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Abstract

This document contains supplemental material to the work presented in the main manuscript. Overall, we provide four sections.
First, we present in-depth details about the formalization of the building blocks used to create the user strategies in Section 1.
Second, we provide details about the characteristics of the four data sets used in the performance analysis experiment in
Section 2. In Section 3 and Section 4, we show detailed information about observations made in the two experiment parts for

every data set, leading to eight figures and paragraphs of results.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Line and

curve generation

1. Formalization of Building Blocks

We identified 11 low-level building blocks that are repeatedly used
to create the higher-level user strategies. While the paper contains
an introduction to the building blocks as well as descriptions and
abstract formalizations, this document provides in-depth informa-
tion about formalization details and default parameters. The for-
malizations cover techniques from data mining, machine learning,
statistics, and information retrieval. Let V. be the set of all candi-
date feature vectors.

Let V; be the set of all training feature vectors. V. =V.UV;. d :
V xV — R is called distance function. In all of the building blocks
T CV.,SCV andx €V, are arbitrarily chosen.

Nearest Spatial Neighbors (NSN) Algorithm that retrieves in-
stances in the vicinity of a focused instance. Can be used to assess
characteristics of local structures in the data set. Can be imple-
mented based on k (number of NN, default) or based on an orbit
epsilon.

Let vq,...,vs be an ordering of all v € § with x ¢ S, such that
d(x,vi) < ...<d(x,vn). kNN (x,S,k) = {vi,..., v }

Spatial Balancing (SPB) Component that tries to balance the
distribution of instances across the entire data set emphasizing
undiscovered areas.

B(x) = minsey, d(x,1)
SPB(V;) = argmaxcy, B(x)

Clustering (CLU) Assigns similar instances to groups. Can be
used to select instances in the center of dense areas, border areas,
or areas of intersecting clusters.

CLU (V) = argmin feost ({C1,...,Cn}) such that
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Vx € Ve :3Cy : x € Cy and
VxeVe:(x€GNAXxEC) = k=1

Assume k-means is used as clustering algorithm. Then we have

n
feost({Crs,Gn}) = X X |Jx,mil|2
i=1xeC;
Y x
_ x€G
= e

Density Estimation (DEN) Identifies dense areas in the data set.
Can be used to select common rather than special or unique obser-
vations.

DEN((x) = scorepgpy (x)
An exemplary implementation of scorepgn (x) is

d(x,v)*
k

scorepeN (X) = — Lo kNN (x,V. k)

Outlier Detection (OUT) Identifies instances in sparsely popu-
lated regions. Can be used to select instances with special or even
unique characteristics.

OUT(T) = {scoreoyr(v,T) >t :v €T}, t € Ris a threshold.
One possible definition of scorepyr (v,T) is
scoreoyr (v,T) = —DEN(v)

Compactness Estimation (CE) Identifies the compactness of
groups of instances (clusters/classes). Can be used to prefer either
compact or diverse distributions of instances in clusters/classes.
CE(T) = scorecg(T)

Assume the Variance is used to rate the compactness of Clusters.
Then we have
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Figure 1: MNIST data set represented with four different dimen-
sionality reduction techniques. t-SNE is enlarged showing that the
true labels of the instances build a series of well-separated cluster
patterns while at the center many classes are intersecting. Look-
ing at the PCA result (top left) reveals that MNIST hardly contains
outliers.

scorecg(T) = % Y. (d(x,m;))? , where m; is the average of the
x€T
cluster.

Ideal Instance Identification (III) Pre-defined set of instances
with perfectly exposed characteristics for a given label. Highly as-
sociated to semantical characteristics of user preferences.

1, if x is considered ideal by the user

Ux) = :

0, otherwise

HI(x) = min,e (yey.u =1} d(x,u)

Class Likelihood (CL) represents the likelihoods / provided by
a given (pre-trained) classifier f for an unlabeled instance x as:

CL(x) = f(x) = I, with I € RI"| such that

0<l<lforalli=1,..,|Y|and
Y|

YiLi=1

i=1

Class Prediction (CP) Prediction of a classifier applied on ev-
ery candidate instance, based on the class likelihood. To achieve
robust predictions we employ the results of a probabilistic en-
semble classifier. Classifiers included in the ensemble are Naive
Bayes [DHS*73], Random Forest [Bre01] (RF), Multilayer Percep-
tron [HSW89] (MP), Support Vector Machine [CV95] (SVM).

CP(x) =y =argmax(CL(x)),y €Y

Local Class Diversity (LCD) Assessment of the diversity of a
predicted class distribution in the vicinity of an instance.

LCD(x) =div(p), p € RI"I such that p; = p(x,yi)

| {kaNN(x,VC],(k) :CP(v)=y;}|

p(x,yi) =

= 3| PEXPCA

Figure 2: IRIS data set represented with four different dimension-
ality reduction techniques. PCA depicts this well-known data set
in a familiar way as seen in a series of images and related works.
Class 1 is well separated from the intersecting classes 2 and 3.

Assume the entropy is used as a diversity measure. The we have

Y|
div(p) = ¥ —pilog(pi)

Local Class Separation (LCS) Assessment of the presence of
classes in the vicinity of an instance (assuming that classes are not
necessarily disjoint). Inspired by cluster validity measures. Mea-
sure of separation for a set of nearest neighbors of every class. Can
be used to identify regions with high class uncertainties.

LCS(x) = fyep(C,....Ca) with
Ci =kNN(x,{v eV :CP(v) =y;},k) fori=1,...,|Y]

where fsep(Cy,...,Cp) is a separation scoring function. Such
a scoring function could be based on Dunn-like indices [?], the
Davies-Bouldin Index [?], or Silhouettes [?], for example.

2. Data Set Characteristics

The concrete results of the experiment depend on the data set of
choice. Thus, we need to compare the strategies on the basis of dif-
ferent data sets. In our case, we selected data sets according to the
following considerations: First, the data set should have numerical
data/features and contain a class variable (binary or categorical).
Second, the size of the data should include at least several thou-
sand instances. This allows using hundreds of instances for can-
didates and thousands of instances for testing. Third, the data set
should be publicly available. Fourth, the data sets should be intu-
itive, well-known, or even heavily applied in practice. Finally, we
aimed at covering a broad range of data-centered characteristics,
such as (1) binary classification versus multi-class classification,
(2) equally-balanced label distribution versus unbalanced distribu-
tion, (3) proof of concept versus real-world complexity, as well as
(4) being marked with few versus many outliers.
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Figure 3: GENDER voice data set represented with four different
dimensionality reduction techniques. PCA is enlarged depicting a
series of outliers of both classes (f, m) aligned along two common
axis (west, on towards north one towards south-east). Outliers may
hamper the results of classifiers, building blocks, and user strate-
gies as well. In addition, it is difficult to identify patterns such as
clusters or well separated class areas. In fact, t-SNE reveals cluster
structures.

2.1. MNIST Data Set

The MNIST data set [LBBH98] perfectly meets all requirements to
the data. It consists of thousands of images showing handwritten
digits. Each raw digit is represented by a 28x28 image yielding a
784 dimensional vector in the original space. For faster classifica-
tion, we use a descriptor that extracts slices in horizontal, vertical,
and diagonal direction. Overall, the feature vector contains 42 nu-
merical dimensions.

Visual Analysis of the structure of the MNIST data set is pro-
vided in Figure 1. We assess a series of visual patterns as well as a
low degree of severe outliers.

2.2. IRIS Data Set

The IRIS data set [Lic13] does not fulfill the criterion of thou-
sands of instances, rather it consists of three classes with 50 in-
stances each. However, we consider /RIS valuable as an intuitive,
frequently used data set to proof the concept. The four dimensions
are used as numerical features.

Visual Analysis of the structure of the IRIS data set is provided
in Figure 2. PCA reveals the typical appearance of IRIS as pre-
sented in many works before. The data set is very small, contains
two intersected classes, and virtually no outliers.

2.3. GENDER VOICE Data Set

The Gender Recognition by Voice data set [Bec16] contains acous-
tic properties of the voice and speech to identify the gender of
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Figure 4: FRAUD data set represented with four different dimen-
sionality reduction techniques. PCA is enlarged depicting a series
of outliers associated to class 1 (fraud) sparse distributed in the 2D
embedding. Outliers may hamper the results of classifiers, building
blocks, and user strategies as well. In turn, class 0 (no fraud) seems
to build a compact cluster.

speaker. This data set consists of 3,168 instances which are pre-
processed by acoustic analysis with an analyzed frequency range
of 0-280 Hz. The outcome is a 21 dimensional numerical vector of
acoustic properties for each instance. The data set contains a con-
siderable amount of outliers.

Visual Analysis of the structure of the GENDER voice data set is
provided in Figure 3. PCA reveals that the data set contains a series
of outliers that may have an influence on the performance of user
strategies.

2.4. FRAUD Detection Data Set

The Credit Card FRAUD data set [PCJB15] contains transactions
of credit cards recorded in Europe in two days in September
2013. Overall, 492 frauds are included in the 284,807 transactions
(0.172%). As such, the data set can be used to assess an unbalanced
binary classification problem. The data consists of 28 numerical
features as a result of a PCA [Jol02] processing step. The data set
contains a considerable amount of outliers.

We shed light on the unbalanced label distribution as an impor-
tant characteristic for the performance of data-centered strategies.
Figure 4 provides an overview of the data set. Instances that con-
tain label O (no fraud) occur ten times as often than labels with 1
(fraud). Figures 5 and 6 provide evidence that the performance of
clustering for the labeling process is harmed by an unbalanced label
distribution.

Visual Analysis of the structure of the FRAUD data set is pro-
vided in Figure 3. PCA reveals that the data set contains a series
of outliers of class 1 (fraud) that may have an influence on the per-



SUBMISSION ID 1249 / Supplemental Materials

TsneBsjéation

Figure 5: FRAUD data set represented with t-SNE. The result of
building block Clustering is shown, the two clusters are depicted
with blue and green colors. By looking at the true class labels (0
and 1), it becomes apparent why this result does not contribute to
the labeling process: the clustering result does not reflect the dis-
tribution of classes. Unbalanced data sets seem to hamper the per-
formance of Centroids First and other density-centered strategies.

formance of user strategies. Most instances of class O are allocated
west in a compact way.

3. Results for RQ,: Analysis of the Bootstrap Problem

The very first phase of the labeling phase is often associated with
bootstrap problems of model-based techniques. In the following,
we list a series of observations for every data set with an emphasis
on the bootstrap problem and strategies that may be able to trackle
the problem. Generalizable insights are also presented in the main

paper.

3.1. MNIST Data Set

1. As expected, ULoP performs best. Interestingly, its performance
is decreasing after 10 iterations (when the bootstrap phase is fin-
ished). On average, it takes 7 more iterations to surpass the ac-
curacy level reached after 10 iterations. This might be caused
by the fact that some classes are labeled twice after 11 to 17 it-
erations, while others are only labeled only once. As such, this
over-representation of some classes seems to decrease the per-
formance. This observation is generalizable for our ULoP im-
plementation: we executed ULOoP trials as well.

2. Model-based strategies perform worse than Random.

3. Ideal Labels First outperforms all other strategies up to the 20th
iteration. Considering the accuracy integral over all iterations,
this strategy provides the best performance. Ideal Labels First is
also the strategy which needs the fewest iterations for visiting
labeling all classes (see the boxplot visualization).

4. Two ALs overtake the user strategies after 40 iteration. Thus, we

ClassicalSealingMDSF

Figure 6: Repetition of the analysis presented in Figure 5. In con-
trast to the latter analysis, we use a balanced set of instances (for
hypothesis testing; not part of the experiments in the main paper).
Now, the two clusters are well-separated and reflect the true class
distribution. We infer that unbalanced label distributions harm the
performance of data-centered building blocks such as Clustering
and thus, of the Centroids First strategy.

identify sort of a sweet spot between data-centered strategies and
ALs.

In general, data-based strategies perform best, followed by ALs
and model-based strategies.

3.2. IRIS Data Set

1. The performance chart of most strategies follows a similar pat-
tern: A steep increase in the beginning, later stagnation on a high
level, respectively.

2. Ideal Labels First is dominating in the beginning, up to the 8th it-
eration. After that, Outliers and Cluster Borders provide the best
performance.

3. The performance of model-based strategies varies a lot. While
the Class Borders Refinement strategy has a very poor perfor-
mance, the Class Outlier Strategy works quite well.

In summary, some data-based strategies have a particularly good
start, are then overtaken by outlier- and model-based strategies,
which are finally overtaken by most ALs. The small size of the data
set may add to the observation that outlier strategies performed well
(which was exceptional with this data set).

3.3. GENDER VOICE Data Set

1. ALs performance lies in a narrow corridor. Relative to user
strategies and compared to their performance on other data sets,
ALs perform well on this data set.

2. Centroids First provides the best performance up to the break-
even point at the 15th iteration, afterwards it gets surpassed by
most of the ALs.

(© 2018 The Author(s)
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Figure 7: Average performance of strategies in the very first 50 iterations of the labeling process (MNIST data set). Most data-based user
strategies perform particularly well in the very first iterations (ldeal Labels First, Centroids First, Dense Areas First). Most model-based
user strategies perform below average. Focusing on the distinction between density-based and outlier-based strategies, the density-based
perform particularly well while outlier-based strategies perform poor. The performance of ALs is unremarkable at start, but increases for
more iterations. Boxplots at the bottom show the iterations when strategies produced at least one label for each class. The Ideal Labels First
strategy visits all class labels remarkably early (all 10 labels in 11 iterations on average). Model-based strategies require more iterations
to see each label at least one time. As a general rule, strategies with good accuracies also visited every class label earlier. We infer that

data-centered strategies are a means to tackle the bootstrap problem.

w

. Up to the 10th iteration, only two strategies beat Random.
. The performance of outlier strategies on this data set is especially

poor.

. In the beginning, there is a huge performance gap between ULoP

and the remaining strategies. This gap becomes smaller with
with more iterations.

To sum up, Centroids First shows a good performance in the

beginning. Later, ALs are dominating.

3.4. FRAUD DETECTION Data Set

1.

Most of the user strategies experience huge accuracy changes
between two consecutive iterations. ALs do not show these vari-
ations. We assume that the strategies may escape jump between
recurring local patterns.

. Cluster Borders First performs well over the first 5 iterations.

However, the performance does not improve anymore after this
initial phase. ALs deliver the best performance later on, almost
reaching the results of ULoP.

. Density-centered strategies (Dense Areas First, Centroids First)

perform very poor on this data set. One explanation is the un-
balance of this data set (ratio 10:1). We expect many dense areas
within the dominating class. To prove this, we performed a visual
analysis of the data set shown in Section 2.4.

Overall, all ALs provide good results on this data set. Cluster

Borders First performs very well early on, but stagnates afterwards.
Class Intersection is again the best model-based user strategy.

(© 2018 The Author(s)
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4. Results for RQ,: Performance Comparison after Bootstrap

In the following, we list a series of observations for every data set.
Generalizable insights are also presented in the main paper.

4.1. MNIST Data Set (Figure 11)

1

. ULoP outperforms every strategy by far. After about 20 itera-

tions, the gradient declines a little bit, but the accuracy increases
steadily.

. From the set of strategies, the data-based user strategies yield the

best results in the very first 30 iterations, particularly Centroids
First, Dense Areas First, and Ideal Labels First. All these strate-
gies belong to the strategies preferring clusters and dense areas.
So we may conclude that looking for such patterns in the early
iterations leads to a good basis — even after having resolved the
bootstrap problem.

. As opposed to this, AL strategies start quite slow and do not

compete with the data-based approaches in the early stages. But
they increase very constantly and outperform those strategies
since about iteration 35 (interesting sweet spot).

. Model-based user strategies perform below Random. Only Class

Intersection can compete, the remaining model-based strategies
come in last.

To sum up, no strategy can keep up with ULoP, but strategies

with a bias to centroids in clusters and dense areas in general are
the most promising attempts on this data set. MNIST is a multi-
class data set, so we may conclude that these approaches are the
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Figure 8: Average performance of strategies in the very first 50 iterations of the labeling process (IRIS data set). Most data-based user
strategies perform well in very early iterations, only Cluster Borders First and Outliers First seem to be less appropriate to tackle the
bootstrap problem. Most model-based user strategies perform at the pace of Random and ALs at start. In performance of ALs is unremarkable
at start, but increases for more iterations. An interesting finding is the decrease in performance of Centroid First and Dense Areas First,
beginning with the 25th iteration; we assume that the very small data set only requires/contains few dense instances per class. Boxplots at
the bottom show the iterations when strategies produced at least one label for each class. Data-centered user strategies consistently perform
better than Random and ALs. The model-based Class Border strategy performs considerably weak. As a rule, strategies with good accuracies
seem to label all classes earlier. We infer that data-centered user strategies are a means to tackle the bootstrap problem.

best way to handle such data sets. AL strategies need some time to
master the bootstrap problem. The typically quite specific queries
of AL seem to be worth not before some iterations are passed. Prior,
more general approaches win the race.

4.2. IRIS Data Set (Figure 12)

1. ULoP again outperforms the remaining strategies, reaching an
accuracy of about 90% already after six iterations.

2. Some data-based strategies perform weak, at start especially
Dense Areas First and Equal Spread. In later iterations, Cen-
troids First and Dense Areas First have a considerable low, losing
accuracy, far below the remaining strategies.

3. AL strategies start well and reach a high level already after about
ten iterations. Model-based user strategies perform on a compa-
rable level.

In summary, all strategies perform quite well and constantly.
Data-based strategies, especially those with a bias to centroids and
dense areas, can not keep up with the remaining strategies. IRIS is
a very small data set, so we may conclude that those more general
approaches do not lead to adequate results since anomalies and out-
liers have a higher impact on the performance in such data sets, as
well as every individual false classified instance.

4.3. GENDER VOICE Data Set (Figure 13)

1. ULoP’s performance curve is very smooth, continually increas-
ing. The performance curves of AL strategies behave similar to
ULoP, though on a considerably lower level.

2. Class Intersection is the only model-based user strategy that can
compete with AL strategies. Especially Class Distribution Min-
imization and Class Outliers Labeling perform very weak and
unsteadily.

3. Dense Areas First, Equal Spread, and Equal Spread start strong
at first, but are not able to keep pace with AL strategies between
10th and 20th iteration. Again, we identify a sweet spot when AL
starts to outperform data-based strategies. Centroids First per-
forms below Random, almost not at all increasing between 10th
and 20th iteration.

To conclude, GENDER VOICE is a two-class data set with a
considerably increased percentage amount of outliers in relation
to the other data sets. This fact seems to cause difficulties in data-
based and cluster-based strategies like Centroids First. These strate-
gies benefit from more separable data sets, whereas they struggle
with classes consisting of several clusters.

4.4. FRAUD DETECTION Data Set (Figure 14)

1. ULoP again outperforms all remaining strategies, followed by
AL strategies, Class Borders, and Class Intersection.

2. Ideal Label strategy starts similarly strong, but can not keep its
level after 10 iterations.

(© 2018 The Author(s)
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Figure 9: Average performance of strategies in the very first 50 iterations of the labeling process (GENDER VOICE data set). The Dense
Areas First strategy considerably outperforms the remaining strategies in early iterations, followed by Ideal Labels First and Equal Spread.
Most model-based user strategies perform unremarkable in early iterations. The Centroids First strategy shows the weakest score; In-depth
analysis revealed that the data set consists a reasonable number of outliers which might have caused problems to the Custering building
block. The boxplots at the bottom (showing in each iteration every class label was at least seen on time) shows that Cluster Borders and the
Outliers Strategy perform worst. Outlier-based strategies seem to be no means to address the bootstrap problem.

3. Class Distribution makes a jump in the performance after the
23th iteration; one explanation may be the escape from some
local pattern. In any case, this indicates that some strategies es-
tablish a general order of instance selection, regardless the ran-
domized starting conditions.

4. Equal Spread, Dense Areas First, and Centroids First perform
distinctly below Random, suffering some heavy losses during
the labeling process (particularly Dense Areas First).

5. The Random baseline on this data set works very weak in rela-
tion to previous data sets.

Fraud Detection incorporates an interesting structure, consisting
of one highly overweight class and a small class, containing some
greatly outlying instances. This special consistency may be the rea-
son for the hampering Random strategy since its working mecha-
nisms are not that complex and elaborated as those of model-based
approaches. The set of centroid-oriented strategies seem to have to
cope with this problem as well. In Section2.4 we conduct a visual
analysis of the unbalanced FRAUD data set. As a result, most dense
regions and clusters are located in the over-represented class O (no
fraud). We conclude that unbalanced class distributions in the data
hamper the performance of many data-centered strategies, and may
require individual treatment.
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Figure 10: Average performance of strategies in the very first 50 iterations of the labeling process (FRAUD data set). Most strategies
achieve a high performance very fast, the difference to the ULoP is comparatively small. However, Dense Areas First and Centroids First
perform particularly weak. Visual analysis of the data set revealed the high number of outliers may have had a considerable influence on
the strategy performances. Interestingly, the outlier strategies (Outliers First, Cluster Borders First) performed well for this outlier-prone
data set. Boxplots at the bottom show the iterations when strategies produced at least one label for each class. Ideal Labels strategy again
performs particularly well, together with the outlier-based strategies (Cluster Borders, Outlier Strategy). The performances of model-based
user strategies are comparable to Random and AL.

Figure 11: Average performance of strategies after the initialization with one labeled instance per class (MNIST data set). The ULoP
still outperforms remaining strategies significantly. Three data-based user strategies (Centroids First, Dense Areas First, Ideal Labels First)
perform considerably better than the remaining strategies. AL strategies start at a moderate level, but achieve particularly well performances
in later phases. Using the afromentioned data-centered user strategies and the ALs, we assess a break-even point in the performances at the
35th iteration. Class Intersection can compete with Random, remaining model-centered strategies perform below Random. In general, data-
centered strategies with a focus on dense patterns/clusters in the data set perform particularly well while model-based user strategies perform
below Random.
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Figure 12: Average performance of strategies after the initialization with one labeled instance per class (IRIS data set). ULoP (Greedy,
green) performs best, followed by a series of strategies including most model-based user strategies. The data-based user strategies Dense
Areas First and Equal Spread perform comparatively weak at start. An interesting observation is the performance of Centroids First and
Dense Areas First, which decreases after 25 iterations. We assume that phenomenon may be due to the very small data size. The remaining
strategies achieve performances over 90%.

Figure 13: Average performance of strategies after the initialization with one labeled instance per class (GENDER VOICE data set). ULoP
shows the best performance by far. Dense Areas First, Ideal Labels First, and Equal Spread start strong, but outperformed by ALs between the
10th and 20st iteration. Class Intersection Min. is the best model-based strategy that almost competes with ALs. The remaining model-based
strategies perform below Random. Centroids First seems to suffer from the existence of outliers showing particularly weak performance.

Figure 14: Average performance of strategies after the initialization with one labeled instance per class (FRAUD detection data set). Class
Intersection and most AL strategies have particularly good performances, followed by Ideal Labels First and Class Borders Refinement.
Dense Areas First, Equal Spread, and Centroids First perform particularly weak, possibly hampered by the series of existing outliers. An
interesting insight is the weak performance of the Random baseline. This may be an indication that the concepts implemented in model-based
strategies are highly valuable compared to Random.
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