster Borders: Instances that are at the border between
two clusters are labeled, in order to give the classifier information
that helps to better separate the clusters. Outliers: Outliers of the
data set are labeled explicitly, in order to allow the classifier to learn
about the range of instances that belong to one class. Ideal Label: The
user only assigns labels to the instances that are ideal candidates or
representatives of the respective class. The motivation for some users
applying this strategy was based on data-semantical reasons.

Model-Centered Strategies Class Distribution Minimization:
The spread of a class in the 2D representation (e.g., represented with
a convex hull) is to be minimized. Class Borders: The user tries to
achieve clearly separated borders between classes based on the visual
feedback on spatial class distribution (e.g. based on the size of the con-
vex hull). Class Intersection: The labeling process aims at minimizing
possible ambiguities in the intersection between classes (e.g. depicted
with overlaps of convex hulls). Class Outliers: Users label those in-
stances that are assigned to a class but are far away from the class center
of gravity. Referring to the convex hull, this can be identified with a
spike.

5.3.2 Subjective User Feedback
Finally, we report on the subjective feedback we received in the con-
cluding interviews and questionnaire. Table 1 provides an overview of
average scores (5-point Likert scale, with 5 being ‘very good’). The
subjectively preferred techniques are Convex Hulls and Class Colors
(RQ6). Overall, information about the state of the classification model
(Class Color, Convex Hulls, Butterfly Plot) was welcomed by most
participants. We identified a shift in the labeling strategies towards
model-centered characteristics, such as class distributions and class
outliers, provoked by the additional visual encodings. One potential
drawback of the shift towards model-centered information is neglecting
data-centered properties as revealed by dimensionality reduction in
combination with scatterplots.

In the interviews, we also received rich user feedback on the us-
ability of the different VIL-support techniques (RQ6). 2D Colormap:
Users remarked the disadvantage of missing model information. In
turn, the simplicity of the interface was welcomed for the complex
labeling task. Class Color: Users welcomed the direct feedback about
the current state of the model by means of colors. For complex labeling
tasks with many colors, users had problems in the distinction of some
(categorical) colors. Convex Hulls: Many users liked the combination
of color and shape-based information about the current state of the
model. The distribution of classes in the 2D representation was easily
comprehensible. However, overlays of many semi-transparent layers
caused some problems in distinguishing classes. Butterfly Plots: The
Butterfly plot obtained the most user feedback. Positive aspects are the

2D Col-
ormap

Class Col-
ors

Convex
Hulls

Butterfly
Plot

Score 1.7 4.3 4.4 3,7

Table 1: User preferences on VIL-support techniques in PART1 and
PART2. Convex Hulls achieved the highest scores, followed by Class
Colors.
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Fig. 9: Usefulness of VIL-support techniques for ten identified user
strategies for labeling data. The strategies can be partitioned into data-
centered and model-centered strategies. User preference is depicted
with color values from gray (low) to black (high).

depicted information about the model including an indication of class
outliers and the class centers, as well as the more compact fill area
compared to convex hulls. However, many users were confused by the
non-regular shapes that distracted them from the underlying data.

6 DISCUSSION AND FUTURE WORK

We conducted an experiment with three parts to assess the performance
of VIL in comparison to AL. The results revealed several insights about
the applicability of VIL-support techniques, but also shed light on cur-
rent limitations. Based on the experiment parts, we experienced a series
of user strategies for selecting data for labeling which provide interest-
ing stimuli for future research. In the following, we highlight lessons
learned from the experiment, discuss insights from the interviews, and
point out future work.

6.1 Dimensionality Reduction
The interviews revealed that every user decided to conduct large parts
of PART1 and PART2 with t-SNE as dimensionality reduction tech-
nique. Virtually all participants only used the remaining techniques for
validation purposes, to have a second perspective. By design, t-SNE
was the default technique and we cannot completely exclude that this
may have caused a bias. Still, we can confirm that users unanimously
argued that they sought for a technique that separates cluster structures
best, according to the study conducted by Lewis et al. [34] showing
that users think seeing a cluster is a sign of quality of the method. One
drawback of the unanimous vote is that we cannot make statements
about the performance of alternative techniques for dimensionality re-
duction. A systematic study on the benefit of different dimensionality
reduction techniques on the labeling process is an open topic and sub-
ject of future work. Another point of discussion is class separability
which became more difficult for complex labeling tasks in PART1.
For strongly overlapping classes dimensionality reduction may not
be the best choice, as the individual classes may not separate well in
the resulting 2D mapping. One reason for this is that dimensionality
reduction techniques do not consider class information. An alternative
solution may be the use of Linear Discriminant Analysis (LDA) [20]
or other supervised methods [69] for dimensionality reduction. These
approaches take class information into account and thus may enable a
more appropriate dimensionality reduction and visualization of the data.

6.2 Analytical Guidance
Our work fundamentally deals with the question on how to guide users,
an important research challenge in visualization [26]. Considering data
or model-centered perspectives, guidance can be achieved by different
strategies coming either from AL (e.g. highlighting instances near deci-
sion boundaries) or VIL (e.g. visualizing cluster centroids). Designing
optimal guidance models, however, is a challenging direction for future
research. Summarizing PART3, we have identified three promising
approaches for guidance that we plan to implement and evaluate in
the future: (i) providing instant feedback on the (estimated) benefit of
labeling a certain instance, plus the visualization of the development

of accuracy over time; (ii) guiding the user in a way that the distri-
bution of labels across classes becomes balanced to avoid biasing the
learning algorithm towards a certain class; (iii) leveraging analytical
class separability measures (e.g. Sips et al. [63]) to adaptively select a
suitable visualization or to continuously select the best dimensionality
reduction technique for the given dataset during the labeling process
(i.e. the one which maximizes the class separability). A final issue of
discussion is the study design with conditions building up on each other.
While we observed a positive effect towards user guidance, we cannot
preclude a certain bias from the VIL strategies in predefined order. An
investigation of this potential bias is a subject of future work.

6.3 User-based Labeling Strategies vs. Active Learning
One goal of our experiment was the identification of 10 VIL strategies
(cf. Section 5.3.1) (RQ5). A question that arises in this context is which
similarities and differences between VIL and AL strategies exist and
whether one approach can learn from the other. We observe for example
that many VIL strategies have a direct counter part in AL, e.g. “Density
First” corresponds to density-based sampling and “class intersection” is
a variant of uncertainty sampling. Other strategies, however, are special
to VIL, e.g., “Equal Spread” and “Outliers”. Learning about VIL strate-
gies developed by users may be a valuable source of information for
novel AL strategies. Conversely, AL strategies may inspire novel visual
guidance approaches for VIL. Furthermore, the list of VIL strategies
may extend in future investigations and represents a topic for further
investigation.

6.4 Upper Limit of Performance
The ULoP was much better than the AL and VIL strategies in all results.
This shows that in both domains there is still potential for improvements
which justifies future research. One exception was the easy labeling task
examined in PART1 where some users achieved similar performance
values for some early iterations (cf. Section 5.1). This leads to the
question which guidance strategy best approximates the upper limit.
In this context, it may be interesting to compare concrete candidate
suggestions proposed by the upper limit of performance, those of AL
strategies, and those of users.

6.5 Visual Instance Representation
In this study, we have employed handwritten digits data which is easy
to visualize and self-explanatory as well. In general, proper visual
representations of instances are needed to enable users grasp the data
characteristics [7]. Promising classes of techniques addressing this
challenge are visual identifiers like images of soccer players [3], glyph
designs [8], visualizations showing the feature space [29], or visual-
interactive solutions allowing to grasp detailed information about data
on demand.

7 CONCLUSION

We examined the performance of visual-interactive labeling (VIL)
strategies in comparison to active learning (AL) and random sampling.
The overall objective was to assess whether or not VIL can compete
with AL. We conducted an experiment with three parts, each with focus
on a different aspect. First, we examined four VIL-support visualization
techniques for three different task complexities and identified that con-
vex hulls depicting the current model state are particularly suitable to
support users in labeling data instances. In addition, we ascertained that
all tested VIL-support techniques can compete with the performance of
AL labeling strategies, at least in the examined first 50 labeling itera-
tions where the cold start problem of AL is most severe. Furthermore,
we identified that VIL outperforms AL for easy tasks and can keep up
for more difficult labeling tasks. Second, we assessed the positive effect
of VIL for assigning labels to multiple instances at once. While AL out-
performs VIL with respect to effectiveness, VIL leads to a substantial
increase in efficiency. Third, a reflection of the experiment including
observation and interviews of participants revealed ten user-based data
selection strategies that may form a promising basis for future VIL and
AL approaches, e.g., to incorporate analytical guidance in the labeling
process.
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