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Abstract
Visual quality measures seek to algorithmically imitate human judgments of patterns such as class separability,
correlation, or outliers. In this paper, we propose a novel data-driven framework for evaluating such measures. The
basic idea is to take a large set of visually encoded data, such as scatterplots, with reliable human “ground truth”
judgements, and to use this human-labeled data to learn how well a measure would predict human judgements
on previously unseen data. Measures can then be evaluated based on predictive performance—an approach that
is crucial for generalizing across datasets but has gained little attention so far. To illustrate our framework, we
use it to evaluate 15 state-of-the-art class separation measures, using human ground truth data from 828 class
separation judgments on color-coded 2D scatterplots.

Categories and Subject Descriptors (according to ACM CCS): H.5.0 [Information Interfaces and Presentation]:
General

1. Introduction

The general idea behind visual quality measures is to algo-
rithmically mimic the human perception of patterns such as
class separability, correlation, or outliers. Previous work has
shown that such perception-centered measures have a great
potential for improving visualization tools and guiding hu-
man analysts, for instance, to find good 2D projections in
high-dimensional datasets [SNLH09, TAE∗09, WA05].

We focus on how to evaluate such visual quality mea-
sures. Given their goal of imitating human perception, the
effectiveness of such measures seems to be best evaluated
in comparison to human judgments [BTK11, TBB∗10]. The
most common current form of evaluation is usage examples:
measures are applied to a small set of example datasets, re-
sults are shown in the paper, and the reader is asked to in-
dividually compare their own (human) judgment with the
measure’s results. As an evaluation method, however, usage
examples give only a limited and selected view [IIC∗13].
To overcome these limitations, researchers have suggested
to empirically study quality measures with either controlled
user studies [SNLH09,TBB∗10], or manual qualitative data
studies [STTM12]. However, there seems to be disagreement
on how effective quality measures are, even among this small
set of empirical work. Carefully reading these studies sug-
gests that the different findings might likely stem from the
different methodological approaches. The largest deficiency

of user studies seems to be the small number of datasets
used, which considerably limits the generalizability of find-
ings to other datasets. Qualitative data studies, on the other
hand, include a large number of different datasets, however,
come with a high time cost of manual human judgments.

To overcome these limitations, we propose an alterna-
tive evaluation approach for quality measures, which we call
data-driven evaluation. The basic idea is to take a machine
learning perspective and to automatically compare measures
based on how they would predict human judgements on un-
seen new datasets. To illustrate our ideas, we instantiate the
framework for the evaluation of visual separation measures
that seek to algorithmically quantify the degree of how well
a class is visually separable in scatterplots as shown in Fig-
ure 1. To evaluate such measures, we first take a large set of
color-coded scatterplots with human class separation judg-
ments (“ground truth” data). Assuming these scatterplots to
be a representative sample of the larger “population” of all
scatterplots, we then use bootstrapped classification tech-
niques to predict how well a measure would predict human
class judgments on unseen scatterplots. We argue that this
data-driven approach has several advantages over current ap-
proaches: improving external validity by generalizing over
datasets, putting a stronger focus on actual human class per-
ception, and providing a more automatic way of evaluation
that is, nevertheless, grounded in human perception.
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Figure 1: Examples of two scatterplots, each showing syn-
thetic data with three different classes, color-coded in the
plots. Scatterplot (a) visually separates the classes nicely as
can be seen by a human; an effective visual separation mea-
sure should score high. In scatterplot (b) the classes are not
visually separable; the measure should score low.

We use this approach to evaluate a set of 15 parametric
and non-parametric separation measures from the visual-
ization and machine learning community (Section 4). The
study adds to the current small body of empirical evaluations
of separation measures in visualization. Finally, we discuss
benefits and limitations of our approach, and derive guide-
lines for quality measure evaluation and future work in this
area (Section 5). In summary, our work makes the following
contributions:

• a general framework for data-driven evaluation of quality
measures,
• a concrete instantiation of the framework for evaluating

visual separation measures,
• an empirical study of 15 separation measures using this

framework, and
• a set of guidelines for visual quality measure evaluation.

2. Related Work

The question of how to evaluate visualization research has
gained much attention, and many have argued for a facetted
spectrum of different evaluation methods in visualization re-
search [Car08, IIC∗13, LBI∗12].

In our work, we focus on the evaluation of visual quality
measures (or metrics, or indices). Starting with the venerable
work of Friedman and Tukey on projection pursuit [FT74],
quality measures have been used for various purposes in vi-
sualization, such as supporting human analysts in finding
interesting projections in high-dimensional scatterplot ma-
trices [SNLH09, TAE∗09, WA05], ordering axes in parallel
coordinate plots [DK10, TAE∗09], or guiding data abstrac-
tions [JC08]. Our main focus is on visual separation mea-
sures, a particularly vibrant area of research in visualiza-
tion [AEM11,MMdALO15,STTM12,SNLH09,TAE∗09]. In
our study, we test 15 of these measures.

Quality measures have been evaluated with different goals
and different methodological approaches. Many of the orig-
inal technique papers that proposed quality measures used a
small set of example datasets and showed visual encodings,
such as scatterplots, along with how they were judged by the
measure. Isenberg et al. characterized such usage example-
based evaluations as one of eight typical evaluation strate-
gies in visualization research [IIC∗13]. Sips et al. [SNLH09]
additionally conducted a small user study and found a pos-
itive correlation between scatterplot rankings from humans
and measures. Naturally, evaluations in these original tech-
nique papers were focused on confirmatory evidence, under-
lining the benefits of the proposed measures.

Richer and more objective comparisons are usually done
in pure evaluation papers. Most closely related to our work,
are the studies by Tatu et al. [TBB∗10] and Sedlmair et
al. [STTM12]. Tatu et al. [TBB∗10] conducted a user study
with 15 participants comparing four separation measures on
one dataset. While two measures seemed to work better than
the others, the general conclusion was that all tested mea-
sures performed well. They also proposed a framework for
conducting user studies for quality measure evaluation de-
rived from their study. Sedlmair et al. [STTM12] pointed
out that a major drawback of this framework is that it fo-
cuses on a limited number of example datasets. They there-
fore conducted a qualitative data study to further evaluate the
effectiveness of the two separation measures that performed
best. In a time-intensive process, two expert coders manually
judged the separation effectiveness of these measures on a
broad set of scatterplots. They found a high rate of failure
cases, contradicting previous work. Other studies on related
measures also fall into this dichotomy. Lewis et al. [LAdS12]
conducted a user study on clustering measures (no overlap
between color-coded classes). Wilkinson and Wills [WW08]
conducted a quantitative data study to better understand the
empirical distributions of scagnostic measures without fo-
cusing on human judgments.

Our approach seeks to combine the benefits of both ap-
proaches by using machine learning techniques. In that
sense, our idea is similar to Albuquerque et al.’s of us-
ing psychophysics studies to learn visual quality mea-
sures [AEM11]. However, we use different learning ap-
proaches, different data, and overall follow a different goal,
namely designing a better evaluation framework, not propos-
ing a novel measure. We are also comparing a broader set
of measures than previous studies, including 35 parame-
terized measure instances (derived from 15 different mea-
sures). Previous studies including human judgments tested
seven [LAdS12], four [TBB∗10], two [STTM12] and one
measure respectively [SNLH09].

3. Data-driven Evaluation Approach: Overview

Figure 2 provides a global overview of our data-driven eval-
uation framework for visual quality measures. The major

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



M. Sedlmair & M. Aupetit / Data-driven Evaluation of Visual Quality Measures

evaluate prediction   
of human judgment from 

measure valuehuman class 
separation 
judgments 

(    )

class separation 
measure 
(    ∈     ) 

scatterplots 
(   )

1-vs-all 
scatterplots

Basic Setting Data Aggregation Data Analysis

binary 
classification 

decision 
threshold?

ROC / AUC 

integrate over  
all thresholds

bootstrapping 

do ROC/AUC for 
diff. subsets of  

1-vs-all 
scatterplots: 
{b,c,a, …} 
{c,c,c, …} 
{b,a,a, …} 

……
…

binary human 
“ground truth” 

{sep, non-sep}

sep
TP 
rate

FP ratesep. measure 
e.g. [0, …, 100] 

90

median & 
percentiles 

define visual 
encoding

define task 
(human/measure)

make human/measure data  
comparable

goal: predict

generalize  
to larger 

population of 
datasets

create  
summary 
statistics

representing  
the predictive 
performance 
of measure 

∈ 

a

b

c

a

a

0 100
acb

Figure 2: Overview of our data-driven framework for quality measure evaluation. The overall process is broken down into
three major steps. The gray boxes show the generic steps of our framework, while the white boxes within them describe how we
instantiated the framework for testing class separation measures in color-coded scatterplots.

goal of the framework is to provide researchers with a way
to evaluate how well visual quality measures predict human
judgements.

The general framework consists of three major steps. In
the basic setting step a researcher first needs to define which
visual encoding techniques, human tasks, and which quality
measure she wants to test. For our purpose, we instantiate the
framework with the specific setting of color-coded 2D scat-
terplots and the task/measures of class separability (white
boxes in Figure 2). The general framework (gray boxes),
however, can also be instantiated for other visual encod-
ings, tasks and measures. Before testing human judgement
and measure data, further cleaning and aggregation might
be necessary (data aggregation). In our case, we, for in-
stance, extrapolate multi-class scatterplots into 1-vs-all scat-
terplots with a “target-class” and all other classes merged
into an “other-class”. The most crucial step is the data anal-
ysis step. Here, the aggregated data is used to evaluate how
“good” a measure would predict the human judgment on un-
seen data. For instance, we learn a classifier that predicts a
binary human class judgment (separable or not) from a mea-
sure’s value. Machine learning techniques like bootstrapping
or cross-validation help to generalize the results beyond the
actual sample data—scatterplots in our case—that have been
used in the study. Repeating this process for different qual-
ity measures will then allow to compare their effectiveness
in terms of how well they predict human judgments.

In the following, we focus on our specific instantiation
of this framework for evaluating class separation measures
in color-coded scatterplots, and provide details and formal
definitions for each of these steps. We use bold fonts when
we refer to specific components in Figure 2.

3.1. Basic Setting

Our base setting has three different components:

• The most fundamental component is the set of 2D scatter-
plots S = {s1, . . . ,sS}. We focus on classified data, that

is, each point in a scatterplot has a color that encodes its
unique class membership to a class c ∈ Cs, from a set of k
classes in this scatterplot Cs = {c1, . . . ,ck}. For each class
within a scatterplot, we need two things.

• First, we need human judgments H = {h1, . . . ,hH} on
the visual separability of classes. This judgment could,
for instance, be provided as a natural number quantifying
“how separable” a class is by a human.

• Second, for each class we also have “judgments” from a
set of separation measuresM= {m1, . . . ,mM}.

The goal is to find the optimal measure m? ∈M that most
accurately predicts human judgments on unseen scatterplots.

3.2. Data Aggregation

Given the goal of predicting human class judgements from
separation measures, we first need to ensure that human and
measure judgments are comparable. To do so, we aggregate
the data from the basic setting in two ways: (i) extrapolating
1-vs-all scatterplots, and (ii) aggregating human judgments.

i) Extrapolating 1-vs-all scatterplots: One of our design
goals is to base our framework on the actual low-level per-
ceptual task of visual class separability. Hence, we need
judgments of the separability of actual classes rather than in-
tegrated judgments over all classes of a scatterplot, as com-
monly produced by current state-of-the art separation mea-
sures. Many of the current measures operate on entire scat-
terplots not on separate classes. That is, in multi-class scat-
terplots these measures cannot reliably tell the separability
of actual classes, but only the whole scatterplot.

To avoid internally adapting these measures, we decided
to split each multi-class scatterplot s ∈ S into several 1-
vs-all scatterplots, one for each class ct ∈ Cs. ct is the
“target-class”, and we want to test how separable ct is from
all other classes at once, which thus get combined into the
“other-class” co = Cs\ct . Formally, we refer to these 1-vs-
all scatterplots as our elementary data items ds,ct , which are
uniquely determined by a specific target-class ct ∈ Cs within
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a specific scatterplot s ∈ S. For each of these 1-vs-all scat-
terplots ds,ct , we have a human judgment and a measure
judgment about the separability of class ct . The human judg-
ment of the separability of class ct can be considered as the
ground truth in our setting, which we want to predict using
a separation measure. The assumption then is that we can
use these 1-vs-all judgements as a perceptual surrogate of
class separability of the underlying multi-class scatterplots.
We will further discuss this assumption in Section 5.

ii) Aggregating human judgments: There might be several
human judgments available for the same target-class within
the same scatterplot, either from different humans or from
the same human under different conditions. In this case,
we need to aggregate these judgments in order to come up
with a single certain value reflecting the human judgment
as a ground truth. Moreover, human judgments might be
multi-valued, for instance, based on a Likert scale from 1
to 5 [SMT13]. In our framework, we propose to simply ag-
gregate this multi-valued judgment scale to a binary scale
{0,1}. That is, the human judgement(s) of a target class ct
gets aggregated to either 1-separable (or short sep), or 0-non-
separable (non-sep).

We now have a dataset DS that we can use for further
analysis. Denoting the aggregated human judgement into
sep/non-sep as a function h, we can now formally describe
this dataset as:

DS = {(ds,ct ,h(ds,ct ))|s ∈ S,ct ∈ Cs}

In other words, DS is the set of all 1-vs-all-scatterplots
ds,ct labeled with the aggregated human judgement h(ds,ct )
that tells us how visually separable the class ct was judged by
one or more humans.D1

S denotes the subset that was judged
as 1 (sep),D0

S the subset judged 0 (non-sep). Other data that
comes in this form can directly be plugged into our instanti-
ated framework.

Undoubtedly, this binary differentiation between sep and
non-sep limits the rich human perception into a coarse-
grained dichotomy. However, given that our understand-
ing of perceptual class separability is still at a preliminary
stage [STTM12], it gives us a way to ensure a certain degree
of reliability of human judgment data. We propose this bi-
nary aggregation as a first step and leave more fine-grained
predictions for future work.

3.3. Data Analysis

Now we focus on how we can use this datasetDS to find the
best separation measure.

A binary classification setting: State-of-the-art separa-
tion measures usually give a scalar value. This value is sup-
posed to be monotonically increasing with the actual separa-
tion of the target-class, imitating human perception. There-
fore, a decision threshold has to be set upon this separation

measure in order to decide about the label sep or non-sep of
a class in a scatterplot. Classes whose separation measure is
greater than the threshold value would be assigned the sep
label, and non-sep label if less than the threshold. A separa-
tion measure together with a decision threshold value defines
a classifier. In order to maximize the probability that such a
classifier will predict the correct label of new unseen data
(scatterplots that have not been judged by humans), we need
to identify which separation measure to use and which value
to set the threshold to. This is a standard binary classifica-
tion setting where the predicted label can be positive (sep)
or negative (non-sep) and can be true or false regarding the
correct human ground-truth label to be predicted. There is a
vast literature on this topic (see for instance Bishop [Bis06]).

ROC and AUC analysis: Framing the measure evalua-
tion as a classification problem, we can argue about two pos-
sible kinds of errors: the Type I error or False Positive (FP)
when the classifier predicts the sep label while the human
ground-truth data label is non-sep; and the Type II error or
False Negative (FN) when the outcome from the classifier
is non-sep while it should be sep. The quality of a binary
classifier can be evaluated by counting the amount of True
Positives (TP) against the amount of FP. A good classifier
would have a high number of TPs and a low number of FPs.

The value of the decision threshold, however, greatly im-
pacts the tradeoff between the two types of errors, FPs and
FNs. In the extreme case, if the range of the outcome from
the separation measure is [0,1], setting the decision threshold
to 0 will end up classifying any data as positive. That is, it
would lead to no FNs but a large number of FPs equal to the
number of truly non-sep data all being predicted as sep. Set-
ting the decision threshold to 1 will end up with the exact op-
posite result. Hence, setting the decision threshold depends
strongly on the intended use and on how many FNs or FPs
are acceptable to the user. The left side of Figure 3 visually
illustrates this tradeoff when setting a decision threshold.

To guarantee an objective evaluation, we do not want to
make assumptions on any specific intended use. Therefore,
we vary the threshold from the minimum to the maximum
values of the separation measure. When drawing the TP rate
against the FP rate for all threshold variations, we get the Re-
ceiver Operating Characteristic curve (ROC curve, see Fig-
ure 3, right side) [Faw06]. The closer the curve passes to the
upper left corner and the farther from the diagonal of this di-
agram, the better the classifier is. The Area Under the ROC
curve (AUC)—the integral of the ROC curve on the [0,1]
domain—can then be used as a summary statistics of a clas-
sifier’s quality independent of a specific threshold value.

Formally, the AUCm,h,DS score maps a set of pairs of out-
comes from the separation measure m and the human judg-
ments h relative to the same data {(m(ds,ct ),h(ds,ct ))}DS to
a value within [0,1]. The closer the AUC is to 1, the better the
classifier is. AUCm,h,DS is the probability that the separation
measure m will assign a higher value to a datum randomly
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Figure 3: (left) The horizontal axis represents a continuum
of all possible values a separation measure (m) can take.
Onto this axis, one can now draw all measure values as a
probability density function. Measure values associated with
separable classes in the human ground truth data are drawn
in green. The ones associated with non-separable classes
in red. A classifier is now defined by a decision threshold
(blue dot) acting on this axis. Any data located over the de-
cision threshold is assigned to the positive class (P, that is, it
would predict separable), else to the negative class (N, pre-
dicting non-separable). By moving the threshold along the
axis the tradeoff between false positives (FP) and false neg-
atives (FN) changes drastically, as indicated by the three dif-
ferent threshold positions A, B, and C. (right) The Receiver
Operating Characterictic (ROC) curve results from varying
the decision threshold value from the lowest available sep-
aration measure value to the highest one. The Area Under
the ROC Curve (AUC) quantifies the quality of the classifier
over all possible decision threshold values.

chosen in the set of truly separable data D1
S than to a datum

randomly chosen in the set of truly non-separable data D0
S .

ROC and AUC are graphically illustrated in Figure 3.

Bootstrapping: The dataset DS is only a sample of the
unknown population of all possible data (1-vs-all scatter-
plots). Computing the AUC for this sample only would pro-
vide a descriptive statistic of this particular sample. Instead,
what we would like to have is an inferential statistic that pre-
dicts, or generalizes, from the specific representative sample
DS to the larger population of scatterplots.

To facilitate this generalization, we use bootstrap-
ping [ET93]. Bootstrapping is a well-understood resampling
technique that simulates new data by generating same-size
random samples with replacement of the observed dataset. In
each bootstrapping sample random data points (1-vs-all scat-
terplots) are missing while others are weighted in different
ways. This characteristic allows us to make inferential state-
ments as it imitates random draws from the unknown, under-
lying data population. We chose bootstrap as it is straight-
forward to implement with only one parameter to tune—the
number of bootstrap samples. An alternative, but equivalent
approach would have been to use cross-validation.

A bootstrap sample DSboot is a specific multiset based
on DS with the same total number of elements, but where
some of them are missing while others are replicated mul-
tiple times. Consider, for instance, a set {a,b,c}, with a, b,
c being labeled 1-vs-all scatterplots in our case. Valid boot-
strap samples of this set might look like {a,b,b}, {c,c,c},
or {a,b,c}.

Using this approach, we generate B bootstrap samples of
DS . The AUC is computed for each of these bootstrap sam-
ples. We therefore get a set of different AUC values whose
distribution approximates the distribution of AUC values we
would observe by drawing many random data samples from
the population. We can then use the average of the AUC
bootstrap distribution to estimate the expectation of the AUC
value over the whole population. The greater the average of
the AUC bootstrap distribution of a separation measure, the
higher the probability that this separation measure will give
a high value to a truly separable unseen data, than to a truly
non-separable one.

Summary statistics: The AUC bootstrap distribution can
then be used to compare the measuresM. Specifically, we
propose that the best separation measure m∗ ∈M is the one
with the highest average of the AUC bootstrap distribution.
The separation measures can be ranked according to their
AUC bootstrap average value. Bootstrap percentiles can be
displayed as whisker plots to evaluate the variance, as indi-
cated at the very right in the overview picture (Figure 2).

4. Empirical Study

We now use this framework to conduct a study of 15 state-
of-the-art separation measures.

4.1. Data

Given our inferential evaluation approach, we sought to base
our study on a large and representative set of reliable hu-
man judgments. As generating such a human ground-truth
dataset is very expensive, we decided to take a large and
carefully crafted dataset on human class perception from a
previous study by Sedlmair et al. [SMT13]. In their work,
Sedlmair et al. had two human expert coders sifting through
816 2D, 3D, and multi-D scatterplot matrices. The coders in-
dividually judged the separability of all color-coded classes
in these scatterplots on a scale from 1 (not separable at
all) to 5 (nicely separable). The scatterplots were generated
from a representative sample of 75 different datasets, both
real and synthetic, reduced with four different dimension re-
duction techniques, such as Principal Component Analysis
(PCA) [SMT13]. Sedlmair et al. used this data to evaluate
scatterplot visual encoding and dimension reduction tech-
nique choices. We use it to evaluate visual separation mea-
sures in scatterplots.

An important question is how reliable such human judg-
ments are. Sedlmair et al. argued that the diversity in datasets

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



M. Sedlmair & M. Aupetit / Data-driven Evaluation of Visual Quality Measures

m Short description of measure (and parameters if applicable) Param. Reference
ABTN Between-class average distances - [LAdS12]
AWTN Within-class average distances - [LAdS12]
ABW Between-class ABTN over within-class AWTN average distances ratio - derived by us
WII Average between-class over average within-class distances weighted by the respective size of the classes - [Str02]
CAL Centers-of-mass between-class square distances over points-to-centers-of-mass within-class square distances - [CH74]
LDA Centers-of-mass between-class distances over points-to-centers-of-mass within-class distances ratio with optimal linear transformation

of the points to maximize this ratio
- [Fuk90]

DUNN Maximum within-class distance over the minimum between-class distance ratio - [Dun74]
GAM Normalized comparison of numbers of within-class distances smaller or greater than between-class distances - [BH75]
SIL Difference of between-class and within-class average distances normalized by the maximum of them - [Rou87]
HM Average differences between distances from each point to its other-class and its same-class nearest-neighbor - [GBNT04]
CS Average proportion of same-class neighbors of each point in minimum spanning tree - [MMdALO15]
DSC* Proportion of points x whose the nearest class-center-of-mass belongs to the same class as x - [SNLH09]
CDMK Pixel-wise class-density differences with class-density estimated at pixel z as the inverse distance to its Kth nearest point of this class

(here, K ∈ {1,2,3 . . . ,10})
K [TAE∗09]

DCσ Average of the class entropy for each pixel computed over the classes of its ε-neighbors (here, ε = σ ∗ ∆(Xs) where σ ∈
{0.1%,0.2%,0.5%,1%,2%,5%,10%,20%} and ∆ is the maximal Euclidean distance between points of the evaluated scatterplot)

ε [SNLH09]

HDMNb Entropy measure of the classes in each cell and their adjacent cells in a square-grid partition. Nb is the number of cells in each direction
(here, Nb ∈ {5,10,20,40,80}), and β the level of neighboring cells (here, we used a fixed β = 1, i.e., 8 neighboring cells).

Nb , β [TAE∗09]

Table 1: List of tested separation measures, ordered by algorithmic similarities. The last three measures are parametric; we
tested them with different parameter settings as indicated. The best measure in our experiments is marked with an *.

outweighs the subtle differences in human judgments of
class separability. This argument is supported by a high
inter-coder reliability in their study (Krippendorff’s alpha
was 0.858), but also by other empirical studies from Lewis
et al. [LAdS12], and from Tatu et al. [TBB∗10]. Both studies
indicate little variance in class separability judgments among
humans. Following this empirical evidence, we assessed
these human judgments as reliable for our purpose [SMT13].

Given the different purpose of our study, we needed to fil-
ter and clean the data in order to get it into a suitable form for
our intended use. This process included five steps (technical
details can be found in the supplemental material):

1. We excluded 3D and multi-D scatterplots.
2. We needed to correct for misalignments of points in the

scatterplots caused by the un-normalized scales used in
the original study. We used different image processing al-
gorithms for that purpose.

3. To guarantee a fair comparison between human judg-
ments and measures, we removed fully occluded points
which could not be seen by the human coders.

4. After that, we excluded scatterplots for which only one
class remained visible. We then also removed datasets
with more than 14 classes and those with over 1000 (vis-
ible) points due to limitations of human perception; reli-
able judgments cannot be guaranteed over a certain scale.

5. The human judgment in Sedlmair et al.’s study was done
by two coders using a 5-point Likert scale. Let (u,v)
be the judgments of the two coders, then we aggregate
the judgments as follows: (5,5),(4,5),(5,4) were aggre-
gated into sep, and (1,1),(1,2),(2,1) into non-sep. We
excluded all other instances due to lower reliability with
respect to our binary classification setup.

After cleaning, we ended up with 828 data items ds,ct , that
is, 1-vs-all scatterplots, from overall 56 multidimensional
datasets. 408 1-vs-all scatterplots stemmed from synthetic
datasets, and 420 from real datasets.

4.2. Separation Measures

Our goal was to include a broad set of different measures
into our study. With this goal in mind, we selected a set of
15 state-of-the-art measures discussed either in the visualiza-
tion or the machine learning community. Table 1 shows the
measures we tested and gives a brief summary of how they
operate. For measures that needed to be parameterized, we
tested between 5 and 10 different parameter settings. Over-
all, this process led to 35 measure instances that we evalu-
ated. For all measures, the higher the measure value is, the
greater the separation of the target class. In the supplemental
material, we provide additional details, including mathemat-
ical definitions, as well as a high-level algorithmic classifi-
cation of these measures in terms of locality criteria, notion
of discrepancy, and computational complexity.

4.3. Results

Using the cleaned dataset, we generated 10,000 bootstrap
samples, a number that generated highly consistent results
at 0.1% precision (see supplemental material for more infor-
mation). We computed the AUC bootstrap distribution for
each of the 35 measure instances. Each bootstrap sample
had the same number of items as the underlying dataset ds,ct ,
that is, 828. The experiments were run on a standard desktop
computer using Matlab.

Figure 4 shows the different measures ranked from top to
bottom in decreasing order of the AUC bootstrap average.
We now highlight some interesting findings.

Winner: We found that the DSC measure by Sips et
al. [SNLH09] gave the best AUC bootstrap average of
82.5%. DSC is the proportion of points whose nearest class-
center-of-mass (class centroid) belongs to their own class.
This result means that DSC should give a greater value to
a truly human-separable unseen data than to a truly non-
separable one in 82.5% of the cases.
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Figure 4: Results of our study. Each row represents a sep-
aration measure with a box plot encoding the AUC boot-
strap distribution: median (red center line); interquartile
range (IQR), i.e., from 25 to 75 percentile (box); 25/75
percentile +/- 1.5 times the IQR, including 99.3% of the
data (whiskers); and outliers (red points). The measures are
ranked in decreasing order of the AUC bootstrap average. A
score of 0.5 denotes a random guess, while 1 would indicate
perfect separation prediction on unseen (but similar) data.

In a previous study by Tatu et al. [TBB∗10], DSC† was
also found the best measure, along with another measure,
HDM. Our study confirms that DSC is among the best mea-
sures, despite the different methodological approaches in
terms of used datasets, users and the evaluation process. The
DSC pole position in both studies is a sign that DSC cap-
tures characteristics of the scatterplots that might be relevant
to the human visual separation process in general. However,
our study gives HDM a worse position than DSC compared
to Tatu et al. with an AUC bootstrap average of 76.4% for
HDM10. Being a histogram-based entropy measure, HDM
captures characteristics of the scatterplots different from the
ones captured by point distance-based DSC measure. The
evaluation using our framework suggests that HDM is less
robust and generalizable to other scatterplot characteristics
than DSC. In the following, we further study dependencies
on dataset characteristics and parameters to better under-
stand the different findings.

Dataset characteristics (synthetic vs. real): As our set of
scatterplots was originally obtained from synthetic and real
datasets [SMT13], we explored how the measures performed

† DSC was named CCM in this study

Figure 5: Results of real and synthetic datasets separately.
Each separation measure is represented as a point with
coordinates encoding the AUC bootstrap average on real
datasets (x-axis) and synthetic datasets (y-axis). Observa-
tions: (1) Points fall in the upper left part, that is, measures
score better on synthetic than on real datasets. (2) Points of
parametric measures are colored and connected in sequence
(by parameter value). AUC scores vary greatly, and the pa-
rameter dependence is stronger for synthetic datasets.

on both synthetic and real sets separately. The results are
shown in Figure 5.

We found that almost all of the separation measures have
a higher AUC bootstrap average score for synthetic datasets
than for real datasets, with differences up to 36.6% in the
AUC score for DC20% (53.1% on real and 89.7% on syn-
thetic datasets). Note that such a difference indicates a jump
from very accurate for synthetic (close to 100%) to almost
random for real data (close to 50%). Therefore, using only
synthetic data to evaluate separation measures would give an
optimistic view of these measures. Our study thus confirms
that most of the separation measures are able to quantify
correct separation in simple cases but do not perform with
high accuracy on more realistic data [STTM12]. In terms
of the HDM measure that was found best in Tatu et al.’s
study [TBB∗10] but not ours, Figure 5 shows that HDM10
scores equal as DSC on synthetic datasets, while DSC is
clearly better on real datasets. So a reason for the discrep-
ancy of our results is the different sets of scatterplots used to
evaluate the measures.

These results underline the importance of having large
and representative datasets to evaluate separation measures,
which is fostered by our framework. This finding is fur-
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ther supported by a sanity check experiment with 30 simple,
highly synthetic datasets, for which 26 of the 35 measures
tested got a perfect 100% AUC bootstrap average. This ex-
periment is further described in the supplemental material.

Parameters: Three measures were parametric in our study:
CDM, HDM, and DC. Testing 5-10 different parameteri-
zations for each of these, we found that different param-
eterizations led to considerable differences of the AUC
bootstrap values as displayed in the Figure 4. This find-
ing contradicts comments in the original measure papers
that these measures are relatively insensitive to parameter
choices [SNLH09, TAE∗09], but confirms similar observa-
tions by Sedlmair et al. [STTM12]. The best CDM we found
was for K = 4, the best HDM for Nb = 10, and the best DC
for σ = 10% (Table 1 gives definitions of these parameters).

When separating real and synthetic datasets as in Figure
5, we see that parametric measures are mostly influenced
by synthetic datasets (scores differ mostly along the ver-
tical, synthetic axis). Depending on the particular datasets
used in the original papers [SNLH09, TAE∗09], this find-
ing could explain that no strong dependency on the param-
eter had been observed in their case. We also observe that
for DC and CDM both the synthetic and the real scores in-
crease with the parameter value up to some maximum and
then decreases again. These optima indicate good parameter
settings, which however differ for synthetic and real data.

Toward improving separation measures: The winner
DSC was closely followed by several other measures HM,
CAL, LDA, WII, SIL, and GAM. While all these measures
score around 80%, remember that a 50% score is a random
guess. So, there is still more than a third of the way to go
in order to get to a theoretically perfect measure. This find-
ing echoes Tatu et al.’s message suggesting room for further
improvements [TBB∗10].

Analyzing the characteristics of the best ranked measure
DSC, but also the second best HM, reveals that both involve
a non-parametric Nearest Neighbor approach and give a dis-
tinct role to between and within class distances. These char-
acteristics might therefore play an important role in the hu-
man visual separation process and could give hints to de-
velop even better separation measures. Regarding the spe-
cific case of parametric separation measures, we used the
same parameter value for all the scatterplots as it is standard
in the literature. However, it is possible that the human visual
separation process adapts the scale parameter to each scatter-
plot, and possibly to each part of a scatterplot. Taking such
characteristics into account might provide additional room
for improvements on the parameterization scheme of para-
metric separation measures.

5. Discussion

While the above analysis focuses on visual separation mea-
sures, we believe that the general ideas behind our frame-

work are also applicable to other visual encodings and qual-
ity measures. Similarly, the actual analysis steps within the
framework can be easily replaced by alternatives: instead of
a classifier one might, for instance, use regression models if
the goal is to learn a continuous mapping, say for correla-
tion [HYFC14, RB10]; or, instead of bootstrapping one can
use other ways to facilitate generalizability such as cross-
validation, just to name a few alternatives. To use a simple
metaphor, we see the white boxes that describe these charac-
teristics in Figure 2 as a set of building blocks that can easily
be replaced by others.

For our study, we used a specific scatterplot dataset from
previous work [SMT13]. While this dataset stems from di-
mensionally reduced (DR) data, our approach would, of
course, similarly work with other types of scatterplot data.
In fact, we believe that the visual cluster separation char-
acteristics of DR data, specifically from linear techniques
such as PCA, are similar to other scatterplots, such as scat-
terplots stemming from axis-aligned projections (as in “nor-
mal” scatterplots). However, to the best of our knowledge an
explicit comparison of characteristics has not been done yet.

We now revisit the major aspects of our framework and
summarize them as a set of four guidelines for visual quality
measure evaluation.

Predict how measures would perform on previously un-
seen data: The major goal of our evaluation framework is
to predict how visual separation measures would perform on
unseen data. That is, we want to generalize findings over
datasets. In inferential statistics this ability to generalize is
called external validity. In visualization, human-computer
interaction (HCI), and psychology, generalizing over human
subjects is very common (and important). In contrast, an in-
ferential lens to generalize over datasets has not gained much
attention so far. Given the very nature of visualization re-
search being tied to users and data [PVW09], however, we
believe that such a lens is important when evaluating our re-
search in general, and quality measures in particular.

A natural question is how well we can generate repre-
sentative subsets of the larger “population” of all (relevant)
datasets. In that respect, we echo the recommendations by
Sedlmair et al. [STTM12]: use large samples of datasets
to study measures; gradually integrate more and more new
datasets into evaluations; and, take care of ecological valid-
ity by integrating real datasets as far as possible. Our 828
1-vs-all scatterplots cover many different separation charac-
teristics [STTM12] and, thus, we are confident that it is a
good first step. Nevertheless, we hope that others will extend
upon this work, adding new data with new characteristics.

Separate human judgment studies from measure studies:
The most time consuming part of testing visual quality mea-
sures is to get reliable human judgments for a broad selection
of different datasets. One way to overcome such limitations
is to use crowdsourcing services such as Amazon’s Mechan-
ical Turk that allow outsourcing tasks to a large population of
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users [HB10]. Such studies work particularly well with low-
level perceptual tasks that are existent in the general public.
Current research indicates that the perception of class sep-
arability, as focused on in our study, might fulfill this cri-
terium [LAdS12]. For other, more complex tasks, however,
care needs to be taken in terms of the reliability, and expert
judgments might be necessary [LvdMdS12].

Orthogonal to that, we want to advocate a separation of
(a) running perceptual studies with human subjects, from
(b) evaluating quality measures. Running perceptual stud-
ies with human subjects can help us to gradually build up a
more and more reliable “human ground truth” dataset. Us-
ing this ground truth data as an input, we can then evaluate
separation measures in a more automatic fashion, without di-
rectly involving human subjects. While such calls have been
made before [TBB∗10], we are the first to offer an evaluation
framework that fosters this separation.

Be objective with respect to the intended use: When look-
ing into previous work, we found that the interpretation of
measure evaluation results seemed to be strongly related
to the subjective expectations of researchers. When testing
measures intended for pre-selecting views in a scatterplot
matrix, Sips et al., for instance, noted that "even for a large
number of dimensions the [tested measure] correlates to
over 50% with people’s judgment of good views" [SNLH09].
With the intention to use measures for guiding crucial vi-
sual encoding and abstraction choices, Sedlmair et al. wrote:
“The two studied measures failed to provide a robust and
reliable judgment in nearly 50% of our cases” [STTM12].
Both argue about 50%, but with very different interpreta-
tions, positive and negative respectively.

We argue for more objectiveness in analyzing and inter-
preting results. One way is to be upfront about the intended
use and the notion of what makes a “good” measure. In our
framework, for instance, we tried to be objective with respect
to different false positive (FP) / false negative (FN) settings,
by integrating over all of them. Additionally, our framework
can easily be tuned to evaluate other situations, for instance,
when the risk associated to FP and FN is well known (re-
stricting the AUC integration over an acceptable range).

Tie to reliable, perceptually meaningful judgments: We
believe that it is valuable to tie quality measure evalua-
tions to tasks that properly reflect the underlying percep-
tual phenomena. In our analysis, for instance, we sought to
evaluate class separation measures based on the actual per-
ceptual separability of single classes. In contrast, previous
studies focused on integrated ranking judgments of multi-
class scatterplots, disguising the actual separability of single
classes [SNLH09, TBB∗10].

In that respect, one current limitation of our work is
that we use a binary classifier. With this approach, we can
classify ‘whether or not’ but not ‘how much’ a class is
separable. In future work, we thus plan to predict the ac-
tual degree of separation using ordinal regression models

[O’C06]. However, such a more fine-grained approach is
non-trivial and will necessitate a deeper investigation of per-
ceptual discriminability of different degrees of class separa-
tion [LAdS12, SMT13, TBB∗10]. Another interesting ques-
tion is how perceptually accurate substituting multi-colored
scatterplots with 1-vs-all scatterplots is. While for visual
search tasks related work exists [HW12], there is, to the best
of our knowledge, little known about separation tasks.

6. Conclusions

In 2010, concluding from a study on visual separation
measures Tatu et al. noted that “there is still a lot to be
done until the ultimate automatic quality measure can be
found” [TBB∗10]. Towards that goal, we proposed a novel
evaluation framework to more efficiently and effectively
evaluate such measures. The framework uses a broad set of
human judgments to learn how a quality measure would pre-
dict such judgments.

We used this approach to compare 15 state-of-the-art mea-
sures for class separability in 2D scatterplots. We found the
best performing measure to be DSC by Sips et al. [SNLH09],
but, more generally, also a lot of room for future improve-
ments. We analyzed measures for synthetic and real data
separately, and found further evidence for the bias of cur-
rent measures towards simple synthetic datasets. Apart from
comparing different quality measures, our framework can
also be used for exploring and finding proper parameter set-
tings for parametric measures. This usage is specifically in-
teresting, as our study has confirmed that the performance
of current parametric measures is indeed strongly dependent
on parameter settings [STTM12].

Our work focuses on evaluating measures based on how
well they align with human judgment. Of course, there are
other important factors that need to be considered when eval-
uating quality measures, such as, computational complexity.
Also, when designing measures that seek to imitate the hu-
man perception, it is always important to bear in mind the
limitations of human perception. There might be patterns in
the data that a human simply cannot directly “see”, or what
she sees might just be an artifact of how the data has been
abstracted and encoded [Aup14, KS14].
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[CH74] CALIŃSKI T., HARABASZ J.: A dendrite method for
cluster analysis. Communications in Statistics Simulation and
Computation 3, 1 (1974), 1–27. 6

[DK10] DASGUPTA A., KOSARA R.: Pargnostics: Screen-space
metrics for parallel coordinates. IEEE Trans. Visualization and
Computer Graphics (Proc. InfoVis) 16, 6 (2010), 1017–26. 2

[Dun74] DUNN J. C.: Well-separated clusters and optimal fuzzy
partitions. Journal of Cybernetics 4, 1 (1974), 95–104. 6

[ET93] EFRON B., TIBSHIRANI R.: An Introduction to the Boot-
strap. Macmillan Publishers Limited, 1993. 5

[Faw06] FAWCETT T.: An introduction to ROC analysis. Pattern
Recognition Letters 27, 8 (2006), 861–874. 4

[FT74] FRIEDMAN J. H., TUKEY J. W.: A projection pursuit al-
gorithm for exploratory data analysis. IEEE Trans. on Computers
100, 9 (1974), 881–890. 2

[Fuk90] FUKUNAGA K.: Introduction to statistical pattern recog-
nition, second ed. Computer Science and Scientific Computing.
Academic Press, 1990. 6

[GBNT04] GILAD-BACHRACH R., NAVOT A., TISHBY N.:
Margin based feature selection – theory and algorithms. In Proc.
21st Int. Conf. on Machine Learning (ICML) (2004), Brodley
C. E., (Ed.), ACM, pp. 43–50. 6

[HB10] HEER J., BOSTOCK M.: Crowdsourcing graphical per-
ception: Using mechanical turk to assess visualization design. In
Proc. ACM Conf. Human Factors in Computing Systems (CHI)
(2010), pp. 203–212. 9

[HW12] HAROZ S., WHITNEY D.: How capacity limits of at-
tention influence information visualization effectiveness. IEEE
Trans. Visualization and Computer Graphics (Proc. InfoVis) 18,
12 (2012), 2402–2410. 9

[HYFC14] HARRISON L., YANG F., FRANCONERI S., CHANG
R.: Ranking visualizations of correlation using Weber’s law.
IEEE Trans. Visualization and Computer Graphics (Proc. Info-
Vis) 20, 12 (2014), 1943–1952. 8

[IIC∗13] ISENBERG T., ISENBERG P., CHEN J., SEDLMAIR M.,
MÖLLER T.: A systematic review on the practice of evaluating
visualization. IEEE Trans. Visualization and Computer Graphics
(Proc. SciVis) 19, 12 (2013), 2818–2827. 1, 2

[JC08] JOHANSSON J., COOPER M.: A screen space quality
method for data abstraction. Computer Graphics Forum (Proc.
EuroVis) 27, 3 (2008), 1039–1046. 2

[KS14] KINDLMANN G., SCHEIDEGGER C.: An algebraic pro-
cess for visualization design. IEEE Trans. Visualization and

Computer Graphics (Proc. InfoVis) 20, 12 (2014), 2181–2190.
9

[LAdS12] LEWIS J. M., ACKERMAN M., DE SA V.: Human
cluster evaluation and formal quality measures: A comparative
study. In Proc. 34th Conf. of the Cognitive Science Society
(CogSci) (2012), pp. 1870–1875. 2, 6, 9

[LBI∗12] LAM H., BERTINI E., ISENBERG P., PLAISANT C.,
CARPENDALE S.: Empirical studies in information visualiza-
tion: Seven scenarios. IEEE Trans. Visualization and Computer
Graphics (TVCG) 18, 9 (2012), 1520–1536. 2

[LvdMdS12] LEWIS J. M., VAN DER MAATEN L., DE SA V.: A
behavioral investigation of dimensionality reduction. In Proc.
34th Conf. of the Cognitive Science Society (CogSci) (2012),
pp. 671–676. 9

[MMdALO15] MOTTA R., MINGHIM R., DE ANDRADE LOPES
A., OLIVEIRA M. C. F.: Graph-based measures to assist user
assessment of multidimensional projections. Neurocomputing
(2015), 583 – 598. preprint. 2, 6

[O’C06] O’CONNELL A. A.: Logistic regression models for or-
dinal response variables. Sage Publications, 2006. 9

[PVW09] PRETORIUS A. J., VAN WIJK J. J.: What does the
user want to see? What do the data want to be? Information
Visualization 8, 3 (2009), 153–166. 8

[RB10] RENSINK R., BALDRIDGE G.: The perception of corre-
lation in scatterplots. Computer Graphics Forum (Proc. EuroVis)
29, 3 (2010), 1203–1210. 8

[Rou87] ROUSSEEUW P.: Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of Computa-
tional and Applied Mathematics 20, 1 (1987), 53–65. 6

[SMT13] SEDLMAIR M., MUNZNER T., TORY M.: Empiri-
cal guidance on scatterplot and dimension reduction technique
choices. IEEE Trans. Visualization and Computer Graphics
(Proc. InfoVis) 19, 12 (2013), 2634–2643. 4, 5, 6, 7, 8, 9

[SNLH09] SIPS M., NEUBERT B., LEWIS J. P., HANRAHAN
P.: Selecting good views of high-dimensional data using class
consistency. Computer Graphics Forum (Proc. EuroVis) 28, 3
(2009), 831–838. 1, 2, 6, 8, 9

[Str02] STREHL A.: Relationship-based Clustering and Cluster
Ensembles for High-dimensional Data Mining. PhD thesis, Uni-
versity of Texas at Austin, 2002. 6

[STTM12] SEDLMAIR M., TATU A., TORY M., MUNZNER T.:
A taxonomy of visual cluster separation factors. Computer
Graphics Forum (Proc. EuroVis) 31, 3 (2012), 1335–1344. 1,
2, 4, 7, 8, 9

[TAE∗09] TATU A., ALBUQUERQUE G., EISEMANN M.,
SCHNEIDEWIND J., THEISEL H., MAGNOR M., KEIM D.:
Combining automated analysis and visualization techniques for
effective exploration of high-dimensional data. In Proc. IEEE
Symp. Visual Analytics Science and Technology (VAST) (2009),
pp. 59–66. 1, 2, 6, 8

[TBB∗10] TATU A., BAK P., BERTINI E., KEIM D., SCHNEI-
DEWIND J.: Visual quality metrics and human perception: An
initial study on 2D projections of large multidimensional data. In
Proc. Int. Conf. Advanced Visual Interfaces (AVI) (2010), ACM,
pp. 49–56. 1, 2, 6, 7, 8, 9

[WA05] WILKINSON L., ANAND A.: Graph-theoretic scagnos-
tics. Proc. IEEE Symp. Information Visualization (InfoVis)
(2005), 157–164. 1, 2

[WW08] WILKINSON L., WILLS G.: Scagnostics Distribution.
Journal of Computational and Graphical Statistics 17, 2 (2008),
473–491. 2

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.


