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Figure 1: Fixation-image charts displaying the fixation sequences of four participants on timelines with information about fixation duration
(height of the images), saccade lengths (length of colored bars), and saccade directions (according to the color legend). A subsequence
consisting of 4 fixations (1–4) and 3 saccades (a–c) is highlighted in the closeup and depicted in the stimulus on the right.

Abstract

We facilitate the comparative visual analysis of eye tracking data
from multiple participants with a visualization that represents the
temporal changes of viewing behavior. Common approaches to vi-
sually analyze eye tracking data either occlude or ignore the un-
derlying visual stimulus, impairing the interpretation of displayed
measures. We introduce fixation-image charts: a new technique
to display the temporal changes of fixations in the context of the
stimulus without visual overlap between participants. Fixation du-
rations, the distance and direction of saccades between consecutive
fixations, as well as the stimulus context can be interpreted in one
visual representation. Our technique is not limited to static stim-
uli, but can be applied to dynamic stimuli as well. Using fixation
metrics and the visual similarity of stimulus regions, we comple-
ment our visualization technique with an interactive filter concept
that allows for the identification of interesting fixation sequences
without the time-consuming annotation of areas of interest. We
demonstrate how our technique can be applied to different types of
stimuli to perform a range of analysis tasks; and discuss advantages
and shortcomings derived from a preliminary user study.
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1 Introduction

With the increasing popularity of eye tracking in various research
fields [Duchowski 2002], many experiments are conducted and an-
alyzed with established statistical and visual analysis techniques.
Typically, statistical evaluation is applied for hypothesis testing, po-
tentially showing significant differences between independent vari-
ables. Visualization is employed to convey and illustrate these re-
sults. Recently, visual analytics approaches [Andrienko et al. 2012;
Blascheck et al. 2016] have become popular. They combine statis-
tical methods and interactive visualization to enable the exploration
of eye tracking data (e.g., from a pilot study) and support the un-
derstanding of the complex spatiotemporal nature of the data.

The general analysis problem we address is the interpretation of
scanpaths in space and time. A scanpath, consisting of fixa-
tion sequences and saccades between the fixations, can be very
complex, even for a single participant. The comparison of scan-
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paths from multiple participants is even more difficult. To ad-
dress this issue, many approaches exist, some based on eye
tracking metrics [Holmqvist et al. 2011], string-comparison algo-
rithms [Duchowski et al. 2010; West et al. 2006], and visualiza-
tion [Goldberg and Helfman 2010]. However, many established
metrics, such as average fixation durations or average scanpath
lengths, aggregate the data, neglecting its spatiotemporal structure.
These approaches impair analysis tasks for which it is important to
find out how viewing behavior, represented by fixations and sac-
cades, changed over time.

If the temporal dimension of the underlying eye tracking data is in-
cluded in the analysis, a visual representation of the measured data
typically supports their interpretation. A simple and common ap-
proach is a plot of a measured variable over time (see Figure 2a).
This visualization provides valuable insight into how the variable
changed over time and multiple participants can be compared by
overlaying their respective plots. Even string-based algorithms that
calculate the similarity between scanpaths benefit from a visual rep-
resentation of similar subsequences. However, gaze behavior is
largely dependent on the visual stimulus. Without including the
context of the stimulus, we will not be able to understand the rea-
sons why certain changes in recorded measures occur. To address
this issue, researchers usually have to investigate the recorded data
as static and animated representation, overlaid on the stimulus. A
typical example of such a visualization is the gaze plot (Figure 2b).
Here, gaze points or fixations are represented by connected circles
that maintain the temporal order of the scanpath. The radii indi-
cate fixation durations. These circles are drawn on the stimulus,
indicating where a participant was looking at which point in time.
This approach suffers from occlusion due to the massive overdraw
that occurs when many participants have to be compared over long
timespans.

Other approaches such as attention maps aggregate the data and
are therefore not suited for a comparative spatiotemporal analysis
of multiple participants. If areas of interest are available, alterna-
tive timeline visualizations such as scarf plots [Richardson and Dale
2005; Kurzhals et al. 2014b] can provide a semantic scanpath repre-
sentation of the sequential visits in the annotated areas. Especially
for dynamic stimuli, this annotation is often a time-consuming pre-
processing step requiring the definition of bounding shapes that can
also change their position, size, and visibility.

Our main contribution is a visual analytics approach that combines
descriptive statistics of fixation metrics, interactive filtering tech-
niques, and a visual representation of fixation sequences. With our
interactive visualization technique (Figure 1), we provide an alter-
native approach for scanpath comparison that retains the advantages
of statistical and gaze plots. A detailed analysis of scanpaths from
multiple participants over time is possible without the tedious anno-
tation of areas of interest. For example, our approach can be applied
for efficient labeling of fixations (Section 4.1) and for hypothesis
building by investigating patterns in the visualization (Section 4.2).

2 Related Work

The number of new visualization techniques for eye tracking anal-
ysis increased significantly over the last years. Blascheck et
al. [2014] provide an overview and a taxonomy of state-of-art tech-
niques. The visualization methods can be categorized in two major
classes: some techniques are point-based, i.e., the underlying data
are either raw gaze points or aggregated fixations, and the other
techniques are based on additional information about areas of in-
terest (AOIs). Our technique can be classified as a point-based ap-
proach because AOIs are not required. The stimulus content is pas-
sive, i.e., participants cannot influence the presented stimuli. We
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Figure 2: Typical examples of a visual analysis of the spatiotem-
poral aspects of eye tracking data: (a) statistical plots of fixation
duration and saccade length, (b) a gaze plot drawn on the stimulus.

provide spatiotemporal information about the data from static and
dynamic stimuli in a static, yet interactively adjustable visualiza-
tion. Other techniques with similar properties either aggregate fix-
ations [Duchowski et al. 2012] or scanpath trajectories [Duchowski
and McCormick 1998; Hurter et al. 2014]. We do not aggregate the
data over multiple participants or over time (except for the aggrega-
tion of raw gaze data to fixations), allowing for an easy comparison
between participants. Furthermore, our visualization guarantees the
stimulus context to be free from overlap, which is an advantage
compared to gaze plots.

The concept of our visualization is based on combining eye track-
ing measures with the context of the stimulus by creating thumbnail
images of fixated areas. A similar image-based approach to label
fixation data is presented by Pontillo et al. [2010], who show im-
ages of fixated regions to the analyst for a semi-automatic classifi-
cation of fixated areas. However, the authors applied this approach
only to assign fixations to labels, further analysis with statistical
or visualization techniques is still required for this annotated data.
With our approach, the analyst can interpret the data directly in the
visualization. Kurzhals et al. [2016] display fixation images for ev-
ery measured gaze point in the data on timelines to compare eye
movements of different participants over time. The authors repre-
sent the complete sequence of data samples, fixation information is
only implicitly visible by duplicated fixation images on the time-
line. We adopt their approach to a much more compact timeline
by showing only one image per fixation. We compensate the re-
sulting asynchronicity by an additional visual component: the time
streams. Furthermore, in the work of Kurzhals et al., information
about saccade directions and saccade lengths is not available. With
our new approach, we provide a visualization that is much more
scalable in the temporal dimension and provides additional fixation
information. Additionally, we introduce an interactive filter concept
that was not included in that previous work.

There are other concepts of our visualization that are visually simi-
lar to other techniques: the time streams and the filter dials. Burch
et al. [2013] apply a horizontal river visualization on a timeline to
display the temporal changes of attention on different AOIs, i.e.,
the “flow” of attention between AOIs. In contrast, we apply verti-
cal rivers to visualize the temporal coherence of fixations between
participants as time streams, i.e., we use a similar visual design for
a very different data visualization problem that does not require any
AOIs. Hlawatsch et al. [2015] apply filter wheels to find scanpath
sequences based on saccade directions. Their approach is based
on the scanpath trajectory alone, no visual connection to stimulus
context is provided. We also allow the analyst to filter by saccade
direction with our filter dial, but the filter results are instantaneously
visible in context of the stimulus.
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Figure 3: (a) Multiple fixation metrics can be encoded in one fix-
ation image. (b) The sequences of fixation images represent the
scanpaths of participants and can be compared with each other.

3 Visualization Design

A visualization for the analysis of sequential viewing behavior
should convey the linear order and duration of fixations 1 , dis-
play information about the position of fixations and the direction of
saccades 2 , and depict the attended context of the stimulus 3 .
Additionally, individual participants should be visible for compar-
ison 4 . Our visualization is designed to meet these requirements
by introducing different visualization components.

3.1 Visualization Components

The visual design of our approach consists of three components
(Figure 3a) that are combined on timelines for individual partici-
pants separately. Namely, fixation-image charts consist of fixation
images (top) to display the properties of a fixation 1 and the con-
text of the underlying stimulus 3 , distance bars (middle) as an in-
dicator for saccade lengths 2 between consecutive fixations (bot-
tom, right), and time streams (Figure 4) to maintain the temporal
synchronization between participants 4 .

3.1.1 Fixation Images

The fixation images are generated based on the position of a fixa-
tion on the stimulus. Assuming a visual angle of 2◦ and a view-
ing distance of 64 cm in front of a 24” WUXGA screen, the im-

Figure 4: Time streams starting from fixed timeline intervals and
comprising all fixation images that lie within the interval.

age is cropped around the fixation position (Figure 1), creating a
100×100 pixels image that approximately contains the foveated
area [Nyström and Holmqvist 2010; Rajashekar et al. 2004].

So far, the fixation image provides us information where the partic-
ipant was looking. To encode the duration of a fixation, the height
and width of the image are adjusted accordingly (Figure 3a). We
normalize the fixation duration by the longest fixation of all par-
ticipants. This approach has the benefit that longer fixations also
receive more space in the visualization. To emphasize the differ-
ences between low values, we use the square root of the values.

The fixation sequence of a participant is visualized by stacking
the corresponding fixation images next to each other (Figure 3b).
Hence, the consecutive fixation image in the sequence is always
right to the current fixation. If single fixations are selected with our
filtering methods (see Section 3.2.2), we show a compact represen-
tation of the results under the timelines. In this case, we display
the consecutive fixation under the distance bar, indicating the target
position of a saccade (Figure 3a, bottom).

3.1.2 Distance Bars

Below each fixation image, a distance bar indicates the distance
between consecutive fixations (Figure 3a, middle). Although not
calculated explicitly by algorithm, this distance is often applied as
an implicit indicator for saccade length. The height of the bar de-
scribes the Euclidean distance between two consecutive fixations,
normalized by the maximum distance within all participants’ fix-
ations. This representation is similar to a time plot of this metric
(Figure 2a, bottom) that is common in eye tracking research and is
easy to interpret by eye tracking experts.

The distance bars are color-coded by saccade direction to show even
more information about the spatial relation between two fixations.
The angle between the horizontal and the connection line between
two fixations is used to obtain the color from the color-legend wheel
(Figure 3a). By this approach, it is easy to detect bars of similar
length and color, which can indicate repetitive behavior (e.g., read-
ing from left to right). We decided against a glyph representation
for directions (e.g., arrows) in favor of the better scalability of col-
ors that is required in an overview of the visualization. However,
the direction-to-color encoding requires some practice for interpre-
tation. Therefore, we included the color legend directly to the cor-
responding filter dial (Section 3.2.2) to help with the interpretation
of directions.

3.1.3 Time Streams

Since the number and length of individual fixations varies for each
participant, there is a varying number of fixation images. For dis-
playing the images on a timeline, there are two options: showing
the images on an absolute timescale or showing the images stacked
next to each other. The first approach preserves the synchronization
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Figure 5: Visualization overview: (a) Fixation-image charts, (b) filter query interface, (c) query results, (d) label editor, (e) stimulus view.

between participants, but the resulting timeline would create gaps
between fixations and the horizontal scalability would be impaired.
Therefore, we decided for the second approach, neglecting absolute
temporal position of fixations. This approach creates a dense rep-
resentation of all fixations in their sequential order, requiring less
space on the horizontal axis. However, it results in asynchronous
timelines due to the varying number of fixations, impairing an effi-
cient comparison between participants.

To compensate the asynchronicity between participants, we in-
cluded time streams for equidistant time intervals. For each time
stream interval, the stream passes the fixation images with the re-
spective time stamps. The resulting segments are finally combined
to a set of Bézier curves that mark the corresponding timespans for
all participants. The time streams are rendered in the background
of the fixation images with an alternating color scheme that can be
adjusted individually.

Figure 4 shows an example of time streams from four participants
looking at an infographic (Figure 6b). In the example, the num-
ber and duration of fixations for participant 5 and participant 4 are
similar in the first two seconds, thus the stream is less distorted.
After four seconds, participant 6 has two longer fixations leading to
a stronger distortion in the time streams.

With these time streams, the asynchronicity can be compensated
and the timelines remain comparable. We allow the user to adjust
the selected timespan interval.

3.2 Interaction

The fixation image chart displays an overview of consecutive fixa-
tions without overlap. However, to improve the visual search for
important events in the eye tracking data, additional interaction
techniques are required. Therefore, we provide a linked view that
displays the data with established scanpath visualizations, filter op-
tions to fade out fixation images unimportant for the current analy-
sis, and a labeling function for selected fixations.

3.2.1 Linked View

The additional view shows the complete stimulus in the stimu-
lus view (Figure 5(e)). A gaze replay of selected participants is

1http://en.wikipedia.org/wiki/Arecibo message
2https://www.stopalcoholabuse.gov/resources/Infographics/share.aspx?info=6

(a) (b)

Figure 6: The two static stimuli Arecibo message1 and UAD info-
graphic2 are investigated with our visualization in this paper.

displayed during the playback of the recorded data. The linking
between the stimulus view and the visualization is bidirectional.
Changing the time in the stimulus view selects the respective fixa-
tion images in the visualization. Selecting a fixation image in the
visualization sets the stimulus view to the according timestamp.

As it is common practice, the fixation duration is encoded by the
radius of individual fixations. Additionally, labels are rendered into
the visualization during playback, allowing for the verification of
the labeling process. Looking at our example data from the info-
graphic, we have two fixations from participant 0 and 6 in the cur-
rent time step that are labeled as “Green Sign” (Figure 5(e)). By
selecting consecutive fixations of a participant, the respective part
of the scanpath is also highlighted in the stimulus view.

3.2.2 Filtering

The fixation-image charts provide a good overview of all fixations
in a dataset. However, we need support for selecting and high-
lighting fixations according to different properties. In this way, it
becomes easy to investigate fixations and label them. Therefore,
we integrated an interactive query interface that allows us to filter
according to the following categories:
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Figure 7: Visual pattern of reading behavior in our visualization. Many short saccades in reading direction (red) appear together with few
(a) short and (b) long regressions against the reading direction (purple).

Filter 1: images Filter 2: reading Filter 3: regressions

Figure 8: Three labels are defined for fixations on the picture (yellow), reading (red), and regressions during reading (purple). With three
filter queries, about 80% of the fixations can be labeled very efficiently.

Filter by fixation data: The properties fixation duration, fixa-
tion distance, and saccade direction can be applied as filter criteria
for selecting fixation images. Hence, knowledge about certain eye
movements can be applied to highlight corresponding fixations. We
will discuss this approach in more detail in Section 4.1.

Filter by image similarity: The analyst can select a reference im-
age from the visualization and retrieve similar images. To this end,
we provide two similarity measures. The first is based on the de-
tection and matching of SIFT features [Lowe 1999] between the
reference and the fixation images. To normalize the similarity mea-
sure, we use the number of matching features between the refer-
ence image with itself. The second similarity measure is based
on a histogram comparison with the Bhattacharyya distance [Bhat-
tacharyya 1946] between the images. We choose these two mea-
sures because of their applicability to different analysis tasks. Re-
gions with similar structure can be identified by SIFT features,
whereas regions with similar color can be identified by histograms.

All filters can be enabled and adjusted individually by separate dials
(see Figure 5(b)). All enabled filters are concatenated by a logical
AND connection. The analyst can choose a value and adjust the
filter range with the mouse to select the values accepted by the filter.
Fixation images outside of the selected ranges will be faded out in
the visualization, highlighting only the currently relevant images.
In our example, a reference image from a green sign is selected
and the histogram similarity is activated in the search query. The
query results show us the most similar fixations on green signs in
the picture, sorted by their temporal appearance.

3.3 Labeling

Supporting the dissemination of analysis results, we allow the ana-
lyst to specify labels that can be assigned to fixations (Figure 5(d)).
In contrast to intersection tests with AOIs, labels can describe more
than just regions or objects, e.g., reading behavior or task-specific
events (see Section 4.1). Labels are visible in the visualization
through their assigned color in the background of the fixation im-
ages and in the stimulus view through their name.

3.4 Implementation

Our visualization prototype is implemented in C++ using Qt 4.8.
Calculations on image similarities were performed with OpenCV
2.49. The source code of our prototype can be downloaded3.

4 Use Cases

To demonstrate our visualization concept, we apply the technique
to static (Figure 6) and dynamic stimuli (Figure 9). The data was
recorded with a Tobi T60XL and filtered with the Tobii fixation
filter with standard settings (velocity threshold = 35 pixels/sample;
distance threshold = 35 pixels), as recommended by Tobii4.

Our current implementation is designed for single stimuli with data
from multiple participants. However, our concept can also be ex-
tended to data from multiple participants and multiple stimuli, as it
would be the case in experiments that are recorded with mobile eye
tracking glasses.

4.1 Efficient Labeling of Fixations

For the application to static stimuli, we investigate a test dataset
recorded from 8 participants, looking at a Wikipedia page about the
Arecibo message sent into space (see Figure 6a). A free-viewing
task with a time limit of 90 s had to be performed.

In this use case, we want to show how our approach can be ap-
plied to label fixation data very efficiently. Labeled fixations are
often necessary to evaluate the effects of changes in independent
variables on measured dependent variables statistically. Labeled
fixation data could also come from an automatic algorithm (e.g.,
for reading detection [Campbell and Maglio 2001]) and the analyst
might be interested in verifying the results of the algorithm.

There are basically two approaches to label fixation data: Define
areas of interest and check for each fixation if it lies inside one

3http://go.visus.uni-stuttgart.de/stva
4Tobii Studio 3.2, http://www.tobii.com
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Figure 9: Results for the Kite dataset [Kurzhals et al. 2014a]. (a) Filtering for long fixations does not lead to a clear result. Nevertheless, we
can see that many of the long fixations occur when the participants looked at the kite. Furthermore, their gazes moved in similar directions
(visible in the color of the bars) when they looked at the kite at the same time. (b) Filtering for long saccades in upward direction provides
clearer results. Most of these saccades start at the person controlling the kite. (c) To confirm this gaze behavior, we use the image similarity
filter to obtain all fixations related to this person. We can see that all subsequent saccades go in upward direction. (d) We pick out one of these
sequences to analyze this behavior further. The fixation images already show that the gaze moves between the person and the sky. (e) The
respective scanpath confirms this. (f) Looking at the respective part of the video stimulus, we can see that the kite leaves the camera view in
upward direction in this video sequence.

of these areas, or inspect each fixation individually and assign an
appropriate label to it. Both approaches have their advantages and
shortcomings. The main shortcoming for both approaches is that
the definition of areas of interest or the assignment of labels can
be very time-consuming. We aim for the second approach, since
especially for dynamic stimuli, the annotation of areas of interest is
a tedious preprocessing step. We take advantage of the filter query
discussed in Section 3.2.2 to improve the annotation step.

Since our visualization already provides an overview of all fixations
of the dataset, we can apply different filter settings to find similar
fixations and assign them to a label. We choose three different la-
bel categories: image, reading, and regressions. Image describes
fixations that lie on the corresponding region of the stimulus (Fig-
ure 6a, top-right). Note that in this case, the same labeling could be
achieved by defining areas of interest on the image region. How-
ever, the advantage of the individual labeling comes with the labels
reading and regressions. The mean fixation duration during read-
ing is approximately at 225 ms and the mean saccade length at 2◦,
depending on a number of factors [Rayner 1998]. Regressions typi-
cally occur during reading and are characterized by saccadic jumps
opposite to the reading direction. Longer regressions typically ap-
pear when the participants jump back in the text, either to read the
next line, or because they did not understand the text. Figure 7
shows a typical reading pattern in our visualization. The short fixa-
tions under 500 ms on the text are followed by short saccades under
100 px in reading direction (red). Regressions (purple) appear dur-
ing the reading process either to (a) re-investigate words (in this
case the word Arecibo) or (b) read the next line.

In the overview visualization (Figure 8, top), we can already see in
the images that most of the 1793 fixations lie on regions with text
and few fixations on the picture on the page.

Filter 1: By picking one of the fixation images with picture con-
tent, we obtain the similarities of all other fixation images to this
reference. The main difference between the text and the image re-
gion lies in their histograms. Based on this, we can remove all
fixation images under a certain threshold and mark the remaining
fixations with the image label (yellow).

Filter 2: To identify reading fixations, we start with a histogram
similarity for a fixation image containing mainly text. With these
filter settings for the image similarity, we can now add the informa-
tion about the fixation duration, saccade length, and saccade direc-
tion to identify fixations where a reading fixation appeared. There-
fore, we adjust the filter dial for the direction to a span of about 90◦

to the right side and adjust the other dials accordingly. This leaves
us with all the fixations for the label reading (red).

Filter 3: Finally, we keep the image similarity for text and just
change the saccade direction filter to the left. By deactivating the
other filters, we select long and short regressions. The resulting
fixations are labeled as regressions (purple).

After this process, we have labeled about 80 percent of the fixations
with only three filter queries in a very short timespan. For the re-
maining 20% of fixations, we can either decide individually which
label they belong to, or perform new filter queries. The resulting
labeled data could now, for example, be compared with the results
of a classification algorithm for reading behavior.

4.2 Explorative Data Analysis

The use case in Section 4.1 required the analyst to apply previous
knowledge from the literature about the properties of fixations for
reading behavior to perform the labeling task. In our second exam-



ple, we assume that the analyst does not know what special behav-
ior to look for. Hence, an explorative data analysis can help identify
potentially interesting patterns.

In some cases, it is hard to obtain useful information by just looking
at the overview visualization. In these cases, we can apply differ-
ent filter methods to reduce the amount of visible information. Our
filter methods cover standard eye tracking metrics like fixation du-
ration or saccade length. Figure 9 demonstrates the utility of these
filter methods. Filtering for long fixations does not directly lead to
a clear pattern. However, it is visible that in many cases, the par-
ticipants looked at the kite when a long fixation occurs. However,
some of the long fixations also occur at the person controlling the
kite. While the long fixations on the kite are followed by saccades
in different directions, the long saccades following long fixations on
the person seem to go all in upward direction. This can be verified
by filtering for long saccades in upward direction. We can see that
almost all of them start at the person. This can be further confirmed
with the image similarity filter.

To find an explanation for this behavior, we can look at a respec-
tive sequence of saccades. We can see that the gaze seems to move
between the person and the sky. This is also confirmed by the scan-
path visualization. However, the kite does not appear in the fixation
images. The respective sequence of the video stimulus provides an
explanation for this. We can see that the kite left the camera view
at the upper border and that the participants then looked at the per-
son controlling the kite. From this, it can be assumed that the gazes
primarily followed the motion of the kite. However, when the kite
leaves the scene, the gazes move between the person and the sky.
The participants seem to wait for the kite to reappear.

5 Discussion

In an initial qualitative user study, we presented our technique to
three visualization experts from our institute with experience in eye
tracking analysis. They were not involved in the development pro-
cess of the visualization prototype. In separate sessions, they tested
the application on three datasets. Each session took about 60 min-
utes to investigate the datasets. The first dataset, Arecibo Message,
was used as test data, where the concept and functionality of the
application was explained. For the second and third dataset, UAD
Infographic and Kite, the experts were allowed to freely explore
the data and search for noticeable events and patterns. During the
exploration, the think aloud method was applied to protocol the ex-
perts’ analysis strategies.

After the initial explanation, the visualization was interpreted eas-
ily by the experts. The overview of the visualization was inves-
tigated shortly before all experts applied the filter queries. Here,
the strategies differed between the experts. We observed that the
main strategies for the first search queries were the search for the
longest fixation durations, the longest saccades, and direct search
queries for images similar to fixation images the experts considered
important in the visualization.

Although the visualization was received well by the experts, there
are also potential shortcomings. Based on the expert feedback and
general considerations, we identified the following issues.

Long fixations and smooth pursuit in videos: In contrast to
static stimuli, video content can change drastically between con-
secutive video frames. By aggregating sampled gaze data into fix-
ations, those changes are lost. In our current implementation we
show the first video frame corresponding with the timespan of a
fixation. Therefore, objects that moved through the fixated area
within one fixation timespan can only be identified in the video re-

Figure 10: Comparison of gaze stripes [Kurzhals et al. 2016] (top)
and fixation-image charts (bottom). The marked timespan in the
gaze stripes is covered by a single image in the fixation-image chart.

play. Similar to this problem is the question how smooth pursuit
can be handled by the visualization. Both scenarios require us to
display more information about the underlying video frames. For
example, the affected fixation images could be split into image se-
quences that describe the stimulus context more detailed. Those
image sequences could be stacked on the timeline, or small ani-
mation loops could be applied, preserving the dense layout on the
timeline.

Ambiguous labels: As with many automatic algorithms, in
some cases the calculated similarity between images might be high,
although the watched content is different. This might happen for
example when two objects are close to each other and although the
participant looked at one object, parts of the other object can be
visible in the cropped image. In this case, the image can appear
in both filter queries, if we search for the objects separately. There-
fore, we suggest that the labeling process is performed by searching
for the image similarity of both objects and finally, ambiguous fix-
ations with more than one label can be investigated individually to
solve the labeling problem. The efficiency of this approach could
be improved by an additional view that lists ambiguous fixations.
Additionally, new similarity metrics could be integrated into the
system, providing a better accuracy for specific analysis tasks.

Comparison to gaze stripes: Figure 10 shows a comparison of
gaze stripes [Kurzhals et al. 2016] and our proposed technique for
the same part of the Kite dataset, as gaze stripes is the approach that
is most similar to ours. We can see that temporal synchronicity is re-
duced in fixation-image charts. While it is easy to see in gaze stripes
that all shown participants look at the same part of the stimulus, this
information is more difficult to obtain from fixation-image charts.
The time streams in the background alleviate this issue to some
degree. Furthermore, fixation-image charts require more space in
vertical direction. However, the space is used to provide additional
information. We can see that for the selected point in time (black
border), the gazes of all shown participants proceed into lower right
direction (brown bars). This cannot be directly deduced from gaze
stripes. Finally, fixation-image charts exhibit a much higher scala-
bility with respect to the covered timespan. The figure shows that
almost the full time range covered by the gaze stripes is represented
with a single image in the fixation-image chart.



6 Conclusion

We presented a new visualization approach to display and compare
fixation data from multiple participants. Our technique represents
scanpaths by image sequences that convey additional information
about fixation durations, saccade lengths and directions, and the lo-
cal context of the stimulus. Through the compact representation of
fixations, our approach scales well with respect to the duration of
recorded eye tracking data. We demonstrated that our approach al-
lows an efficient labeling of fixations. Furthermore, it supports the
explorative analysis of eye tracking data and enables the detection
of interesting fixation patterns. However, further evaluation con-
sidering the performance and acceptance of the technique in com-
parison to established methods will be required. So far, we applied
our technique to static and dynamic stimuli with passive stimulus
content. For future work, we plan to further evaluate our technique
for active stimulus content from interactive applications and mobile
eye tracking. For those scenarios, fixation patterns will be harder
to interpret, as the underlying stimulus can vary extremely between
participants due to changes in the environment (e.g., from different
lighting).
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