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Background

• Phd at LMU, Munich with Andreas Butz: HCI

• Automotive Design Studies at BMW
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Background

• PostDoc at UBC, Vancouver with Tamara 
Munzner: InfoVis

• Highdim projects

• Ethnographic field study: What people are doing with DR?

• Data Characterization

• Design Study Methodology (with Miriah Meyer, 
University of Utah)
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Measures: Datasets:
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Motivation

A Taxonomy of Visual Cluster 
Separation Factors



Episode 1: 
Once upon a time ...

• What visualization encodings (VisEnc) 
are good for visualizing    
dimensionally reduced (DR) data?
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What are people doing?
• Informed from ongoing ethnographic field study (not this 

project!)

• DR techniques

• PCA, MDS, but also newer ones such as t-SNE

• VisEnc

• 2d Scatterplot

• 3d Scatterplot

• Scatterplot matrices (SPLOMs)

• Tasks:

• Cluster identification / verification

• NOT correlation

NO
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User Study?

• Idea: 

• Run a user study

• Measuring the human efficiency (time/error) 
in making a judgment (about clusters)

• to find out which vis technique works best

• Started piloting and found ...

• What really matters is how the dataset looks like

• Confounding variable = dataset characteristic

1
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Automatic 
Data Study 

• Idea: 

• Take a larger, well-chosen sample 
of real and synthetic datasets  

• Use recent cluster separation 
metrics to characterize datasets 
in terms of when which vis 
technique is best

• Use the judgement itself, 
where the judgement is done by 
the metric

2
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Centroid Metric Grid Metric

Sips et al. 
EuroVis’09 Distance Consistency Distribution Consistency

Tatu el al.  
VAST 2009 --- 2D Histogram Density Measure

(2D-HDM)

• Found to be the current cutting edge [Tatu et al., AVI’10]

• Value between 0 (worst) and 100 (best) for a 2D Scatterplot

iris
RobPCA

Centroid: 93 Grid: 97

Centroid and Grid Metric
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But...
• Again: Started piloting and found ...

• The metrics judgment often does not align with 
human judgement

• There are hidden assumptions about the data 
that lead to 

• FN: false negatives (low metric values for sth good)

• FP: false positives (high metric values for sth poor)

• Reason: Data characteristics

• Current metrics cannot be used for a reliable 
automatic judgment!
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Qualitative
Data Study

• Changing the route: Data Characteristics!

• Idea:

• Do a manual qualitative inspection of datasets 

• Make human judgement

• Compare to metric judgement

• Adaption of research question:

1. Identifying data characteristics that matter for cluster 
verification

2. Evaluating cluster separation metrics

3
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Methods



Methods 1: 
Choosing the variables
• 75 datasets

• 31 real / 44 synthetic 

• pre-classified / BUT: Keep non-classified in mind!

• 4 DR techniques: PCA, MDS, RobPCA, t-SNE

• 3 VisEncs: 

• 2D Scatterplot

• Interactive 3D Scatterplot

• SPLOM

• 2 metrics: centroid and grid

• Extension: 3D, SPLOM

• Extension: Classwise

• 816 datasets instances (Scatterplots to look at) 13



Methods 2: 
Open and Axial Coding
• Coding = Method for qualitative data analysis from social science

• Open Coding = Figuring out codes and iteratively refine codeset

• Axial Coding = Analyze relation between codes and categorize codeset

• Open Coding

• Two researchers (Andrada and me): Multiple passes over 816 dataset instances

• Coding: Factors affecting visual class separability

• Coding: Failure cases of metrics: 

• ok - dubious - poor / classwise poor

• if not ok: reason

• Axial Coding

• Merging codesets

• Create and refine taxonomy of factors that matter
14



Qualitative Data Study: 
A side contribution of our project

• Qualitative studies (coding) have been used for

• User analysis: Audio, video, notes, ...

• Literature analysis

• We: Data analysis

• In Vis: Qualitative Data Study as an inverse to a User Study

• User Study:                                                                        
Many users, few datasets

• Qualitative Data Study:                                                          
Few users, many datasets
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Related Work



They We

• Scagnositcs 
[Wilkinson 2005]

• General factors

• Informal exploration

• Mathematical depiction

                                          

• Cluster separability

• Systematic and rigorous 

• Human perception

• Gestalt principles

• Perceptual fundamentals • Operational guidance

• Clustering (ML)

• Automation • Human judgment
17
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A taxonomy of visual cluster 
separation factors
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Top-level structure
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Measures: Datasets:

What can we do with it: 
• Mapping assumptions of metrics onto taxonomy axes

• Mapping datasets onto taxonomy axes
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Fisheries, real, MDS
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Centroid: 
Overall: 29
Problem: FN
Reason: “Stringy” shapes
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In terms of taxonomy ...
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Gaussian, synthetic, MDS
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In terms of taxonomy ...
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HIV, real, t-SNE
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In terms of taxonomy ...
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Summary of results



High-level results
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Measures: Datasets:

Summary: 
Mapping assumptions onto taxonomy axes
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Measures: Datasets:

Centroid: 
Mapping assumptions onto taxonomy axes

• only reliable if

• round-ish clusters

• not more than one dense spot

• no outliers

• similar sizes & #points
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Measures: Datasets:

Grid: 
Mapping assumptions onto taxonomy axes

• relatively robust against FN

• severe issues with FP

• vulnerable to overlapping classes 
with non-random mixture, 
especially equidistant structures
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Main Contribution
A Taxonomy of Visual Cluster Separation Factors
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Evaluation Usage Development

DR original goal, 
future work

VisEnc original goal, 
future work

Metrics future workhere

... to provide operational guidance for ...

... braking down cluster separation
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Adopting the 
Grid Size?

• Developers [Sips’09]: “insensitive to grid size changes”

• No: Test with 50 instances - insensitive only in 16%

• Static: Does not work well with different #points

• Dynamic: No straight forward automatic way
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