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Abstract

The number of applications influenced by computer vision has increased rapidly in the last few
years. Innovative technologies such as autonomous robotic vacuumcleaners, smart video doorbells,
and augmented reality devices use image data to sense the surrounding environment. On a basic
level, sensing the environment can mean to recover the 3D geometry of the real world and the
objects contained therein aswell as to capture themotion fieldbetween consecutive image frames of
a video sequence. In this thesis, we deal with these two challenges that constitute two fundamental
problems in computer vision: 3D reconstruction and motion estimation. In particular we aim at
improving upon the accuracy of current methods by utilizing adaptive approaches as well as by
considering multiple sources of information.

In the first part of the thesis, we deal with the topic of 3D reconstruction. We develop and inves-
tigate an approach that leverages multiple depth cues simultaneously. In particular, we combine
two cues that complement each other: the parallax cue and the shading cue. While the parallax
cue (stereo) allows to obtain accurate estimates in highly textured regions, the shading cue (shape
from shading) allows to improve the reconstruction in homogeneous areas. Furthermore, we for-
mulate the model in such a way that it not only estimates the shape but simultaneously computes
the albedo and the illumination. This formulation renders the method especially adaptive regard-
ing the adaptation to different scenes, objects, and illumination conditions. To complete the new
model we employ special anisotropic smoothness terms. This in turn enables a detail-preserving
regularization. Regarding the optimization we propose a novel hyperbolic warping scheme based
on an upwind approximation. This new scheme nicely blends in with the commonly used geomet-
ric warping and hence allows for a convenient optimization of the proposed model. As a result,
we obtain an adaptive method that enables the estimation of high-quality depth maps of Lamber-
tian scenes with varying albedo under unknown illumination. The results clearly demonstrate the
advantages over single cue based approaches as well as the capability to recover fine surface details.
In the second part of the thesis, we turn to the topic of motion estimation. In this context,

our contributions concern order-adaptive regularization strategies, advanced refinement models
for pipeline approaches and multi-frame strategies for pipeline approaches. First, we analyze and
compare different isotropic and anisotropic second-order regularization strategies for variational
motion estimation that allow the computation of accurate affine motion fields. In this context, we
propose a new order-adaptive approach that brings together first and second-order regularization
within a single model that combines the benefits of both techniques. Second, we design a new
model for variational refinement that tackles the shortcomings of current refinement models. In
particular, it combines an illumination-aware data term that offers robustness under varying illu-
mination with our novel order-adaptive regularization strategy that is capable to estimate accurate
affine flow fields. Third, we propose two different techniques to leverage additional input frames
within the motion estimation: a strategy based on an ego-motion model and a strategy based on a
learned motion model. Both techniques enable us to significantly improve the estimation results,
especially, in case of out of frame motion and in case of occluded areas. Overall, starting from a
variational approach with fixed-order regularization we succeed to steadily improve the results,
finally obtaining state-of-the-art quality on the most popular benchmark data sets.
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Zusammenfassung

Die Zahl der Anwendungen, die von Computer Vision beeinflusst sind, ist in den letzten Jahren
rasant gestiegen. Innovative Technologien wie autonome Saugroboter, smarte Video-Türklingeln
und Augmented-Reality-Geräte greifen vermehrt auf Bilddaten zurück, um ihre Umgebung zu
erfassen. Der erste Schritt dafür, kann daraus bestehen die 3D-Geometrie der realenWelt und die
darin enthaltenen Objekte zu rekonstruieren oder die Bewegung in Bildabfolgen zu messen. In
dieser Arbeit beschäftigenwir unsmit genau diesen beiden fundamentalen Problemstellungen des
Themengebiets: 3D Rekonstruktion und Bewegungsbestimmung. Insbesondere zielen wir darauf
ab, die Genauigkeit von derzeitigen Verfahren zu verbessern, indem wir adaptive Algorithmen
entwickeln, die es ermöglichen mehrere Informationsquellen simultan auszunutzen.

Im ersten Teil der Arbeit beschäftigen wir uns mit 3DRekonstruktion.Wir entwickeln und un-
tersuchen ein Verfahren, welches mehrere Prinzipien zur Tiefenwahrnehmung kombiniert. Dabei
greifen wir auf zwei sich ergänzende Prinzipien zurück: Parallaxe und Schattierung. Während
die Parallaxe genaue Messungen in stark texturierten Bereichen ermöglicht, erlaubt die Schat-
tierung präsizeMessungen in homogenen Bereichen. Darüber hinaus formulieren wir dasModell,
dass es nicht nur die Form berechnet, sondern auch die Albedo und die Beleuchtung. Diese For-
mulierung macht die Methode besonders adaptiv hinsichtlich der Anpassung an verschiedenste
Szenen,Objekte undLichtverhältnisse. Umdas neueModell abzurunden, verwendenwir spezielle
anisotrope Glattheitsterme. Dies wiederum ermöglicht eine detail-erhaltende Regularisierung. Im
Hinblick auf die Optimierung stellen wir ein neues hyperbolisches Warping-Schema vor, das auf
einer Upwind-Approximation basiert. Dieses neue Schema fügt sich harmonisch in das verbreit-
ete geometrische Warping-Schema ein und ermöglicht eine geeignete Optimierung des Modells.
Als Ergebnis erhalten wir eine adaptive Methode, die die Berechnung von präzisen Tiefenkarten
von Lambertschen Szenen mit variierenden Albedo unter unbekannter Beleuchtung ermöglicht.
Die Ergebnisse zeigen deutlich die Vorteile gegenüber Verfahren, die nur einzelne Prinzipien zur
Tiefenwahrnehmung verwenden, sowie die Fähigkeit, feine Oberflächendetails zu erfassen.

Im zweiten Teil der Arbeit widmen wir uns der Bewegungsbestimmung. In diesem Kontext
umfassen unsere Beiträge ordnungsadaptive Regularisierungsstrategien, Refinement-Modelle für
Pipeline-Methoden, sowieMehrbildstrategien für Pipeline-Methoden. Zuerst analysieren und ver-
gleichen wir isotrope und anisotrope Regularisiererstrategien zweiter Ordnung für variationelle
Bewegungsbestimmung, die die genaue Berechnung von affinen Bewegungsfeldern ermöglichen.
In diesem Zusammenhang entwerfen wir einen neuen ordnungsadaptiven Ansatz, der die Regu-
larisierung erster und zweiter Ordnung in einem einzigenModell vereint und die Vorteile beider
Techniken kombiniert. Zweitens stellen wir ein neues Refinement-Modell vor, das die Schwächen
von aktuellenModellen behebt. Insbesondere kombiniert es einen speziellen Datenterm, der Ro-
bustheit bei Beleuchtungsänderungen bietet, mit unserem neuartigen ordnungsadaptiven Reg-
ularisier, der in der Lage ist, genaue affine Bewegungsfelder zu berechnen. Drittens stellen wir
zwei Techniken vor, die Informationen aus mehr als zwei Bildern gewinnen: basierend auf einem
Eigen-Bewegungsmodell sowie einem gelernten Bewegungsmodell. Beide Strategien ermöglichen
signifikante Verbesserungen, insbesondere im Fall von Verdeckungen. Letzendlich gelingt es uns,
ausgehend von einem Variationsansatz mit festgelegter Regularisierungsordnung, die Verfahren
stetig zu verbessern und schlussendlich Ergebnisse zu produzieren die dem aktuellen Stand der
Technik auf den gängigsten Benchmark-Datensätzen darstellen.
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1 Introduction

Nowadays, the impact of computer vision on our day-to-day lives steadily increases. Meanwhile,
computer vision based technology can be found in areas such as retail, automotive, healthcare,
agriculture, banking, and many more. For many people, the automatic extraction, analysis, and
understanding of captured images and video sequences has already become a matter of course.
However, while visually sensing the world might be an easy task for a human being, it is a highly
non-trivial task to transfer this capability to a machine. Consequently, decades of research have
been necessary to reach the current state-of-the-art.
As in all scientific fields, one can break down the overarching field in smaller subdomains and

identify certain key problems. Two such fundamental problems of computer vision are 3D re-
construction andmotion estimation. While the goal of 3D reconstruction is to capture/recover the
shape of real objects that are lost during the acquisition process, the goal ofmotion estimation is to
determine the displacement field between frame pairs in an image sequence. In this thesis, we aim
at advancing the state-of-the-art in both subdomains. To this end, we not only develop essential
concepts that allow extracting multiple sources of information simultaneously but also propose
mechanisms that allow adapting to the underlying data. Furthermore, we realize implementations
of these concepts andmechanisms either in terms of individual steps of larger estimation pipelines
or in terms of standalone approaches.

1 . 1 Scope and Contributions

Next, we give a more detailed overview of the problems we consider in the thesis. In particular, we
touch on the topics of the different chapters and highlight our contributions.

1 . 1 . 1 3D Reconstruction

The first problem we approach is 3D reconstruction. In particular, we focus on passive image-
based reconstruction techniques. In contrast to active approaches, such methods do not directly
interfere with the scene, e.g., in terms of varying the illumination or using active sensor technology
such as time-of-flight cameras, and instead they only operate on standard images. Depending on
the underlying strategy these techniques require either a single image or multiple images captured
fromdifferent viewpoints to perform the reconstruction.Hence, the overall reconstruction process
for such approaches typically involves a camera calibration step as well as possible post-processing
steps, e.g., point-cloud fusion or mesh generation. However, in this thesis, we concentrate on the
reconstruction process and therefore assume the camera setup to be calibrated.

Variational 3D Reconstruction Variational methods represent a very prominent
class of techniques in computer vision. Such methods minimize a so-called cost or energy func-

1



1 Introduction

Figure 1.1: Example 3D Reconstruction. From left to right: (a-c) Input images [218]. (d) Shaded reconstruc-
tion result of our method.

tional, which constitutes a measure of correctness concerning certain assumptions, to solve a spe-
cific task, e.g., 3D reconstruction. Typically the formulation of such an energy functional comprises
two types of components: data terms and regularization terms. While data terms express certain
constraints that characterize the unknowns and relate them to the given data, regularization terms
impose some kindof spatial regularity, i.e., smoothness, on the unknowns. In this thesis we advance
the field by proposing such a variational approach that simultaneously exploits two fundamentally
different depth cues, i.e., the shading cue and the parallax cue. By combining both depth cues, we
are able to obtain a robust estimation of the overall object surface due to the parallax cue, while
also being able to recover fine surface details due to the shading cue; cf. Figure 1.1. Furthermore,
to maximize the applicability of our method, we estimate not only the depth but also the color
and reflectance properties (albedo) as well as the present illumination. In this context, the careful
selection of the regularization plays an important role. While we use specially tailored anisotropic
(directional-dependent) first-order smoothness terms that provide sharp illumination and albedo
maps, we employ an anisotropic second-order smoothness term for the depth that allows the re-
construction of slanted surfaces. As a result, we obtain a method that enables the estimation of
high-quality depth maps of Lambertian scenes with varying albedo under unknown illumination.
Moreover, we not only propose a new variational model but also provide novel ideas for the nu-
merical minimization. In particular, we propose a coarse-to-fine minimization scheme based on a
linearization of all data terms and an upwind scheme approximation of the shape from shading
data term that allows us to embed the entire optimization into a hierarchical incremental fixed
point strategy. Finally, we evaluate our method on commonly used data sets to demonstrate the
excellent performance. Furthermore, we compare the results of our approach to the results of ap-
proaches that only rely on the parallax cue to show the usefulness as well as the importance of the
shading cue to recover fine surface details. Main parts of this work are published in [3, 4, 5].

1 . 1 .2 Motion Estimation

The second problem we tackle is motion estimation. While the term motion estimation is quite
generic, we refer to it as the 2Dmotion field between frame pairs in an image sequence. Further,

2



1.1 Scope and Contributions

Figure 1.2: Different regularization order for motion estimation. Top to bottom, from left to right: (a-b)
Input images [119]. (c) Motion field computed using a first-order regularizer. (d) Motion field
computed using a second-order regularizer.

we assume that this 2Dmotion field is the result of the projection of a 3Dmotion onto the image
plane. In the literature, this scenario is also one possible interpretation of the optical flow problem,
which is often used interchangeably [174].

Variational Motion Estimation Variational methods also have a long and success-
ful history in the context of motion estimation. In the original formulation of Horn and Schunck
[81], the underlying energy functional is composedof two terms: a data term that imposes temporal
constancy constraints on image features and a regularization term that enforces spatial regularity
on the solution. While the data term enables to trace corresponding points in subsequent frames,
the regularization term allows coping with ill-posed situations and to, therefore, obtain a plausible
per pixel solution. So far, many variational optical flow methods rely on first-order regularization
strategies [36, 124, 162, 193, 216].Recently, however, approaches based on second-order regulariza-
tion have gained more and more attention [33, 54, 80, 137, 167]. In particular in scenes with a vast
amount of ego-motion, such second-order regularizers allow to estimate the resulting piecewise
affine flow fields which cannot be captured adequately by first-order regularizers; cf. Figure 1.2.
In this context, we first compare different techniques to model such second-order regularization
strategies and demonstrate how to incorporate directional information to steer the underlying
smoothing behavior. Second, we propose a new order-adaptive regularization strategy that auto-
matically adapts the regularization order to match the underlying data. This new order-adaptive
regularizer enables us to combine the advantages of both first and second-order regularization
strategies, i.e., the robustness regarding small fluctuations of first-order regularization and the ca-
pability to handle affine motion patterns of second-order regularization. Finally, our evaluation
shows that the proposed strategy facilitates generalization across different data sets without the
need to manually adjust the underlying model. Main parts of this work are published in [9, 10].

Beyond Variational Motion Estimation Entirely variational methods for mo-
tion estimation, as mentioned before, have a well-known weakness – the estimation of large dis-
placements of small objects. To dealwith this problem, researchers proposed different strategies [37,
143, 199].Of these strategies, primarily, the idea to replace the coarse-to-fine minimization scheme
by a proper initialization, obtained via a sparse-to-dense interpolation of point correspondences

3
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Figure 1.3: Different refinementmethods.Top to bottom, from left to right: (a-b) Reference input image [44]
and ground truth motion field. (c) Motion field computed using a commonly used refinement
method [143]. (d) Motion field computed using our refinement method [8].

[143], has prevailed. In fact, most state-of-the-art large displacement optical flow pipelines use it
and refer to the variational component as variational refinement [20, 50, 61, 85, 120].

Even though the variational refinement plays an essential role in many recent approaches, most
of these new pipeline based methods rely on rather simple models for the refinement. Thus the
refinement typically cannot keep up with the adaptivity and robustness of the preceding pipeline
steps, which may lead to imprecise motion fields; cf. Figure 1.3. To tackle this shortcoming, we
propose a newmodel for variational refinement that combines robustness under varying illumina-
tion with the adaptive estimation of higher-order motion fields. Moreover, we suggest a reduced
coarse-to-fine scheme: a hierarchical minimization approach that can benefit from a proper ini-
tialization within the pipeline approach while still being able to correct errors in the intermediate
results. Finally, the conducted evaluation makes the benefits of our advanced model explicit. In
particular, our new refinement scheme consistently improves the results across all major motion
estimation benchmarks. Main parts of this work are published in [8].

Multi-Frame Motion Estimation So far, we focused on two-frame methods, i.e.,
methods that only use two frames of the image sequence. This choice, however, prevents us from
exploiting a possibly valuable source of information – information on temporal coherence. There-
fore, we propose and investigate strategies that enable us to exploit information from additional
input frames. To realize these strategieswe extendpipeline based approaches to integrate the follow-
ing steps: compute themotion w.r.t. preceding frames of the image sequence, relate this additional
motion information to the current motion field in terms of predictions, and include these predic-
tions in the estimation process to improve the results; cf. Figure 1.4. To this end, we employ two
differentmotionmodels that allow us to relatemotion fields via predictions: an ego-motionmodel
and a learned motion model. Main parts of this work are published in [2, 6].

In the case of the ego-motionmodel based approach,we first design a coarse-to-finemulti-frame
PatchMatch approach for estimating structure matches (structure frommotion) that combines a
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1.1 Scope and Contributions

Figure 1.4: Two-Frame and Multi-Frame results. Top to bottom, from left to right: (a-b) Reference input
image [44] and ground truthmotion field. (c)Motion field computedusing a two-framemethod.
(d) Motion field computed using a multi-frame method [2].

depth based parametrization with different temporal selection strategies. While the parametriza-
tionmodels the estimationmore robust by reducing the search space, the hierarchical optimization
and the temporal selection improve the accuracy. Second,we propose a consistency-based selection
scheme for combining predictions from this structure-based PatchMatch approach with matches
of an unconstrained PatchMatch approach. Thereby, the backward flow allows us to identify re-
liable structure matches, while a robust voting scheme decides on the remaining cases. Third, we
embed the resulting matches into the optical flow pipeline. By employing recent approaches for
interpolation and refinement, our method provides dense results with sub-pixel accuracy. Finally,
experiments on all major benchmarks demonstrate the benefits of our novel approach. In particu-
lar, the greatest benefits are achieved in the case of occlusions and out-of-frame motion.

Probably themain drawbacks of the ego-motionmodel are that benefits are limited to rigid parts
of the sequence and that sufficient ego-motion is required to work well. To tackle these shortcom-
ings, we are the first to propose a method that relies on a learned motion model that is capable to
overcome these limitations. This learnedmotionmodel is implemented via a convolutional neural
network. In contrast to other approaches that train networks before the estimation, our approach
learns the models online, i.e., during the estimation. Moreover, instead of relying on potentially
unsuitable data sets with ground truth, our models are trained using initial flow estimates of the
actual sequence. Such an unsupervised/self-supervised training offers the advantage that we can
learn appropriate models for each sequence. In addition, our approach not only learns one model
per sequence but one model for each frame of every sequence. This per-frame learning results in
a high degree of adaptability when it comes to a change of the scene content. Finally, the learned
models are spatially variant, i.e., location dependent. This ability, in turn, addresses the problem of
independently moving objects. At last, we demonstrate within our evaluation that this novel strat-
egy is capable to overcome the shortcomings of the ego-motion model and achieve improvements
in the context of independently moving objects, non-ego motion scenes and non-rigid-motion
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scenarios. By overcoming these shortcomings it is able to achieve state-of-the-art results on major
optical flow benchmarks and is currently among themost accuratemethods formotion estimation.

1 .2 Outline

First, we cover essential foundations concerning the image formation process as well as the design
and optimization of variational models in Chapter 2. Then we tackle the problem of variational
3D reconstruction in Chapter 3 by combining parallax and shading cues within a joint variational
approach. Subsequently, we turn towards the topic of motion estimation. Starting with entirely
variationalmethods inChapter 4,we first look at higher order regularization strategies and propose
a neworder-adaptive regularization strategy. To overcome certain limitations of entirely variational
methods we propose a new refinement model for pipeline based motion estimation methods in
Chapter 5. Finally, we propose two different strategies that allow to exploit information frommore
than two input frames in Chapter 6 and conclude in Chapter 7.
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2 Foundations

In this chapter, we introduce basic concepts that are important throughout the entire thesis. It
includes ideas related to the image formation process, such as camera geometry and radiometric
models, as well as concepts regarding optimization techniques.

2.1 Images

Digital images constitute the source of information for all approaches presented in this thesis. In
the case of grayscale images, storing is realized via a two-dimensional array. Within this array, each
array element represents a single picture element (pixel) that encodes an intensity value. Further,
we interpret every pixel as a discrete sample point of a continuous function I : Ω → R, where
Ω ⊂ R

2 denotes the rectangular image domain. In particular, the sample points are arranged on a
regular grid as shown in Figure 2.1,wherehx andhy denote the horizontal and vertical grid spacing
andnx,ny denote the number sample points in both directions, respectively. Therefore, the value
of a pixel at the array element (i, j) corresponds to the sampling point at

x =
(
(i− 1

2) · hx, (j − 1
2) · hy)

)⊤
. (2.1)

In the case ofRGB color images, a third dimension is added to store the intensities of the red, green
and blue color channel. Consequently, the associated function I : Ω → R

3 is vector-valued.

I1,1 I2,1 I3,1 I4,1 I5,1 I6,1

I1,2 I2,2 I3,2 I4,2 I5,2 I6,2

I1,3 I2,3 I3,3 I4,3 I5,3 I6,3

I1,4 I2,4 I3,4 I4,4 I5,4 I6,4

hx

hy

y

x
hxnx

hyny
Ω

Figure 2.1: Sample points on a regular grid within the rectangular image domain.
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2.2 Camera Geometry

Next, we will look into the geometric-related concepts of the image formation process. While the
explanations of the introduced concepts are kept rather short and straightforward, Hartley and
Zisserman give a more extensive introduction with detailed descriptions in their book [79].

2.2 .1 Homogeneous Coordinates

Dealing with the concept of projection, homogeneous coordinates (also termed projective coordi-
nates) turn out to be a useful tool. In particular, they allow to express affine transformations and
protective transformations as a single matrix multiplication. To go from Euclidean space Rn to
projective spacePn an additional dimension is introduced. Therefore, the forward transformation
of a point x ∈ R

n to its homogeneous counterpart x̃ ∈ P
n is given by

Π : Rn → P
n

x = (x1, . . . , xn)
⊤ 7→ x̃ = (x1, . . . , xn, 1)

⊤ , (2.2)

which simply appends a one. The backward transformations reads

π : Pn → R
n

x̃ = (x̃1, . . . , x̃n, x̃n+1)
⊤ 7→ x =

(
x̃1

x̃n+1
, . . . ,

x̃n
x̃n+1

)⊤
, (2.3)

where the first n entries are divided by the last entry x̃n+1 and the additionally introduced dimen-
sion is removed. In case of the two-dimensional space R2 this can be interpreted as expressing
2D points via lines in a 3D space, where all points on the line λx̃ = (λx1, λx2, λ)

⊤ represent
the same point x = (x1, x2)

⊤. Furthermore, all these parallel lines intersect in points at infin-
ity, which have a zero entry in the additional dimension. These points at infinity do not have an
Euclidean counterpart and consequently the back transformation π is not defined for λ = 0.

2.2 .2 Pinhole Camera Model

Todescribe themapping of a 3Dpoint onto a 2Dpoint on the image plane, a relationship between
both points must be defined. The pinhole camera model represents such a relationship, i.e., a
perfect perspective projection. Assuming that the camera coordinate system is aligned with the
world coordinate system, i.e., the camera centerC coincideswith the origin of theworld coordinate
system, the image planeΩ ⊂ R

2 is defined to lie parallel to theX-Y -plane at distance of the focal
length f . Figure 2.2 depicts this setup. Here, the Z-axis coincides with the principal axis, which
is perpendicular to the image plane and passes through the camera centerC. Furthermore, the
intersection point p of the principal axis and the image plane is called the principal point.
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X

Z

X

Y

x

Cp

f

image plane

principal axis

camera center

X

Z

Y

x

C

p

f

image plane

Figure 2.2: Geometry of the pinhole camera model.

The pinhole camera model maps a 3D pointX ∈ R
3 to the 2D location x ∈ Ω on the image

plane, where the line joining the pointX and the camera centerC, i.e., the optical ray, intersects
the image plane. Figure 2.2 shows this mapping. According to the intercept theorem

x

f
=

X

Z
and

y

f
=

Y

Z
(2.4)

holds such that the projection is given by

X =



X
Y
Z


 7→ x =

(
x
y

)
=

(
f · X

Z

f · Y
Z

)
. (2.5)

By employing the previously introduced homogeneous coordinates, the projection can be written
in a compact form by using a single matrix multiplication

x = π(x̃) = π
(
P X̃

)
with P =



f 0 0 0
0 f 0 0
0 0 1 0


 , (2.6)

where π is the backward transformation of the homogeneous coordinates, see Equation 2.3, and
the matrix P is the so-called camera projection matrix.

Intrinsic Camera Parameters The model is generalized to include a principal point
offset as well as an individual scaling in both axial directions, to copy the internal characteristics
of actual cameras. While adding a principal point offset allows to describe a mapping w.r.t. an
image coordinate system that is not aligned with the camera coordinate system, see Figure 2.3, an
individual scaling in both axial directions allows to define the mapping w.r.t. a pixel coordinate
system. Both generalizations are included via the camera calibration matrix, given by

K =



sx 0 ox
0 sy oy
0 0 1


 , (2.7)
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xcam

ycam

C

p

x

y

ox

oy

Figure 2.3: Principal point offset o.

Xcam

Ycam

Zcam

t

R
XworldYworld

Zworld

Figure 2.4: Static transformation Tcam←world.

where o = (ox, oy)
⊤ is the principal point offset, and sx = f · mx and sy = f · my are

the scaled focal length in terms of pixel dimensions in both axial directions, respectively. Here
m = (mx,my)

⊤ denotes the individual scaling factor that defines the number of pixels per unit
length in the image coordinate system and, as before, f is the focal length.

The camera calibrationmatrixK is an upper triangularmatrixwith the determinantdet(K) =
sx · sy · 1 6= 0 and hence it is invertible. The inverse of K reads

K−1 =




1
sx

0 −ox
sx

0 1
sy

−oy
sy

0 0 1


 . (2.8)

Extrinsic Camera Parameters Up to now, the camera coordinate system is assumed
to be aligned with the world coordinate system.While this simplification does not pose a problem
if only a single camera has to be considered, it does not allow to deal withmultiple camera scenarios.
To overcome this simplification,we introduce a static transformation thatmaps between theworld
coordinate frame and the camera coordinate frame. A rotation and a translation define this static
transformation. Using a 3 × 3 rotation matrix R and a translation 3-vector t, see Figure 2.4, it
relates a pointXworld defined in the world coordinate frame to the equivalent pointXcam defined
in the camera coordinate frame by

Xcam = RXworld + t . (2.9)

This transformation can also be encoded in a 4× 4matrix

Tcam←world =

(
R t

0 1

)
, (2.10)

which allows applying the static transformation via a single matrix-vector product by using homo-
geneous coordinates

X̃cam = Tcam←world X̃
world . (2.11)
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The inverse transformation T−1cam←world := Tworld←cam is given by

Tworld←cam =

(
R−1 −R−1t
0 1

)
, (2.12)

where R−1 = R⊤, since the rotation matrix R is an orthogonal matrix, and where Cworld =
−R−1t is the camera center in terms of the world coordinate frame.

General Pinhole Camera Model Finally, combining the intrinsic camera parameters
and the extrinsic camera parameters allows describing the mapping from a 3D pointXworld onto
the corresponding 2D point x on the image plane

x = π(x̃) = π(K (RXworld + t)) . (2.13)

Making further use of homogeneous coordinates allows describing the projection by the so-called
camera projection matrix P , given by

P = (K 0)Tcam←world = K (R t) (2.14)

that maps a homogeneous 3D point defined in the world coordinate frame X̃world to the corre-
sponding 2D pixel location in the image coordinate system via

x = π(x̃) = π(P X̃world) . (2.15)

In total, the presented general camera projection matrix offers ten degrees of freedom, of which
four arise from the camera calibration matrixK , and the remaining six are due to the rotation and
translation encoded in the extrinsic camera parameters.

2.2 .3 Back Projection on the Surface

The previous section described the projection of a 3D point onto the image plane. Now the in-
verse operation shall be discussed, i.e., the back projection. This back projection comes down to a
parametrization of the optical ray that passes through the camera centerC = −R−1t and a point
x on the image plane. By considering the projection described in Equation 2.13, a 3DpointX that
lies on the optical ray is given by

x̃ = KRX+Kt

x̃−Kt = KRX

K−1x̃− t = RX

R−1K−1x̃−R−1t = X

R−1K−1x̃+C = X . (2.16)

11
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Therefore, the optical ray can be parametrized as

s(x, z) = C+ z · (X−C)

= C+ z ·R−1K−1x̃ , (2.17)

where z is the distance of the resulting point s(x, z) to the camera centerC. By definition, the
distance z is measured along the principal axis. In case the world coordinate frame is aligned with
the camera coordinate frame the back projection reduces to

s(x, z) = z ·K−1x̃ = z ·




1
sx

0 −ox
sx

0 1
sy

−oy
sy

0 0 1


x̃ = z ·




x−ox
sx

y−oy
sy

1


 . (2.18)

In general 3D points lie on a surface. The corresponding surface normal at a certain point can be
computed as the normalized cross-product

n(x, z) =
∂xs× ∂ys

|∂xs× ∂ys|
, (2.19)

of the corresponding tangent vectors, given by the partial derivatives

∂xs = R−1K−1(zxx̃+ z e1) , (2.20)

∂ys = R−1K−1(zyx̃+ z e2) , (2.21)

where e1 = (1, 0, 0)⊤ and e2 = (0, 1, 0)⊤. The cross product can be computed as follows

n̄(x, z) = ∂xs× ∂ys

= R−1K−1(zxx̃+ z e1)×R−1K−1(zyx̃+ z e2) . (2.22)

Using the following three algebraic properties

(Ma)× (Mb) = (detM)M−⊤(a× b) , (2.23)

a× a = 0 , (2.24)

a× b = −(b× a) , (2.25)

whereM denotes a 3× 3matrix and a and b are two 3-vectors, allows simplifying the expression

n̄(x, z) = M
(
(zxx̃+ z e1)× (zyx̃+ z e2)

)

= M
(
(zxx̃)× (zyx̃+ z e2) + (z e1)× (zyx̃+ z e2)

)

= M
(
zxzy(x̃× x̃) + zxz(x̃× e2) + zyz(e1 × x̃) + z2(e1 × e2)

)

= z ·M
(
zx(x̃× e2)− zy(x̃× e1) + ze3

)
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= z ·M





−zx
0
x


+




0
−zy
y


+



0
0
z






= z ·M




−zx
−zy

zxx+ zyy + z




= z ·M




−zx
−zy

∇z⊤x+ z


 (2.26)

with e3 = (0, 0, 1)⊤ andM = det(R−1K−1)(R−1K−1)−⊤ = 1
sxsy

R⊤K⊤. Finally, replac-
ingM in the expression leads to

n̄(x, z) =
z

sxsy
R⊤K⊤




−zx
−zy

∇z⊤x+ z


 . (2.27)

Again in the special case that the world coordinate frame is aligned with the camera coordinate
frame, the cross product reads

n̄(x, z) =
z

sxsy
K⊤




−zx
−zy

∇z⊤x+ z


 =

z

sxsy




−sxzx
−syzy

∇z⊤(x− o) + z


 , (2.28)

such that

n(x, z) =
n̄(x, z)

|n̄(x, z)| =




−sxzx
−syzy

∇z⊤(x− o) + z




√
s2xz

2
x + s2yz

2
y + (∇z⊤(x− o) + z)2

. (2.29)

Eventually, one should note that the surface normal may either point inwards or outwards the
actual object. Therefore, n(x, z), as well as−n(x, z), impose a valid surface normal. In our case,
we have a right-handed coordinate system, such that the surface normal pointing outwards reads

n(x, z) = − n̄(x, z)

|n̄(x, z)| . (2.30)

2.2 .4 Epipolar Geometry

The previously described pinhole camera model allows specifying the mapping of 3D points onto
a 2D image plane. With two cameras that capture the scene from two distinct locations, the corre-
sponding projections obey certain geometric constraints, known as epipolar constraints. Figure 2.5
depicts such a two-camera setup. The line connecting both camera centersC andC′ is the baseline.
The intersections of the baseline and the image planes define the epipoles e and e′, respectively.
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X

x′
l′

C′

x
l

C
e e′
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epipolar plane

Figure 2.5: Sketch showing the epipolar geometry.

Furthermore, all planes that contain the baseline are epipolar planes, which intersect the image
planes in the so-called epipolar lines l and l′, respectively.

Epipolar Constraint Given a pointx on the image plane, the corresponding scene point
Xmust lie on the optical ray going through x and the camera centerC. The projection of this
optical ray onto the image plane of another cameraC′ results in the epipolar line l′. Consequently,
the corresponding projection x′ of the scene point X cannot be arbitrary and must lie on the
epipolar line l′. This restriction is known as the epipolar constraint which we can formalize as

x̃′⊤l′ = 0 . (2.31)

In order to compute the epipolar line, one can calculate the cross product between two homoge-
neous points that lie on it, e.g.,

l′ = e′ × x̃′ . (2.32)

2.3 Radiometric Model

After detailing on the geometric part of the image formation process in terms of the pinhole camera
model, this section covers the relevant radiometric parts. As before the provided information is
kept rather brief and for more details, we refer to the book of Glassner [68].

2.3 .1 Basic Radiometric Quantities

In the following, we give a brief overview of relevant fundamental radiometric quantities.

• Radiant energy,Q, is the energy traveling in electromagnetic waves.

• Radiant flux or radiant power,Φ, is the time rate of change of the radiant energy

Φ =
∂Q

∂t
, (2.33)

where t denotes the time.
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surface normal n

ωi

ωo θi

object surface
∂ωi

ωi

Figure 2.6: Geometry related to the bidirectional reflectance distribution function (BRDF).

• Radiant flux density, u, is the quotient of the radiant flux on or emitted by a differential
surface element ∂A at a point, divided by the area of the element

u =
∂Φ

∂A
. (2.34)

While the radiant flux density incident on a surface is called irradiance,E, the radiant flux
density emitted by a surface is called radiant exitance.

• Radiance,L, is the radiant flux per unit projected area perpendicular to the ray per unit solid
angle in the direction of the ray

L =
∂2Φ

∂A cos θ ∂ω
. (2.35)

It is a convenient and fundamental radiometric quantity associated with a light ray. On the
one hand, it remains constant as it propagates along a direction, assuming a vacuum. On
the other hand, all other radiometric quantities can be derived from it.

All the previously listed radiometric quantities are functions of wavelength, time, position, direc-
tion andpolarization.However, by suppressing any dependence on polarization, assuming that the
energy of different wavelengths is decoupled and no time-depended behavior is present, i.e., light
travels infinitely fast, the terms solely depend on a positionX and a direction ω, e.g.,L(X, ω).

2.3 .2 B idirectional Reflectance Distribution Function

The reflection of light of a surface is not only proportional to the incoming light but also de-
pends on the surface reflectance properties. To characterize this proportionality the bidirectional
reflectance distribution function (BRDF) is used

fr(X, ωi, ωo) =
∂Lr(X, ωo)

∂Ei(X, ωi)
=

∂Lr(X, ωo)

Lf (X, ωi) cos θi ∂ωi
(2.36)
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Figure 2.7: Geometry related to the rendering equation.

whereEi is the surface irradiance,Lf is the field radiance andLr is the reflected radiance. Figure 2.6
shows a sketch of the related geometry. Physically plausible BRDFs must fulfill the Helmholtz
reciprocity principle and uphold the law of conservation of energy. While the first requirement
just means that the outcome of the BRDF is not affected if the incident and reflected directions
are swapped

fr(X, ωi, ωo) = fr(X, ωo, ωi) , (2.37)

the second requirement states that the outgoing radiance must be less or equal to the incoming
radiance, such that by integrating over the upper hemisphereΩH the following holds

∫

ΩH

fr(X, ωi, ωo) cos θi ∂ωi ≤ 1 . (2.38)

2.3 .3 The Rendering Equation

Rewriting the previously introduced BRDF allows expressing the reflected radiance in terms of
the incoming radiance from a single ray and the BRDF associated with the surface pointX

∂Lr(X, ωo) = fr(X, ωi, ωo)Lf (X, ωi) cos θi ∂ωi . (2.39)

Now, by integrating over the upper hemisphereΩH, see Figure 2.7, one obtains the total reflected
radiance at the surface pointX in direction ωo

Lo(X, ωo) =

∫

ΩH

fr(X, ωi, ωo)Li(X, ωi) cos θi dωi , (2.40)

where cos θi = ωi · n can be computed as the dot product of the direction ωi and the surface
normal n. Finally, by further considering the emitted radianceLe(X, ωo)we obtain the so-called
rendering equation [90, 97]

Lo(X, ωo) = Le(X, ωo) +

∫

ΩH

fr(X, ωi, ωo)Li(X, ωi)(ωi · n) dωi . (2.41)
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2.3 .4 Lambertian Reflectance

Finally, let us introduce the reflectance property that we will consider within this thesis – the Lam-
bertian reflectance. It describes an ideal diffuse reflection, i.e., reflected light scatters in all possible
directions over the upper hemisphere. Furthermore, it is viewpoint independent, i.e., independent
from a viewing direction. Hence, the associated BRDF is constant and reads

fLambertian =
ρ

π
. (2.42)

2.4 Variational Modeling

So far, we introduced basic geometric and radiometric concepts that describe the overall image
formationprocess.Next,we turn to the topic of variationalmodeling,wherewe explain howwe can
formalize the considered computer vision problems in such away, thatwe can solve it on amachine.
This formalization includes the development of ameasure of goodness of the alternatives, typically
described by a so-called objective or cost function. By minimizing or maximizing this objective
function, one obtains one of the best solutions from all feasible solutions.

Throughout this thesis, functionals will constitute different objective functions. Therefore, the
following section starts with a brief introduction to the calculus of variations, which is concerned
with the extrema of functionals. Gelfand and Fomin give a more in-depth treatment of the topic
in their book [66].

2.4 .1 Calculus of Variations

The calculus of variations is concerned with the extrema of functionals. A functional can be re-
garded as a function of functions since it assigns a scalar to each function belonging to a particular
class. The following general form can express most of the functionals considered in this thesis

E(u) =

∫

Ω
F (x, u1, . . . , un,∇u1, . . . ,∇un,Hu1, . . . ,Hun) dx , (2.43)

where x = (x, y)⊤ ∈ Ω ⊂ R
2 is a location on a rectangular image plane Ω ⊂ R

2 and u =
(u1, . . . , un)

⊤ : Ω → R
n a vector-valued function. Furthermore, the nabla operator

∇ := (∂x, ∂y) (2.44)

is the spatial gradient operator with ∂∗ denoting partial derivatives w.r.t. ∗ and

H :=

(
∂xx ∂xy
∂yx ∂yy

)
(2.45)

the Hessian operator, such thatHu1 is the Hessian of u1. Depending on the considered problem
and the design choices the integrand F , also called Lagrange-Function, varies. However, indepen-
dent from the problem and design choices the desired solution is computed as a minimizer of the
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energy functional in Equation 2.43. To find such minimizer, the calculus of variations supplies a
necessary condition: the so-called Euler-Lagrange equations, which are given by

∂E

∂ui
= 0 (i = 1, . . . , n) , (2.46)

where ∂E
∂ui

denotes the functional derivatives, which in this case read

∂E

∂ui
= Fui − ∂xF∂xui

− ∂yF∂yui

+ ∂xxF∂xxui
+ ∂yxF∂xyui

+ ∂xyF∂yxui
+ ∂yyF∂yyui

, (2.47)

associated with natural boundary conditions

n⊤
(
F∂xui

− ∂xF∂xxui
− ∂yF∂xyui

F∂yui
− ∂xF∂yxui

− ∂yF∂yyui

)
= 0 (i = 1, . . . , n) , (2.48)

n⊤
(
F∂xxui

F∂xyui

)
= 0 , n⊤

(
F∂yxui

F∂yyui

)
= 0 (i = 1, . . . , n) , (2.49)

where n is the outer normal vector of the boundary ofΩ. A derivation of these boundary condi-
tions is given in [116].

2.4 .2 Coarse-to-Fine Warping

Many of the models developed and used throughout this thesis, which reflect the formalized con-
straints and assumptions, are non-convex energy functionals. Unfortunately, for such non-convex
functionals, the calculus of variations introduced in the previous section does not allow to com-
pute a guaranteed globalminimizer directly. In particular, it is a highly non-trivial task tominimize
such a non-convex energy functional. Hence, a sophisticated minimization strategy is required to
obtain a satisfying solution. One well-known and established procedure, especially in the context
of optical flow estimation, is the coarse-to-fine warping approach of Brox et al. [36]. It relies on an
incremental coarse-to-fine fixed point approach which one can interpret as an approximation of
the original energy by a series of differential energies. Given the fact that wewill extensively use this
strategy, we now discuss it in more detail through a simple example for optical flow estimation.

Example Model For our example, we assume that I1, I2 : Ω → R are two consecutive
image frames of an image sequence and want to estimate the flow fieldw = (u, v)⊤ : Ω → R

2

between the two image frames. To achieve this, we aim at computing the minimizer of an energy
functional of the following kind

E(w) =

∫

Ω
D(w) + α ·R(w) dx , (2.50)

where x = (x, y)⊤ ∈ Ω denotes the location within the rectangular image domain Ω. More
precisely, the energy functional consists of two terms: a data termD and a regularization termR.
Furthermore, it contains a weighting parameter α that allows balancing the impact of both terms.
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In the case of optical flow estimation, the data termD imposes temporal constancy constraints
on image features, which in our example is the brightness constancy assumption

I1(x) = I2(x+w) , (2.51)

such that corresponding points of a valid solution exhibit the same brightness. Now, we define the
data term in such a way that it achieves a minimum value if it fulfills the underlying assumption
and a high cost if it violates the assumption. For such settings, a commonly used loss function is
the squared difference, which simplifies the minimization process but tends to assign too much
weight to outliers. Another common choice is the absolute difference as well as differentiable ap-
proximations of such loss, which is less prone to outliers but leads to amore difficult minimization
process. In our example case, we stick to the second choice, resulting in

D(w) = Ψ
((

I2(x+w)− I1(x)
)2)

, (2.52)

whereΨ denotes a regularized linear penalizer given by

Ψ(s2) :=
√
s2 + ǫ2 , (2.53)

with a small ǫ > 0 that ensures differentiability.

The second term in our optical flow example is the regularization termR. It is required since we
are dealing with an ill-posed problem [27]. For example, one can think of a uniform image region,
where considering information at a single location is not sufficient to determine an unambiguous
correspondence. To overcome this problem, regularization strategies comprising certain smooth-
ness assumptions can help. They enable the approach to propagate information and dissolve such
ambiguities. In the case of optical flow estimation, themost common choice is a first-order smooth-
ness assumption, i.e., the first derivatives vanish,

ux = 0 , uy = 0 , vx = 0 , vy = 0 , (2.54)

which models a constant flow field. Of course, images sequences typically contain by far more
complex motion patterns, but it turns out to be an acceptably good approximation (for regions
depicting the same object) and that mainly motion boundaries lead to violations. Similar as for
the data term, the resulting regularization term should achieve a minimum value if it fulfills the
assumption and a high cost otherwise. As for the data term, a sub-quadratic loss function is advis-
able, since it allows to capture sharper motion boundaries compared to a quadratic loss function.
Hence we use the following regularization term

R(w) = Ψ
(
|∇u|2 + |∇v|2

)
. (2.55)

D ifferential Formulation With the example model at hand, we can now turn to-
wards the derivation of the corresponding differential formulation. The first step is to introduce
an incremental parametrization, which allows estimating the difference dwk = (duk, dvk)⊤ be-
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tween an intermediate solutionwk=(uk, vk)⊤ andanupdated solutionwk+1=(uk+1, vk+1)⊤

rather than a final solution directly:

wk+1
︸ ︷︷ ︸

updated solution

= wk
︸︷︷︸

intermediate solution

+ dwk
︸︷︷︸

unknown increment

. (2.56)

Later on, this parametrization will allow us to introduce an iterative estimation approach based on
the concept of warping, to cope with the problem of large displacements. Applying this parametr-
ization to our example model leads to

E(dwk) =

∫

Ω
D(dwk) + α ·R(dwk) dx , (2.57)

whereD(dwk) andR(dwk) denote the differential counterpart of the original energy formula-
tion, which we specify in the following passages.
The differential counterpart of the data term is obtained by linearizing the original expression

w.r.t. the unknown incrementdwk. This linearization not only removes the implicit formulation
in the unknowns (in the initial data termw just appeared as an argument of the image I2) but
also leads to a convex approximation of the original non-convex data term in Equation 2.52. The
linearization is performed employing a first-order Taylor expansion that reads

I2(x+wk+1) ≈ ∇I2(x+wk)⊤dwk + I2(x+wk) . (2.58)

Finally, introducing the abbreviations I1 := I1(x), Ik2 := I2(x+wk) and Ikz := Ik2 − I1 allow
writing the differential formulation of the data term as

D(dwk) = Ψ
((

∇Ik⊤2 dwk + Ikz
)2)

. (2.59)

In the case of the regularization term, which is already convex, the differential formulation reads

R(dwk) = Ψ
(
|∇(uk + duk)|2 + |∇(vk + dvk)|2

)
. (2.60)

Coarse-to-Fine Strategy Another essential ingredientof theminimization approach is
the coarse-to-fine strategy, which comes with several advantages. From a mathematical viewpoint,
it helps to avoid poor local minima and find a good local or even a global minimum. In terms
of the motion estimation problem, it allows us to cope with the large-displacement problem to
some extent. Finally, it is computationally less expensive, because the coarser levels are sampled
less dense compared to the finest level. Starting from a coarse resolution level k = 0, we refine an
initial solutionw0 at each fixed point iteration k. To this end, the increment dwk is computed,
by solving the previously introduced differential formulation, and the new intermediate solution
w1 is evaluated and upsampled to the next finer resolution level. The scale between two successive
resolution levels is specified via the downsampling factor η ∈ (0, 1).

But how does this alleviate the aforementionedmentioned problems? The way it helps to avoid
local minima can be interpreted as follows. Downsampling the actual problem, i.e., the input
frames, to a coarser resolution leads to a smoother energy landscape with less local minima. Hence,
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η−1

η−1

k = 0

k = 1

k = 2

Figure 2.8: Sketch showing how the coarse-to-fine scheme avoids local minima.

it is less likely that the minimization is trapped in a local minima at a coarse resolution. Using the
updated solution as initialization, i.e., an intermediate solution, for the next finer resolution level
ensures that we are closer to the global optimum or at least a good local minima. Figure 2.8 shows
a simple sketch of this in terms of a 2D energy landscape with three levels.

From a problem viewpoint, the coarse-to-fine scheme allows us to cope with the large displace-
ment problem inherited by the approximation via the differential formulation. In particular, due
to the performed linearization in the data term, the approximation is only valid for small displace-
ments and does not allow to recover fastmotion. However, as a result of downsampling the images
to a coarse resolution, large movements are transformed into small displacements, for which the
approximation is sufficient. Solely in case of small objects that undergo a large displacement the
problem remains since these small objects typically vanish on a coarse resolution. Finally, one
must ensure that the movements on finer resolutions remain small. Hence, the images have to be
compensated by the motion estimated so far, which takes us to the so-called warping.

Warping Warping the second image frame I2 towards the reference frame I1 by the motion
fieldwk can be understood as motion compensation. In our example model, it appears in the data
term of the differential formulation, i.e., in the expression Ik2 := I2(x+wk). The basic idea is to
create a new warped image Iw,k

2 that copies the brightness values of the corresponding locations
to the current locations, see Figure 2.9. This reads

Iw,k
2 (x) := I2(x+wk) . (2.61)

In case of a discrete implementation,x+wk will lie, in most cases, between the sampled locations
and the actual value must be approximated, e.g., using bilinear interpolation.
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I1

wk

Iw,k
2

Ik2

Figure 2.9: Sketch showing the basic implementation of warping.

Solving it To find the minimizer of the differential formulation on every resolution level of
the coarse-to-fine fixed-point iteration scheme we make use of the calculus of variations, i.e., we
aim at solving the Euler-Lagrange Equations. In our example, they read

0 =Ψ′kdata ·
(
∇Ik⊤2 dwk + Ikz

)
· ∂xIk2 duk − α div

(
Ψ′kreg∇(uk + duk)

)
, (2.62)

0 =Ψ′kdata ·
(
∇Ik⊤2 dwk + Ikz

)
· ∂yIk2 dvk − α div

(
Ψ′kreg∇(vk + dvk)

)
, (2.63)

where we used the following abbreviations for the sake of clarity

Ψ′kdata := Ψ′
((

∇Ik⊤2 dwk + Ikz
)2)

, (2.64)

Ψ′kreg := Ψ′
(
|∇(uk + duk)|2 + |∇(vk + dvk)|2

)
. (2.65)

Furthermore, the boundary conditions are given by

n⊤∇duk = 0 , (2.66)

n⊤∇dvk = 0 . (2.67)

Unfortunately, due to the specific choice of theΨ function in our example, the resulting system
of equations is non-linear in the unknown dwk. To deal with this non-linear system of partial
differential equations (PDEs), we apply the Kačanov-type approach [96], which solves the non-
linear system through a sequence of linear systems. In particular, we introduce a second fixed point
iteration with the iteration index l and keep the non-linear contributions, i.e., Ψ′kdata and Ψ′kreg,

lagging. This modification leads to a system of linear PDEs w.r.t. dwk,l+1 given by

0 =Ψ′k,ldata ·
(
∇Ik⊤2 dwk,l+1 + Ikz

)
· ∂xIk2 duk,l+1 − α div

(
Ψ′k,lreg ∇(uk + duk,l+1)

)
, (2.68)

0 =Ψ′k,ldata ·
(
∇Ik⊤2 dwk,l+1 + Ikz

)
· ∂yIk2 dvk,l+1 − α div

(
Ψ′k,lreg ∇(vk + dvk,l+1)

)
. (2.69)

Finally, it takes two steps to solve the system of linear PDEs numerically. In the first step we dis-
cretize the system of linear PDEs, e.g., by using standard finite difference approximations in case
of the derivatives, and in the second step we apply a method to solve the resulting linear system of
equations, e.g., the successive over-relaxation (SOR) method [205].

22



2.4 Variational Modeling

Ψ Ψq Ψr

Ψc Ψp

Quadratic Penalizer

Ψq(s2) = s2

Regularized Linear Penalizer

Ψr(s2) =
√
s2 + ǫ2

Charbonnier Penalizer

Ψc(s2) = 2ǫ2 ·
√

1 + s2/ǫ2

Perona-Malik Penalizer

Ψp(s2) = 2ǫ2 · log
(

1 + s2/ǫ2
)

Ψ′ Ψ′
q Ψ′

r

Ψ′
c Ψ′

p

Figure 2.10: Plots of the penalizer functionsΨ (top) as well as the corresponding derivativesΨ′ (bottom).

2.4 .3 Modeling Concepts

In the previous section, we introduced the coarse-to-fine warping strategy using an example. This
example comprised the derivation of the variational model. In this context, we saw that different
design choices arisewhen formulating themodel. Especially, the choice ofwhich penalizer function
to use and which type of regularization to employ, recurs multiple times throughout this thesis.
Hence, next we detail on these two essential concepts to avoid describing them over and over again.

Penalizer Functions We start with the advantages and disadvantages of different loss
functions. Within this thesis, we will use four different differentiable penalizer functions, depicted
in Figure 2.10. The first penalizer function is the quadratic penalizer:

Ψq(s
2) = s2 with Ψ′q(s

2) = 1 . (2.70)

It comes with the nice property of strict convexity as well as the fact that the derivative yields
a constant, which simplifies the minimization process. However, due to the quadratic growth
possible outliers have a lot of influence. The next two penalizer functions are the regularized linear
penalizer of the example model [28]:

Ψr(s
2) =

√
s2 + ǫ2 with Ψ′r(s

2) =
1

2 ·
√
s2 + ǫ2

, (2.71)

and the Charbonnier Penalizer [48]:

Ψc(s
2) = 2ǫ2 ·

√
1 + s2/ǫ2 with Ψ′c(s

2) =
1√

1 + s2/ǫ2
. (2.72)
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Both penalizer functions are sub-quadratic and therefore yield a more robust behavior in case of
outliers. In the context of smoothness terms, such penalizer functions are known to enable an
edge-preserving behavior. Furthermore, they are strictly convex, but in contrast to the quadratic
penalizer, the derivatives are non-constant, which in case of our example model presented in Sec-
tion 2.4.2 led to a non-linear system of equations. The fourth penalizer function we will consider
is the Perona-Malik Penalizer [134]:

Ψp(s
2) = 2ǫ2 · log

(
1 + s2/ǫ2

)
with Ψ′p(s

2) =
2ǫ

s2 + ǫ2
. (2.73)

It is not only sub-quadratic but also sub-linear, hence it is non-convex. In contrast, to the previous
penalizer functions it yields, an edge-enhancing behavior in the context of smoothness terms.

Regularization Another crucial component when dealing with ill-posed problems is reg-
ularization. In this thesis, we consider regularization in terms of smoothness assumptions. In this
context, one can differentiate between first- and second-order regularization. While the first-order
regularization enforces smoothness by assuming the first-order derivatives of the unknowns vanish,
second-order regularization imposes regularity by assuming the second-order derivatives vanish.
We already used a first-order regularizer in our example model for optical flow which reads

Rfirst-order(w) = Ψ
(
|∇u|2 + |∇v|2

)
. (2.74)

An exemplary second-order regularizer for optical is given by

Rsecond-order(w) = Ψ
(
|Hu|2F + |Hv|2F

)
, (2.75)

whereH is the Hessian operator and |·|F is the Frobenius norm. Depending on the considered
problem and the chosen parametrization the interpretation of the regularization orders varies.

Figure 2.11: From left to right: Reference frame, subsequent frame, corresponding motion field. Top: Con-
stant motion (first-order smoothness). Bottom: Affine motion (second-order smoothness).
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Figure 2.12: From left to right: Reference frame, subsequent frame,correspondingdepthmap.Top: Constant
depth (first-order smoothness). Bottom: Affine depth (second-order smoothness).

For the problem ofmotion estimation first and second-order regularization correspond to differ-
ent type of movements. Assuming a standard flow parametrization, i.e., a 2D displacement vector
per pixel, first-order regularization represents piecewise constant flow fields, which typically occur
when planar objects move parallel to the camera (fronto-parallel motion) or vice versa. Figure 2.11
(top) shows an example of such a constant flow field. In the case of second-order regularization
piecewise affine motion fields are admissible. Such affine motion patterns occur in scenes where
the camera is moving (ego-motion), as shown in Figure 2.11 (bottom).
In the case of 3D reconstruction first and second-order regularization correspond to different

type of shapes. Considering a depth parametrization, i.e., a depth value per pixel, the different
regularization orders are related to the previous case. First-order regularization represents piecewise
constant depth fields, which occur when planar objects are located parallel to the reference camera.
Figure 2.12 (top) displays such a scenario. For the second-order regularization planar objects do not
necessary have to lie parallel to the reference camera. This case is shown in Figure 2.12 (bottom).

2.5 Evaluation

After introducing the relevant key aspects of variational modeling, we turn to the last part of
the foundation chapter. In this section, we introduce different error measures and visualization
techniques that allow us to investigate, evaluate, and compare the performance of our developed
methods quantitatively and qualitatively.

2.5 .1 Error Measures

Quantitatively benchmarking algorithms has a long tradition and has lead to tremendous progress
in the field of computer vision over the last decade. Realizing this procedure takes two ingredients:
data for which the correct solution is known (ground truth data) and error measures which allow
specifying the performance in terms of numbers.
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3D Reconstruction In the case of 3D reconstruction, we consider two commonly used
error measures: the root mean square error and the average angular error. The first measure is
the root mean square error (RMS) against the ground-truth surface/depth-map. By denoting the
computed depth as z : Ω → R and the corresponding ground truth as zgt : Ω → R, whereΩ is
the rectangular image domain, we can formalize it as

RMS(z, zgt) =

√
1

|Ω|

∫

Ω

(
z(x)− zgt(x)

)2
dx . (2.76)

The second measure we consider is the average angular error (AAE) of the surface normals. By
denoting the computed normal map as n : Ω → R

3 and the corresponding ground truth as
ngt : Ω → R

3, we can formalize it as

AAE(n,ngt) =
1

|Ω|

∫

Ω
arccos

(
n(x)⊤ngt(x)

|n(x)||ngt(x)|

)
dx . (2.77)

Motion Estimation For the problem of motion estimation, we also consider two com-
monly used error measures: the average endpoint error and the bad pixel error. The average end-
point error (AEE) describes the average Euclidean difference of two flow fields. By denoting a
computed flow field viaw : Ω → R

2 and the corresponding ground truth aswgt : Ω → R
2, we

can formalize it as

AEE(w,wgt) =
1

|Ω|

∫

Ω

∣∣w(x)−wgt(x)
∣∣ dx . (2.78)

The bad pixel error (BP) specifies the percentage of locations for which the endpoint error
exceeds a specific threshold τ . The benefit of this metric is that it allows us to consider minor im-
pressions in real-world ground truth data, whichmy arise in the process of recording and deducing
the motion field. Using the same notation as above we can write it as

BP(w,wgt) =
100

|Ω|

∫

Ω
χτ (x) dx with χτ (x) =

{
1,

∣∣w(x)−wgt(x)
∣∣ < τ

0, else
(2.79)

We set τ = 3px, as it is the default setting of the KITTI 2012 and 2015 benchmarks [65, 119].

2.5 .2 Visualizations

While numbers are great for quantitative comparison, they do not allow us to directly assess the
quality of the estimation of individual sequences and identify problematic regions. Therefore, we
employ different useful visualization techniques.

Depth Visualization To inspect the estimated depth field we make use of two visualiza-
tion techniques. The first visualization is a color-coding of the depth values, where white denotes
close objects and black denotes objects far away. The second visualization is a rendered image,
where we use the Lambertian reflectance model and a point light source located in the camera
center, to avoid shadows. Figure 2.14 shows an example of both visualizations.
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Figure 2.13: From left to right: Reference frame, color-codeddepth visualization, shadeddepth visualization.

Figure 2.14: Color coding schemes for motion visualization. First row, from left to right: Reference frame,
second frame, overlayed frames. Second and third row, from left to right: Flow fields and corre-
sponding color-scheme of Bruhn [40], Middlebury [23], and KITTI [65].

< 0.1875 < 0.375 < 0.75 < 1.5 < 3 < 6 < 12 < 24 < 48 ≥ 48

Figure 2.15: Top, left to right: Ground truth motion and computed motion, error visualization. Bottom:
Color representation (numbers denote the endpoint error in terms of pixels).

Flow Visualization To visualize flow fields we employ a color-coding of the motion vec-
tors. Within this coding, the color indicates the direction of the displacements and the brightness
expresses their magnitude. Figure 2.14 shows an example of three commonly used variants. While
this type of visualization enables us to identify sharpness of motion discontinuities, it is hard to
rate the pixel-wise accuracy and immediately track down faulty regions. Hence, we also make use
of an error visualization. This visualization encodes the per pixel endpoint error. Figure 2.15 shows
a ground truth flow field, a computed flow field and the corresponding error visualization.
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Reconstruction

The task of 3D reconstruction is to capture the shape of real objects. To achieve this goal a variety of
different techniques and approaches exist.We can group these techniques into twomain categories:
active and passive methods.Active methods interfere with the actual scene by emitting some sort
of light or signals. These methods involve concepts such as structured light, which illuminate the
settingwith a specially designed light pattern, and time-of-flight, whichmeasures the time-of-flight
of an emitted light signal between the camera and multiple object points.

In contrast, passive methods do not directly interfere with the scene and only capture a single or
multiple images. We can further group the passive methods by the type of depth cue utilized to
recover the shape.Monocular cues, for example, require only a single image andexploit information
such as shading, texture or silhouettes. Binocular cues needmultiple images captured fromdifferent
viewpoints and allow to use the so-called parallax, the displacement in the apparent position.

In this chapter, we present a variational approach that simultaneously exploits two fundamen-
tally different depth cues for passive 3D reconstruction, i.e., the shading cue and the parallax cue.
Main parts of this chapter are based on the work published in [3, 4, 5].

3.1 Introduction

Approaches that exploit parallax cues to reconstruct a 3D surface are known as stereo methods.
By identifying corresponding pixels in multiple images and triangulating them, stereo methods
can recover the actual 3D shape. On the other hand, approaches that exploit shading cues for 3D
reconstruction are known as shape from shading (SfS) methods. Using a reflection model that
relates the image brightness, i.e., the shading, to the surface normal allows to recover the shape.

Both techniques are quite complementary. Stereomethods benefit from highly textured regions
since they support the process of finding correspondences. However, at the same time, such meth-
ods also require sophisticated regularization strategies to deal with ambiguities, possibly emerging
from weakly-textured and homogeneous regions, which may lead to over-smooth results and less
detailed reconstructions. In contrast, SfS benefits from un-textured homogeneous objects, since
only in this case observed brightness changes could be directly attributed to depth changes rather
than ending up in an ambiguity between a color and a depth change. While in such an ideal sce-
nario without texture, only a little or no regularization is required, it is typically still needed to
cope with ambiguities arising in textured regions.
Knowing these advantages and drawbacks of both strategies, it appears quite natural to fuse

stereo and SfS techniques to improve the reconstruction accuracy. Since the first ideas of Blake et
al. [29] in 1985, researchers have proposed a variety of methods for combining stereo and SfS.
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3.1 . 1 Related Work

We can divide the literature of 3D reconstructionmethods that combine both parallax and shading
cues into three groups: fusion approaches, sequential approaches, and joint approaches. In the
following, we review all three groups.

Fusion Approaches The first group comprises fusion approaches. Such approaches per-
form stereo andSfS independently of eachother and combine the results in terms of a sophisticated
post-processing step. Examples are, for instance, the method of Cryer et al. [52] that fuses depth
maps from stereo and SfS in the frequency domain or the approach ofHaines andWilson [77] that
combines disparity information and surface normals within a probabilistic approach. Since the
initial computations are performed separately, a direct interaction between the cues is not possible.
Although fusing the information may allow improving the results, the quality gain is typically
somewhat limited compared to more integrated strategies.

Sequential Approaches In contrast to fusion approaches, sequential techniques per-
form the stereo and SfS computation consecutively, where stereo provides an initialization for
SfS. Consequently, one may consider these techniques as shading-based refinementmethods. First
approaches such as the method of Leclerc and Bobick [106] and Hougen and Ahuja [83] have
been restricted to a simple orthographic camera model and a constant albedo, while assuming a
global light direction and a polynomially parametrized reflectancemap, respectively. Following the
work of Fua and Leclerc [60],we denote these techniques as view-centered, since they perform the
refinement in the pixel domain. In contrast, so-called object-centered approaches operate directly
on a complete surface representation, e.g., an initial closed 3-D mesh of an object. While they
typically rely on a preceding stereo approach to obtain an initial solution, parallax cues are only
implicitly exploited during the refinement by imposing shading cues on multiple views. As in the
view-centered case, most of the object-centered approaches assume that the scene consists of a sin-
gle material [194, 197, 208, 209].They either focus on generalizing the reflectance model for dealing
with non-Lambertian surfaces, e.g., by using the Phong model [208] or a general parametrization
in terms of a view-independent reflectance map [209], or they aim towards estimating the illumi-
nation, e.g., by using spherical harmonics [194] or a general illumination vector field [197].Among
the few exceptions that do not rely on the single material assumption are the approach of Yoon et
al. [204] that estimates the reflectance of a dichromatic surface for a given illumination, and the
approach of Valgaerts et al. [171] that exploits temporal constraints on clustering a spatially varying
albedo in the context of facial performance capture.

Instead of using stereo information, there are also sequential approaches [78, 130, 195, 207, 218]
that make use of depth measurements obtained via active reconstruction methods, e.g., RGB-D
cameras. Although this information is typically rather noisy, the provided depth and the corre-
sponding surface normals simplify the estimation of global illumination parameters, e.g., the coef-
ficients of spherical harmonics, and albedo maps significantly compared to stereo-based methods.
Again, approaches range frommethods that assume a uniform albedo [78] to strategies that cluster
different albedo regions [207].Recently, researchers also proposed RGB-D based techniques that
operate in real-time [130, 195]. In general, however, such methods need dedicated hardware, e.g.,
time-of-flight cameras, for the active reconstruction.
As expected, in the case of sequential approaches, the shading-based refinement can benefit

significantly from the preceding stereo reconstruction. However, there is no direct feedback in the

30
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sense that stereo cannot take advantage of any shading cues. Strictly speaking, this holds for meth-
ods that involve active components as well, since they typically do not include shading cues at all.
Nevertheless, such methods clearly show that, when having a reasonable initial depth, estimating
the illumination and albedo jointly seems to be very beneficial in terms of reconstruction quality.

Joint Approaches In contrast to sequential and fusion methods, joint approaches exploit
parallax and shading cues simultaneously when estimating the depth. For example, Fua andLeclerc
[60] proposed to minimize an objective function with stereo, shading and smoothness terms, that
allows a slowly varying albedo but requires a known illumination.Moreover, in the context of face
reconstruction Samaras et al. [148] developed a method that fits a face model to the stereo data
and refines it while re-estimating illumination and albedo. As most of the joint approaches, these
methods rely on a preceding stereo estimation. This pre-estimation is required to obtain a non-
trivial initialization of the underlying surface parametrization, e.g., an initial mesh or a volumetric
signed distance function model. More recently, Langguth et al. [105] proposed a joint approach
that combines stereo and shading cues within a combined energy. While this approach builds
on the Retinex assumption and is hence able to estimate the depth almost independently of the
albedo, it relies on a preceding estimation of the illumination from an initial stereo result.
A method that does not require such an initial mesh as the previous techniques is the level set

approach of Jin et al. [93].However, although the corresponding model considers ambient light
as well as an explicit background, it is restricted to two regions with constant albedo as well as
to a global light direction. Moreover, by relying on multi-view SfS instead of multi-view stereo,
parallax cues are only exploited implicitly, i.e., different views are compared to the correspondingly
rendered images of the reconstruction (image-to-model, SfS), but no direct matching between the
input images is performed (image-to-image, stereo).

In face of the existing literature, it would evidently be desirable to develop a joint approach that
simultaneously exploits parallax and shading cues to estimate depth, illumination, and albedo from
scratch, i.e., a general method that does not need an initial estimate.

3.1 .2 Contributions

In this chapter, we present such a joint approach. We propose a novel view-centered method that
combines data terms from stereo and SfS based on a separate parametrization for depth, illumina-
tion, and albedo. In the reconstruction process, the parallax cue allows a robust estimation of the
object surface, while the shading cue enables the recovery of fine surface details. In this context,
the careful selection of the regularization plays an important role. While we make use of specially
tailored anisotropic first-order smoothness terms that provide sharp illumination and albedomaps,
we employ an anisotropic second-order smoothness term for the depth that allows reconstruction
of slanted surfaces. As a result, we obtain a method that enables the estimation of high-quality
depth maps of Lambertian scenes with varying albedo under unknown illumination.
However, our contributions are not limited to the modeling side only. Also from a numerical

viewpoint, we provide some novel ideas. In particular, we propose a coarse-to-fine minimization
scheme based on a linearization of all data terms. This scheme does not only allow us to estimate
all unknowns simultaneously but also to embed the entire optimization into a hierarchical incre-
mental fixed point strategy, as described in Subsection 2.4.2. Due to the use of upwind schemes
for approximating the derivatives in the SfS data term, we term this strategy hyperbolic warping.
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3 Variational 3D Reconstruction

3.2 Variational Model

In this section,we propose our variationalmodelwhich allows exploiting shading and parallax cues
jointly. To this end,we first introduce the considered setting togetherwith the utilized parametriza-
tion and then focus on the actual model, including a detailed discussion of all terms.

3.2 .1 Setting and Parametrization

Our setting consists of n perspective camerasCi (i ∈ {1, ..., n− 1}, n ≥ 2), which capture the
scene from varying viewpoints in terms of RGB color images Ii : Ωi → R

3. In particular, we
assume the cameras to be calibrated, i.e., the corresponding camera projection matrices

Pi = Ki[Ri|ti] , (3.1)

as described in Subsection 2.2.2, are known a priori. Furthermore, we assume w.l.o.g. that the
reference camera C0 is aligned with the world coordinate frame. Therefore, we parametrize the
unknown surface of the corresponding back projection, see Subsection 2.2.3, as

s(x, z) = z(x) ·K−10 x̃ , (3.2)

where z(x) is the depth measured along the optical axis,K0 is the camera calibration matrix of
the reference camera and x̃ = (x, y, 1)⊤ denotes the homogeneous counterpart of the location
x = (x, y)⊤∈ Ω in the reference frame, see Figure 3.1.

Moreover, to exploit shading cues in a fairly unconstrained setting, we not only take the surface
depth into account but also consider the scene illumination and the surface reflectance properties.
To derive a suitable parametrization for the latter two,we contemplate the image formation process
in terms of the rendering equation, as introduced in Subsection 2.3.3. Besides, we assume the
surface is Lambertian and does not emit any radiance. Hence, the rendering equation simplifies to

Lo(s, ωo) =

∫

Ωs

ρ

π
Li(s, ωi)(ωi · n) dωi , (3.3)

s (x, z)

z(x)

C1

X

Y

Z

x

C0

x

y

f

Figure 3.1: Surface parametrization via the back projection s(x, z).
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3.2 Variational Model

whereΩs represents the upper unit hemisphere centered around the surface normaln at the corre-
sponding surface point s = s(x, z), andLi(s, ωi) stands for the incident radiance from direction
ωi at s. Finally, we assume that the reference camera captures the reflected radiance of a specific
wavelength spectrum in terms of the corresponding color image I0 = (I10 , I

2
0 , I

3
0 )
⊤, such that

I0(x) =

∫

Ωs

ρL(s, ωi)(ωi · n) dωi , (3.4)

where ρ = (ρR, ρG, ρB)
⊤ : Ω → R

3 is considered a vector-valued albedo that represents the
reflectivity for the individualwavelength spectra. By separating the albedoρ and the surface normal
n from the integrand, the integral only contains the contributions of the incident radiance, which
we summarize in terms of an illumination vector field l = (l0, l1, l2)

⊤ : Ω → R
3 (see Figure 3.2)

I0(x) = ρ(x)

(∫

Ωs

L(s, ωi)ωi dωi

)⊤

︸ ︷︷ ︸
= l(x)

n(x) . (3.5)

Xu et al. [197] and Queau et al. [135] consider similar parametrizations that also include an illu-
mination vector. In contrast to the work of Xu et al., that assumes the albedo to be constant, we
explicitly separate it from the illumination vector field. This choice enables the application tomore
realistic scenarios where the albedo is spatially varying. In contrast to the work ofQueau et al., that
uses a single channel variant operating on grayscale images in the context of photometric stereo
[135],we employ a multi channel variant. This choice allows us to deal with RGB color images.

In a nutshell, three functions form the final parametrization: the depthmap z, the illumination
vector field l, and the vector-valued albedo map ρ. This parametrization enables the application
to fairly unconstrained settings without the need for a tedious illumination calibration.

X

Y

Z

L(s, ω1)

L(s, ω2)

L(s, ωk)

nω1

ω2

ωk l(x)

Ωs

s

x

C0

Figure 3.2: Illumination parametrization via the illumination vector l(x).
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3 Variational 3D Reconstruction

3.2 .2 Variational Model

Using the previous parametrization,we propose to compute all three unknowns, namely the depth
z, the illumination vector l, and the albedo ρ, as a minimizer of the following energy functional:

E(z, l,ρ) = Dstereo(z) + ν ·Dsfs(z, l,ρ)

+ αz ·Rdepth(z) + αl ·Rillum(l) + αρ ·Ralbedo(ρ) . (3.6)

It is composed of two data terms and three regularization terms.While the stereo data termDstereo

exploits parallax cues by accounting for a photo-consistency between the reference image and
the other match images, the shape from shading data termDsfs exploits shading cues by relating
the reference image and a rendered image based on depth, illumination, and albedo. To resolve
ambiguities between the unknowns, the three regularizersRdepth,Rillum, andRalbedo have been
added. Finally, the positive weights ν, αz , αl, and αρ balance the terms. Let us now discuss the
different data and smoothness terms in detail.

Stereo Data Term For themulti-view stereodata termwe consider thedepth-parametrized
model ofRobert andDeriche [145]basedon thephoto-consistency, i.e., the brightness constancy,of
projected surface points. Recent stereo approaches frequently use this model, see e.g., [26, 127, 155].
To account for slight illumination changes between subsequently recorded views, we complement
it by a gradient constancy assumption [36, 155]. As shown in the work of Semerjian [155] this
assumption can be interpreted as a patch similarity with infinitesimal patches. Hence, we obtain

Dstereo(z) =
1

n− 1

n−1∑

i=1

∫

Ω
Ψr

(
|I0(x)− Ii(xi)|2

)

+ γ ·Ψr

(
|J (I0(x))− J (Ii(xi))|2F

)
dx , (3.7)

whereγ = 1 is a positiveweight to balance both constancy assumptions,J (I0(x)) andJ (Ii(xi))
are the Jacobians of I0(x) and Ii(xi), respectively, that contain the partial derivatives w.r.t. x and
y, | · |F denotes the Frobenius norm, and

xi = π(s(x, z)) = π(Pi s̃(x, z)) (3.8)

is the projection of the surface point s at the reference location x onto the image Ii, see Figure 3.3.

Finally, to improve the robustness of both assumptions w.r.t. outliers and occlusions, we model
the data term more robust by applying the regularized linear norm. To this end, we follow Bruhn
andWeickert [38] and penalize both constancy assumptions separately.

Shape from Shading Data Term To model the SfS data term, we make use of the
previously stated rendering equation with the compact illumination vector field parametrization,
see Equation 3.5. Introducing the following reflectance function

R(x) = ρ(x)(l(x)⊤n(x)) , (3.9)
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C1

x1 = π1(s(x, z))

π1

s(x, z)

C0

x0 = x

π0

Figure 3.3: Illustration of the stereo geometry. While the pixel location xi depends on the object surface
s(x, z) via the projection πi(s(x)), the surface s itself depends on x via the depth z(x).

that evaluates the rendering equation given a unit surface normal n, the illumination vector field
l and the vector-valued albedo ρ, we can write the SfS data term as

Dsfs(z, l,ρ) =

∫

Ω
|I0(x)−R(x)|2 dx , (3.10)

which relates the reference image I0 to the introduced reflectance function. Please note that the
depth estimates appear in the reflectance functionR in terms of the surface normaln. To establish
the connection between the surface normal n and the depth z, we refer to derivation given in
Subsection 2.2.3, which results in

n(x) = − n̄(x)

|n̄(x)| with n̄(x) =




−sxzx
−syzy

∇z⊤(x− o) + z


 . (3.11)

Depth Regularization To allow for a smooth reconstruction of slanted surfaces, we
refrain from using a first-order regularizer that inherently favors fronto-parallel surfaces. Instead,
we resort to a second-order regularization strategy that enables the model to recover linear depth
changes [1, 138, 151, 177]. In particular,we employ the anisotropic second-order regularizerofHafner
et al. [75] that originated in the context of focus fusion. It combines the edge preservation prop-
erties of a second-order coupling model, e.g., the total generalized variation (TGV) [34], with a
direction-dependent adaptation behavior, which allows to consider the underlying image infor-
mation to guide the regularization. The corresponding regularizer reads

Rdepth(z) = inf
a

∫

Ω
C(z,a) + αa · S(a) dx , (3.12)
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3 Variational 3D Reconstruction

and consists of two terms: the coupling termC(z,a) and the smoothness term S(a):

C(z,a) =
2∑

l=1

Ψl

((
r⊤l (∇z − a)

)2)
, (3.13)

S(a) =

2∑

l=1

Ψl

(
2∑

m=1

(
r⊤mJ (a) rl

)2
)
, (3.14)

where a : Ω → R
2 is a vector-valued auxiliary function,J (a) is the Jacobian of a, and r1 and r2

denote orthogonal unit vectors that correspond to the dominant directions of the local structure
of the reference image I0 =

(
I10 , I

2
0 , I

3
0

)⊤, respectively. In our model, we compute the directions
r1 and r2 as eigenvectors of the color structure tensor [56, 59]

J := Kσo ∗
3∑

c=1

(
∇(Kσi ∗ Ic0) ∇(Kσi ∗ Ic0)⊤

)
, (3.15)

whereKσi andKσo are spatial Gaussians with standard deviation σi and σo for pre-smoothing
and local integration, respectively, and ∗ is the convolution operator.
Let us now detail on the two terms that are balanced by the parameter αa. The coupling term

connects the gradient of the depthmap∇z to the auxiliary functiona. Hence,a can be considered
an approximation of the first-order depth map derivatives. The smoothness term ensures that the
JacobianJ (a) of the auxiliary function is small. Consequently, it enforces a first-order smoothness
constraint on the auxiliary function a. Both terms together realize a second-order regularization
on z. In fact, for the particular case that the coupling term is perfectly fulfilled, i.e., a = ∇z, the
smoothness term penalizes the second-order directional derivatives zr1r1 , zr1r2 , zr2r1 and zr2r2 .
In this case, the resulting regularizer comes down to an anisotropic direct second-order variant.

So far, we have discussed how to realize the second-order regularization by using the auxiliary
function a. Let us now explain how to achieve the desired anisotropic behavior. The central con-
cept in this context is the separate sub-quadratic penalization of the two directions r1 and r2 in the
coupling term and the smoothness term, respectively. This separate penalization not only adapts
the regularization to the local image structure by considering the directions r1 and r2 from the
structure tensor J , but also allows to preserve edges in both directions independently. This behav-
ior, in turn, allows coping with different structural scenarios such as corners, edges and uniform
areas. Furthermore, applying the separate penalization to the smoothness term and the coupling
term has different effects. While in case of the smoothness term it yields an anisotropic regulariza-
tion of the auxiliary function a, it leads to an anisotropic regularization of the depth z in case of
the coupling term. In the latter case, we penalize only those deviations from∇z that the piecewise
smooth auxiliary function a cannot explain. Such a function a, in turn, corresponds to a piecewise
affine depth z which makes once again the second-order regularization explicit.

As penalizing functions for the coupling and the smoothness termswe chose the edge-enhancing
Perona-Malik penalizerΨ1 = Ψp along the dominant r1-direction with ǫ = 0.001, and the edge-
preserving Charbonnier functionΨ2 = Ψc orthogonal to it with ǫ = 0.01, i.e., in r2-direction,
as proposed in the work of Volz et al. [179].
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3.3 Minimization

Illumination Regularization As shown by Xu et al. [197], the illumination vector
l is typically piecewise constant or only varies smoothly across the surface. Hence, a first-order
regularization strategy is an appropriate choice. In particular, we make use of an anisotropic first-
order smoothness term that exploits directional information and thus allows to capture more
details. The corresponding smoothness term is given by

Rillum(l) =

∫

Ω

2∑

l=1

Ψl

(
|J (l) rl|2

)
dx , (3.16)

where J (l) denotes the Jacobian of l. As in the case of the depth regularization, the penalizer
functionsΨ1,Ψ2 are chosen to be the Perona-Malik and Charbonnier penalizer with ǫ = 0.01,
respectively, and the directions r1, r2 are obtained as the eigenvectors of the color structure tensor
J of the reference image, see Equation 3.15.

Albedo Regularization Modeling the regularization term for the albedo, we rely on a
common assumption from the field of intrinsic image decomposition. There, it has been observed
that pixels with similar chromaticity are likely to share a similar albedo [49]. Since we are interested
in separating albedo from geometry and illumination, we follow this idea and make use of a first-
order smoothness termwhich reduces smoothness at chromaticity edges. This behavior is achieved
using a positive, decreasing weighting function g applied to the directional derivatives of the rg-
chromaticity, which serves as a fuzzy edge detector for chromaticity edges. Hence, we propose the
following anisotropic smoothness term that allows the preservation of fine structures in the albedo

Ralbedo(ρ) =

∫

Ω

2∑

l=1

g
(
|J (ch(I0)) rl|2

)
·Ψl

(
|J (ρ) rl|2

)
dx , (3.17)

whereJ (ch(I0)) andJ (ρ) are the Jacobians of the chromaticity and albedo, respectively, and

ch(I0) =
I0

I10 + I20 + I30
(3.18)

denotes the rg-chromaticity, obtained by a pixel-wise normalization of the RGB values. In this
context,we set g(s2) = Ψ′p = 1/(1+s2/ǫ2) to be the Perona-Malik diffusivity. This choice leads
to the fact that jumps in the albedo map mainly align with chromaticity edges since g(s2) ≈ 0
for large arguments s2 ≫ ǫ2. As before, we choose the penalizer functions Ψ1, Ψ2 to be the
Perona-Malik and Charbonnier penalizer with ǫ = 0.01, respectively.

3.3 Minimization

Tocompute theminimizerof the energy functional given inEquation3.6,webuildupon the coarse-
to-fine warping strategy introduced in Subsection 2.4.2. Hence, we first derive the differential
formulation of the energy functional that we have to solve at each resolution level of the coarse-to-
fine scheme. Furthermore, we explain the numerical solution as well as relevant implementation
details. In the course of this we also provide the associated Euler-Lagrange equations.

37



3 Variational 3D Reconstruction

3.3 .1 D ifferential Formulation

Let us start by introducing the incremental formulation of all unknowns, given by

zk+1 = zk + dzk , (3.19)

lk+1 = lk + dlk , (3.20)

ρ
k+1 = ρ

k + dρk , (3.21)

where zk, lk, and ρ
k denote the known intermediate solutions and dzk, dlk, and dρk are the

unknown increments at the resolution level k within the coarse-to-fine pyramid. The differential
energy w.r.t. the unknown increments is then given by

Ek
(
dzk,dlk,dρk

)
= Dk

stereo

(
dzk
)
+ ν ·Dk

sfs

(
dzk,dlk,dρk

)
+ αz ·Rk

depth

(
dzk
)

+ αl ·Rk
illum

(
dlk
)
+ αρ ·Rk

albedo

(
dρk

)
+ αinc ·Rk

inc

(
dzk,dlk,dρk

)
. (3.22)

Please note that, compared to the original energy, we introduced an additional termRk
inc, which

ensures that increments are sufficiently small. We explain the term later on. After we have outlined
the basic structure of the differential energy, let us now discuss the different terms in detail.

Differential Stereo Data Term Weobtain the differential formulation of the stereo
data term by linearizing the original formulation in Equation 3.7 w.r.t. the depth increment dzk.
To this end, let us introduce the following three abbreviations

ϕk,c
i (x) := Ic0(x)− Ici (x

k

i ) , (3.23)

ϕk,c
i,x(x) := ∂x I

c
0(x)− ∂x I

c
i (x

k
i ) , and ϕk,c

i,y (x) := ∂y I
c
0(x)− ∂y I

c
i (x

k
i ) , (3.24)

for the brightness and gradient constancy assumption per color channel c ∈ {1, 2, 3},wherexk
i =

πk
i (s(x, z

k)) denotes the projection of the surface point s(x, zk), corresponding to location x

with the currentdepth estimatezk, onto the image Ii.Hereπk
i denotes the projectionperformedof

the i-th camera with the corresponding projectionmatrix scaled tomatch the respective resolution
level k of the coarse-to-fine pyramid. This allows us to state the linearized constraints for the
brightness and gradient constancy assumption, respectively, as follows:

ϕ̄k,c
i,0 := ϕk,c

i (x) +
∂ϕk,c

i (x)

∂zk(x)
· dzk(x) , (3.25)

ϕ̄k,c
i,x := ϕk,c

i,x(x) +
∂ϕk,c

i,x (x)

∂zk(x)
· dzk(x) , (3.26)

ϕ̄k,c
i,y := ϕk,c

i,y (x) +
∂ϕk,c

i,y (x)

∂zk(x)
· dzk(x) . (3.27)

Moreover, to improve the performance in low-textured regions, we follow [158] and [216] and
normalize the linearized constraints. To this end,we introduce the following normalization factors

θk,c0 :=

((
∂ϕk,c

i (x)

∂zk(x)

)2

+ ζ2

)−1
, (3.28)
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θk,cx :=

((
∂ϕk,c

i,x (x)

∂zk(x)

)2

+ ζ2

)−1
, (3.29)

θk,cy :=

((
∂ϕk,c

i,y (x)

∂zk(x)

)2

+ ζ2

)−1
, (3.30)

where ζ = 0.01 is a small parameter to prevent division by zero. Combining linearization and
normalization, we finally obtain the following differential formulation for the differential stereo
data term

Dk
stereo

(
dzk
)
=

1

n− 1

n−1∑

i=1

∫

Ω0

Ψr

(
3∑

c=1

θk,c0

(
ϕ̄k,c
i,0

)2
)

+ γ ·Ψr

(
3∑

c=1

θk,cx

(
ϕ̄k,c
i,x

)2
+ θk,cy

(
ϕ̄k,c
i,y

)2
)
dx . (3.31)

D ifferential SfS Data Term The derivation of the differential SfS data term turns
out to be slightly more complicated. Due to its hyperbolic nature, we do not follow the standard
procedure as in case of the stereo data term, but first replace the partial depth derivatives zx and zy
that appear in the surface normal of the reflectance functionRwith a difference quotient based
on an appropriate upwind scheme approximation [3], e.g., the one by Rouy and Tourin [146].
Employing the grid spacing hx and hy in x- and y-direction, respectively, the approximation for
zx is given as follows

z̃x = max
(
D−z,−D+z, 0

)
, (3.32)

D−z =
z(x, y)− z(x− hx, y)

hx
, D+z =

z(x+ hx, y)− z(x, y)

hx
, (3.33)

where, for the simplicity of our presentation,we identify z(·, ·)with the corresponding grid values.
Since the forward differenceD+z enters Equation 3.32 with a negative sign, one has to restore the
correct sign afterward via [35, 1]

zx ≈
{

−z̃x if z̃x = −D+z ,
z̃x else .

(3.34)

This approximation turns the dependency ofR contained in the original SfS data term in Equa-
tion 3.10 on the local depth derivatives zx, zy into a dependency on those depth values from the
neighborhood that are required to approximate these derivatives. In our case, this local neighbor-
hood is given by the following five locations

z(x+ h) with h ∈ H = {−hy,−hx,0,+hx,+hy} (3.35)

where hx = (hx, 0)
⊤ and hy = (0, hy)

⊤ are the pixel offsets in x- and y-direction, respectively.
Next, we use this approximation and follow the standard procedure. To this end, we introduce
the incremental computation embedded in the coarse-to-fine scheme. Therefore, we linearize the
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3 Variational 3D Reconstruction

approximated reflectance model R̄k w.r.t. the increments dzk, dlk, and dρk. Please note that we
adapt the employed grid spacing of the approximation hx and hy on each resolution level, which
is denoted by the superscript k in the following. By introducing the following abbreviation

φk,c := Ic0 − R̄k,c , (3.36)

where the channel-wise entries R̄k,1, R̄k,2, and R̄k,3 of R̄k are computed using the known values
zk, lk, and ρk of level k, the linearized expression is given by

φ̄k,c(x) := φk,c(x) +
∑

hk∈Hk

∂φk,c(x)
∂zk(x+hk)

dzk(x+hk)

+
(
∂φk,c(x)
∂lk(x)

)⊤
dlk(x) +

(
∂φk,c(x)
∂ρk(x)

)⊤
dρk(x) . (3.37)

Take note that some of the depth derivatives, i.e., derivatives w.r.t. zk(x+ hk), are zero since the
upwind scheme locally selects between a forward and a backward approximation and thus never
uses all five depth values zk(x+ hk) from the neighborhoodHk to approximate the derivatives.

Finally, we can write the differential SfS data term as

Dk
sfs

(
dzk,dlk,dρk

)
=

∫

Ω

3∑

c=1

(
φ̄k,c

)2
dx . (3.38)

D ifferential Regularization Terms Let us now discuss the differential formu-
lations of the three smoothness terms. While the corresponding expressions for the anisotropic
first-order regularizers for illumination and albedo are given by

Rk
illum

(
dlk
)
=

∫

Ω

2∑

l=1

Ψl

(∣∣J (lk + dlk) rl
∣∣2
)
dx , (3.39)

Rk
albedo

(
dρk

)
=

∫

Ω

2∑

l=1

g
(∣∣J (ch(I0)) rl

∣∣2
)
· Ψl

(∣∣J (ρk + dρk) rl
∣∣2
)
dx , (3.40)

the differential formulation of the anisotropic second-order regularizer for the depth reads

Rk
depth(dz

k) = inf
da

k

∫

Ω
Ck(dzk,dak) + αa · Sk(dak) dx , (3.41)

with the following differential coupling and smoothness term

Ck(dzk,dak) =
2∑

l=1

Ψl

((
r⊤l
(
∇(zk + dzk)− (ak + dak)

))2)
, (3.42)

Sk(dak) =

2∑

l=1

Ψl

(
2∑

m=1

(
r⊤mJ (ak + dak) rl

)2
)
. (3.43)
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Please note that also the auxiliary function ak is computed incrementally, i.e. ak+1 := ak + dak.
In the coarse-to-fine scheme, the corresponding increments are updated jointly with the other
increments, i.e., the increments for depth, illumination, and albedo.

Increment Regularization Since the differential formulation of the energy uses an
incremental linearization of the data terms, one has to ensure that the estimation is robust w.r.t.
large erroneous increments that may arise in case the linearization is locally not valid. To this end,
we penalize the length of the increments via

Rk
inc

(
dzk,dlk,dρk

)
=

∫

Ω
αdz ·

∣∣dzk
∣∣2 + αdl ·

∣∣dlk
∣∣2 + αdρ ·

∣∣dρk
∣∣2 dx , (3.44)

where αdz , αdl, and αdρ are weighting factors. Please note that the influence of the increment
regularization vanishes as the incremental coarse-to-fine fixed point iteration converges because
the regularizer only penalizes the increments and not the actual values. This statement particularly
holds if one runs several iterations per resolution level as increments in later iterations tend to zero.

3.3 .2 Numerical Solution

After deriving the differential formulation of the original energy, we can proceed as in our example
described in Section 2.4.2 in order to minimize the differential energy at each resolution level. To
this end,we first derive the necessary conditions for eachminimizer in terms of the associated Euler-
Lagrange equations and then provide details on how these equations can be solved numerically.

Euler-Lagrange Equations For the sake of clarity, we introduce the following abbre-
viations for the outer derivatives of the penalizer functions

Ψ′ kstereo,bca := Ψ′r

(
3∑

c=1

θk,c0

(
ϕ̄k,c
i,0

)2
)
, (3.45)

Ψ′ kstereo,gca := Ψ′r

(
3∑

c=1

θk,cx

(
ϕ̄k,c
i,x

)2
+ θk,cy

(
ϕ̄k,c
i,y

)2
)
, (3.46)

Ψ′ killum := Ψl

(∣∣J (lk + dlk) rl
∣∣2
)
, (3.47)

Ψ′ kalbdeo := g
(
|J (ch(I0)) rl|2

)
·Ψ′l
(∣∣J (ρk + dρk) rl

∣∣2
)
, (3.48)

Ψ′ kdepth,c := Ψ′l

((
r⊤l
(
∇(zk+dzk)− (ak+dak)

))2)
, (3.49)

Ψ′ kdepth,s := Ψ′l

(
2∑

m=1

(
r⊤mJ (ak + dak)rl

)2
)
, (3.50)
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as well as the following four diffusion tensors resulting from the anisotropic regularizers

Tk
z :=

2∑

l=1

Ψ′ kdepth,c · rlr⊤l , (3.51)

Tk
a :=

2∑

l=1

Ψ′ kdepth,s · rlr⊤l , (3.52)

Tk
l :=

2∑

l=1

Ψ′ killum · rlr⊤l , (3.53)

Tk
ρ :=

2∑

l=1

Ψ′ kalbdeo · rlr⊤l . (3.54)

Using these abbreviations allows us to write the Euler-Lagrange equations associated with the
differential energy given in Equation 3.22 in amore compact form. In this case, the Euler-Lagrange
equations constitute a coupled system of nine non-linear partial differential equations that read

0 =
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∂zk(x)
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− αz · div
(
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z

(
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+ αdz · dzk , (3.55)

0 =
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)
− αl · div

(
J (lk + dlk)Tk

l

)
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(
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)
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0 =Tk
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(
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− αa · div

(
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a

)
, (3.58)

where thediv operator applies the standarddivergence operatordiv to the rows of amatrix-valued
function, e.g.,

div
(
J (lk + dlk)Tk

l

)
=



div
(
Tk

l
∇(lk1 + dlk1)

)

div
(
Tk

l
∇(lk2 + dlk2)

)

div
(
Tk

l
∇(lk3 + dlk3)

)


 . (3.59)

In contrast to the general Euler-Lagrange equations with second-order derivatives given in the
foundation chapter, i.e., in Subsection 2.4.1, the previous Euler-Lagrange equations contain non-
local contributions, due to the approximation of the hyperbolic warping scheme. Amore detailed
derivation of the Euler-Lagrange equations can be found in the appendix of [4].
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3.3 Minimization

D iscretization and Numerical Solution In order to solve the Euler-Lagrange
equations (3.55)–(3.58) at each resolution level, we discretize them on a rectangular grid. The
corresponding grid spacinghx andhy is derived from the given camera calibrationmatrix together
with the focal length. Please note that the pixel size increases on coarser resolutions. Hence, as
mentioned before, the camera calibration matricesKk

i and the projection matrices P k
i have to be

adapted accordingly at each resolution level of the coarse-to-fine minimization.

Regarding the discretization of the stereo data term, we compute the derivatives of ϕk,c
i in the

linearized expression analytically, see Section A.1 for additional information. We discretize the
occurring depth derivatives in this process employing standard finite differences. Furthermore, we
compute expressions of type Ici (x

k
i ) via warping, see Section A.1 for details on how to adapt the

warping to the stereo scenario. We refer to this part of the optimization as geometric warping [36].

In the case of the SfS data term, we compute the derivatives of φk,c in the linearized data term
numerically. To this end,we vary the current estimateszk, lk, andρk by±10−12 andre-evaluate the
expressions, which allows computing the derivatives w.r.t. the different unknowns with a standard
central difference scheme. Please recall in this context the values of φk,c required for computing
these derivatives are evaluated based on an upwind approximation of the depth derivatives in
the reflectance function R̄k. Hence, at each level, before estimating the desired increments, we
do not only have to evaluate the values φk,c based on the current depth zk, but we also have to
decide whether forward or backward approximations are locally used within the upwind scheme.
Consequently, we term this part of the optimization hyperbolic warping [3].

Furthermore, we have to discretize the divergence expressions resulting from the regularization
terms for depth, illumination, and albedo. In this context, we make use of the advanced discretiza-
tion scheme proposed byWeickert et al. [186].

Finally, we have to solve the resulting non-linear system of equations. To this end, we proceed
as in our example shown in Subsection 2.4.2 and employ a second fixed-point iteration, where
we keep all the remaining non-linear expressions, i.e., the outer derivatives (3.45)–(3.50) of the
sub-quadratic penalizer functions fixed. The resulting linear systems of equations are then solved
using the SORmethod [205].

Implementation Details Let us finally comment on four important implementation
details: the number of outer fixed point steps per resolution level, the initialization of the depth,
illumination and albedo, the resolution dependent weighting between the data terms for SfS and
stereo, and the level depending adjustment of the amount of regularization.

(i) So far, we have assumed that we perform a single linearization per resolution level. Since we
regularize the length of the increments, however, a single linearization per resolution level is not
sufficient. Hence, in our final algorithm, we perform several fixed point iterations per resolution
level which significantly improves the reconstruction quality. (ii) Regarding the initialization, we
use the following rather intuitive strategy. At the coarsest level, we initialize the depth z with a
fronto-parallel plane, such that∇z = a = 0, the illumination vector l with zero (not to prefer
any particular direction), and the albedo ρwith the downsampled input image. (iii) Furthermore,
to account for the fact that the zero initialization of the illumination vector does not allow the SfS
data term to provide any useful information at coarser levels, we introduce a sigmoid weighting
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function that increases the SfS weight ν towards finer levels. The corresponding weight on the
resolution level k is given by

νk := skν · ν , with skν :=
1

1 + e
−(k/kmax)+b

a

, (3.60)

where kmax denotes the total number of levels and a and b are parameters that allow for adjusting
the slope and the shift of the sigmoid function, respectively. Throughout our experiments we
set a = 0.1 and b = 0.5 fixed. Please note that we apply the same scaling to the albedo and
illumination regularization weights to ensure that the relative weighting between the different
SfS-related terms is not affected. (iv) Finally, we employ a level depended scaling ofαz ,αl, andαρ

using the following scale factor

αk
z := skα · αz , αk

l := skα · αl , αk
ρ := skα · αρ (3.61)

with
skα :=

√
hkx · hky , (3.62)

where hkx and h
k
y denote the grid spacing of the current resolution level k in x- and y-direction,

respectively. This strategy reduces the effect of the regularization at finer levels compared to coarser
levels. As a consequence, it allows preserving significantly more details in the reconstruction while
still avoiding to get trapped in local minima at coarser levels.

3.4 Evaluations

In this section, we evaluate the introduced model that exploits parallax and shading cues simulta-
neously within a joint approach. We analyze the model quantitatively and compare it to a variant
that only uses parallax cues as well as other stereo methods from the literature. Furthermore, we
oppose it qualitatively to other shading cue based approaches.

Evaluation Setup In all experiments, the following fixed set of solver-related parameters
is used: a downsampling factor of η = 0.8, 20 iterations per resolution level, 2 non-linear fixed-
point iterations, and 20 SOR iterations with an over-relaxation parameter of ω = 1.8. Using this
parameter set the runtime of the non-optimized C++ implementation is in the order of 1h 40m
when applied to input images of size 1536×1024 and run on a single core with 3.40 GHz (Intel
Core i7-2600 CPU). The remaining parameters are specified in the appendix, see Section B.1.

For the experiments, we consider synthetic and real-world data. The utilized synthetic data
was created in Blender [30] using the Blunderbuss Pete model1 with artificial procedural Voronoi
texturing. It consists of three views, and two distant light sources illuminate the scene. The utilized
real-world data consists of indoor and outdoor scenes. In total it consists of four data sets: the
Angel data set of Wu et al. [194] (5 views), the Socrates data set of [218] (7 views) and the Fountain
(2 views) and Herz-Jesu (2 views) data set of [161]. All data sets comprise fine surface details and
subtle geometry which pose a challenging task for 3D surface reconstruction. The reference view,
as well as an example match view of all the considered data sets, can be found in Figure 3.4.

1by Ben Dansie (www.thingiverse.com/thing:144775)
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Figure 3.4: Reference view (top row) and one match view (bottom row) of the considered data sets. From
left to right: Blunderbuss Pete, Angel, Fountain, Herz-Jesu, and Socrates.

3.4 .1 Synthetic Data

Constraint Normalization In the first experiment, we analyze the influence of the
constraint normalization, employed in the differential stereo data term. To this end, we consider
a pure stereo variant of our method which we obtain by omitting the SfS data term as well as
the illumination and albedo regularization terms. Figure 3.5 depicts the results obtained for the
Blunderbuss Pete data set with and without constraint normalization. They reveal that without
normalization artifacts arise at image edges – even if one increases the amount of regularization;
see the middle image of Figure 3.5. This finding is in accordance with [216],who proposed such a
normalization in the context of motion estimation.

Figure 3.5: Synthetic Blunderbuss Pete data set (3 views). Influence of the constraint normalization in the
data termof a pure stereomethod. From left to right:Without constraint normalization,without
constraint normalization but increased smoothness, and with constraint normalization.
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Stereo vs. Combined Approach In the second experiment, we investigate the benefit
of exploiting depth and parallax cues simultaneously. Therefore, we compare the reconstruction
quality of our combined approach with the pure stereo variant. Figure 3.6 shows the reference im-
age, the ground truth as well as the results for the pure stereo method and the combined approach.
Moreover, it also depicts the estimated albedo and the computed illumination direction of the
combined approach. As one can see, the combined approach reconstructs fine surface details such
as the eye and the beard much better than the pure stereo method that yields a somewhat coarser
result with sporadic artifacts. Furthermore, the estimated albedo and the computed illumination
direction in Figure 3.6 look quite reasonable. Thus it is not surprising that the clear visual improve-
ment in small surface details is also confirmed quantitatively by a slight decrease of the root mean
square (RMS) error of the surface from 19.52 · 10−5 to 19.14 · 10−5. In this context, one has
to keep in mind that the improvement lies mainly in the reconstruction of small surface details.
Regarding the average angular error (AAE) of the surface normals, the improved becomes even
more explicit. Here, the error decreases from 18.57◦ to 17.52◦.

Figure 3.6: Synthetic Blunderbuss Pete data set. Three-view results. First row, from left to right: Reference
input image, computed albedo, computed illumination direction. Second and third row, from
left to right: Shaded images showing the ground truth, pure stereo and our combined approach.
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3.4 .2 Real-World Data

Comparison to Sequential Methods For the first real-world experiment, we use
the Angel data set. Once again, we compute results for the pure stereo variant and the combined
approach. Moreover, we added the results of the approach of Wu et al. [194] for comparison – a
method that refines a pre-computed multi-view stereo mesh using shading information. Once
more, the corresponding reconstructions in Figure 3.7 show that the pure stereo variant is not able
to capture all fine-scale details such as the strands of hair, the disc area of the sunflower head or
the toes. The method of Wu et al. does better. However, the overall reconstruction is too smooth.
In particular, coarse structures such as the sunflower petals pointing towards the camera or the
ringlet are over-smoothed. In contrast, our combined approach can recover both coarse-scale and
fine-scale details accurately. This observation becomes apparent when comparing our results to
the reference image.

Apart from the Angel data set, we also consider the Socrates data set. Doing so allows providing
a visual comparison to the shading-based refinementmethodofZollhöfer et al. [218]– an approach
thatoperates on implicit surfaces in terms of volumetric signeddistance functions. Figure 3.8 shows

Figure 3.7: Real-world Angel data set [194]. Five-view results. Top left: Reference image. Top right: Se-
quential method of Wu et al. [194]. Bottom left: Our pure stereo approach. Bottom right: Our
combined approach.
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Figure 3.8: Real-world Socrates data set [218]. Seven-view results. From left to right: Reference image, our
combined approach, sequential method of Zollhöfer et al. [218].

the corresponding results. As one can see bothmethods provide visually appealing reconstructions.
While the result from Zollhöfer et al. is slightly smoother, our combined approach recovers more
details; see for instance the eyes, the beard or small damages of the sculpture.

Comparison to Stereo Methods For our second real-world experiment, we used the
Fountain and theHerz-Jesu data sets for which an approximate ground truth captured with a time
of flight laser system is available [161]. Since the recovery of fine details strongly depends on the
sharpness of the input data, we downsampled the slightly blurred images to half the resolution
before reconstructing the scenes from only two views. This time, apart from the results of our
combined method and its stereo variant, we also provide results for two recently proposed stereo
approaches which are able to handle arbitrary camera settings and which provide source code
publicly: On the one hand, we use the variational method of Graber et al. [69] that uses a minimal-
surface regularization. For the given data set this method has shown significant improvements
compared to standard TV regularization. On the other hand, we consider the basic approach of
Galliani et al. [62] which is a multi-view variant of PatchMatch Stereo [31].While Galliani et al.
also proposed an additional 3D integration step in terms of fusing multiple reconstructions from
different views, we had to omit this step in our experiment, since we are not interested in a closed
reconstruction but in evaluating the quality of the depth map from the reference camera.

Figure 3.9 depicts qualitative results for the Fountain.While themulti-viewPatchMatchmethod
of Galliani et al. recovers significant jumps very accurately, the corresponding reconstruction lacks
fine details and contains significant outliers in occluded regions. The latter observation is a direct
consequence of the lacking regularization of the PatchMatch algorithm. In contrast, the approach
of Graber et al. yields a more detailed reconstruction that is, however, very noisy. This noise, in
turn, is a consequence of the minimal-surface regularization that tends to round-off objects when
suppressing local fluctuations and thus onlypreserves surface details if the amountof regularization
is chosen sufficiently low.
In comparison, the reconstruction of our pure stereo method is already quite accurate. While

flat surfaces are almost noise free, details of the fountain and the wall are more pronounced. These
facts indeed show the benefits of the edge-preserving anisotropic second-order regularization. The
visually most appealing reconstruction, however, for this data set is obtained by our combined
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Figure 3.9: Real-world Fountain data set [161]. Two-view results. Top left: Reference image. Top center:
Ground truth. Top right: Our combined approach. Bottom left: Our pure stereo approach. Bot-
tom center: Graber et al. [69]. Bottom right: Galliani et al. [62].

Table 3.1: Comparison to stereo methods in terms of the root mean square (RMS) error of the surface and
the average angular error (AAE) of the surface normals for the Fountain and Herz-Jesu data set.

Fountain Herz-Jesu
RMS AAE RMS AAE

method all non-occ. all non-occ. all non-occ. all non-occ.

Graber et al. [69] 0.0688 0.0367 40.76◦ 39.41◦ 0.2217 0.0535 43.82◦ 42.45◦

Graber et al. [69] 0.02641 – – – – – – –
Galliani et al. [62] 0.6124 0.0157 27.65◦ 21.98◦ 3.2813 0.9632 40.30◦ 34.79◦

Ours (stereo) 0.0168 0.0023 18.88◦ 16.34◦ 0.0706 0.0328 21.82◦ 19.96◦

Ours (stereo + SfS) 0.0134 0.0022 16.91◦ 14.92◦ 0.0666 0.0321 21.23◦ 19.28◦

1 While the publicly available Python code does not achieve such low errors – even with optimized parameters – they
have been reported for the non-publicly available CUDA code for the full resolution images; see [69].

approach. It recovers even fine-scale details such as the mouth of the fish and the ornaments of
the fountain. This result, in turn, demonstrates the usefulness of additional shading information.
One makes similar observations in the case of the results for the Herz-Jesu data set provided in
Figure 3.10. Also there, the combined method shows the most appealing results visually. Table 3.1
confirms our findings by a quantitative comparison of the results. It shows that theRMS andAAE
errors of our methods are significantly lower than those of the other two approaches both for the
Fountain as well as for the Herz-Jesu data set.

49



3 Variational 3D Reconstruction

Figure 3.10: Real-world Herz-Jesu data set [161]. Two-view results. Top left: Reference image. Top center:
Ground truth. Top right: Our combined approach. Bottom left: Our pure stereo approach.
Bottom center: Graber et al. [69]. Bottom right: Galliani et al. [62].

Table 3.2: Comparison to thepartially isotropic variantofourconferencepaper [5] in termsof the rootmean
square (RMS) error of the surface and the average angular error (AAE) of the surface normals
for the Fountain and Herz-Jesu data set.

Fountain Herz-Jesu
RMS AAE RMS AAE

method all non-occ. all non-occ. all non-occ. all non-occ.

partially isotropic model 0.0134 0.0022 17.31◦ 15.28◦ 0.0695 0.0325 20.98◦ 19.02◦

our anisotropic model 0.0134 0.0022 16.91◦ 14.92◦ 0.0666 0.0321 21.23◦ 19.28◦

Comparison to an Isotropic Model In our final experimentwe compare the results
of our anisotropic model, which employs anisotropic regularization for all the unknowns (depth,
illumination, and albedo), with the partially isotropic model as presented in our conference paper
in [5],which employs an anisotropic regularization only in the context of the depth but isotropic
regularization in case of the illumination and the albedo. For this purpose, we show the albedo
as well as the direction of the illumination vector obtained for the Fountain and the Herz-Jesu
data set in Figure 3.11 and Figure 3.12, respectively. As one can observe, our anisotropic model
allows capturing sharper, better-aligned edges, which is especially beneficial at object boundaries.
A notable decrease in terms of the RMS error for theHerz-Jesu data set given in Table 3.2 confirms
this visual improvement. However, it is also accompanied by a slight increase in terms of the AAE
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which might be related to the fact, that the results have been optimized for the RMS error. In case
of the already accurate estimate for the Fountain, the RMS error remained the same, but here the
AAE improved notably.

Figure 3.11: Real-world Fountain data set [161]. Top to bottom: Computed illumination direction and com-
puted albedo. Left to right: Partially isotropic model [5] and our anisotropic model.

Figure 3.12: Real-world Herz-Jesu data set [161]. Top to bottom: Computed illumination direction and
computed albedo. Left to right: Partially isotropic model [5] and our anisotropic model.
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3.5 L imitations

Although the proposed algorithm provided excellent results in our evaluation, it also has some
limitations that one could address in future work. On the one hand, specular reflections and other
effects, e.g., roughness and transparency, violate the Lambertian assumption. One could tackle
this problem either by using a non-Lambertian reflectance model that can model more realistic
reflections, e.g., [95, 117, 178], or by using dedicated error variables that can capture the violations
implicitly, e.g., [113].On the other hand, the model is based on variational optimization and thus
mainly suitable for small baselines. While this does not pose a problem when the user has full
control over the image acquisition pipeline, integrating additional information such as feature
matches could help to overcome this limitation. Finally, from a robustness viewpoint, also a final
integration of different reconstructions from multiple viewpoints seems desirable [62, 152, 211].
This integration would allow to rule out inconsistencies, to address occlusions more explicitly and
to average out possible noise in the reconstruction.

3.6 Conclusions

In this chapter, we have proposed a novel view-centered variational method that combines stereo
and shape from shading. In this context, our contribution was fivefold: (i) We showed how shad-
ing and disparity information could be integrated explicitly into a joint minimization framework
for estimating the depth. In contrast to most existing approaches, we thereby refrained from us-
ing any form of stereo-based pre-estimation. (ii) We made use of an adaptive anisotropic second-
order smoothness term. This term further encouraged the detail-preserving reconstruction of
non-fronto-parallel surfaces. (iii) We extended this model in such a way that it additionally allows
to estimate albedo and illumination. This extension made our approach applicable to more gen-
eral scenarios including Lambertian objects with non-uniform albedo and scenes with unknown
illumination. (iv) In this context, we also made use of anisotropic regularization. This choice, in
turn, allowed the estimation of detailed albedo and illumination maps. (v) Finally, we derived a
coarse-to-fineminimization frameworkbased on a linearization of all data terms. This linearization
not only enabled the application of standard optimization techniques such as nested fixed point
iterations, but it also allowed the joint estimation of all unknowns. Experiments for synthetic and
real-world images demonstrate that our combined approach allows for accurate and detailed recon-
structions. Moreover, they show that shading information is indeed useful to improve upon pure
stereo methods, in particular when it comes to the reconstruction of small-scale details. Finally,
they also indicate that the strategy of jointly estimating all unknowns may be indeed worthwhile.
Compared to sequential refinement approaches, it became possible to obtain reconstructions that
were slightly more detailed.
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Starting with the seminal work of Horn and Schunck [81], variational methods dominated the
field of motion estimation for several decades, since they not only allow for transparent modeling
but also offer dense and accurate results. In order to compute a flow field, such methods minimize
a so-called cost or energy functional, which constitutes a measure of correctness w.r.t. certain as-
sumptions. In the original formulation, this energy functional is composed of two terms: a data
term that imposes temporal constancy constraints on image features and a regularization term that
enforces spatial regularity on the solution. While the data term enables to trace corresponding
points in subsequent frames, the regularization term allows coping with ill-posed situations. In
particular, the regularization term usually models some sort of smoothness assumption that en-
ables the so-called filling-in effect: at locations where no reliable local flow estimate is possible the
regularizer fills in information from the neighborhood. This effect can be analyzed by examining
the underlying diffusion process.

In this chapter,we focus on the regularization component for variational optical flow estimation.
In the first part of this chapter, i.e., Section 4.1, we compare different strategies on how to model
isotropic and anisotropic second-order regularizers. In this context, we not only consider existing
regularizers but pursue a systematic course of action and include new techniques that have not
been considered so far. Furthermore, we analyze the underlying diffusion processes of the different
regularizers to gain a better understanding of the exhibited anisotropy. In the second part of this
chapter, i.e., Section 4.2, we improve upon fixed-order regularization and propose a new order-
adaptive regularizer that allows to combine benefits of first and second-order regularization. To
achieve this we resort to adequate regularizers that have been identified in the first part of this
chapter and develop a sophisticated approach to link them. Main parts of this chapter are based
on the work published in [9, 10].

4.1 Comparison of Second-Order Regularizers

As already mentioned regularization plays a key role within variational motion estimation since it
allows to copewith the ill-posed nature of the problem.Whilemany variationalmotion estimation
methods rely on first-order regularization strategies [36, 124, 162, 193, 217] which assume mainly
fronto-parallel motion, approaches based on second-order regularization have gained more and
more attention [33, 54, 80, 137, 167]. In particular in scenes with a vast amount of ego-motion, such
second-order regularizers allow to estimate the resulting piecewise affine flow fields which cannot
be captured adequately by first-order regularizers.
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4.1 . 1 Related Work

In the following, we give an overview of existing strategies to model second-order smoothness
assumptions. Thereby, the focus is on local regularization strategies, i.e., techniques that do not
use larger neighborhoods; cf. [137]. Furthermore, also techniques proposed in a non optical flow
context are discussed. In general, one can divide the considered modeling strategies into three
different classes: direct approaches, combined approaches, and indirect approaches.

Direct Approaches Probably the most intuitive way to model second-order smoothness
assumptions is to penalize second-order derivatives of the unknown functions directly. Therefore,
we refer to the corresponding methods as direct approaches. Such approaches include for example
theHessian [54,107, 115, 149, 177], theLaplacian [47, 115] andoperators basedondecorrelated second-
order derivatives [167].However, while being able to capture affine flow fields such methods also
have a decisive drawback. They do not allow to model discontinuities in the first-order derivatives
and hence do not preserve jumps equally well as first-order approaches.

Combined Approaches To tackle the problem of not being able tomodel jumps, one can
combine direct second-order regularizers with appropriate first-order counterparts. This combi-
nation can be achieved in two ways. On the one hand, one can apply both regularizers at the same
time. Thereby, one can realize switching with a spatially adaptive weight [109].On the other hand,
one can additively split the unknowns into two or more layers and apply a separate regularization
to each of the layers in terms of an infimal convolution [45].This splitting, however, requires to
cope with additional unknowns and a sophisticated weighting strategy.

Indirect Approaches Indirect approaches constitute a third class, which includes cou-
pling models. These coupling models typically realize second-order smoothness assumptions by
introducing auxiliary functions which approximate first-order derivatives, and by using regular-
izers that enforce smoothness assumptions on these auxiliary functions. This strategy, in turn,
allows to model discontinuities in both first and second-order derivatives. Such methods include,
e.g., the total generalized variation (TGV) [33, 34] and its variants [58, 75, 80, 136, 138].To the same
group, onemay also count over-parametrized approaches [128],which approximate a second-order
regularization by introducing an affine parametrization of the unknowns and using a first-order
regularization of the coefficients. However, as shown in [167] such a parametrization treats jumps
at different locations differently and hencemay not lead to the desired second-order regularization,
since the inferred solutions rarely are piecewise constant in practice.

A second important concept in the context of modeling smoothness terms apart from consider-
ing higher order derivatives is the use of directional information. Such anisotropic strategies have
proven to be beneficial not only in the context of first-order regularizers [124, 162, 193, 216] but also
w.r.t. second-order regularizers [58, 75, 109, 138]. Lenzen et al. [109] embedded such concepts in a
combined approach, where image information is used to steer the directions. Regarding indirect
approaches, Ranftl et al. [138],Ranftl [136] and Ferstl et al. [58] introduced similar concepts into
the coupling term, which connects the auxiliary functions and the first-order derivatives. Recently,
Hafner et al. [75] extended this work by applying the anisotropy not only in the coupling term but
also in the smoothness term, which enforces directional smoothness on the auxiliary functions.

Please note that from all the second-order approaches mentioned above only the works [33, 54,
80, 128, 136, 167] have been proposed in the context of optical flow estimation, and only one of
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them [136]makes use of anisotropic strategies. However, the strategy in [136] limits the anisotropy
to certain components and hence does not exploit the full potential of directional adaptation.
Moreover, as observed by Lellmann et al. [108], introducing anisotropic concepts in higher order
smoothness terms allows choosing different penalization strategies related to varying degrees of
anisotropy – in contrast to the first-order case. Hence, not only the question persists which of the
three classes mentioned above performs the best in the context of optical flow estimation, but also
which degree of anisotropy is most suitable when modeling second-order smoothness terms for
this task.

4.1 .2 Contributions

In the first part of this chapter, i.e., Section 4.1, we address both these questions. On the one hand,
we investigate and compare representative approaches of all three above mentioned classes and
demonstrate the benefits of introducing anisotropic concepts in each of these classes. In this con-
text, we also systematically analyze the diffusion processes induced by the different regularization
strategies by using a convenient notation. On the other hand, we propose a novel anisotropic
second-order regularization strategy. This new strategy exceeds existing optical flow regularizers
regarding the degree of anisotropy. To evaluate the different strategies, we consider two popular
benchmarks: the KITTI 2012 [65] and KITTI 2015 benchmark [119]. Both of these benchmarks
contain a vast amount of ego-motion and thus are relevant for our analysis. The conducted experi-
ments not only show that an indirect approach in terms of a coupling model is favorable but also
that the concept of integrating direction information consistently improves the results.

4.1 .3 Baseline Model

To compare different regularization techniques in the context of variational optical flow estima-
tion, we need to embed them into a variational model. Hence, we next introduce an optical flow
approach that will serve as a baseline model. When choosing such model, one has to keep in mind
that typical real-world image sequences, e.g., the KITTI benchmarks, contain not only a large
amount of non-fronto parallel motion but also illumination changes. Demetz et al. [54] proposed
a method that tackles the challenge of handling such illumination changes. This approach explic-
itly models illumination changes in terms of a set of coefficient fields. Therefore, we employ their
model as a baseline for our prototypes in this section.
Given two consecutive image frames I1, I2 : Ω → R of an image sequence, the method

seeks to compute both the flow fieldw = (u, v)⊤ : Ω → R
2 and the set of coefficient fields

c = (c1, . . . , cn)
⊤ : Ω → R

n as the minimizer of the following energy functional:

E(w, c) =

∫

Ω
D(w, c) + α ·Rflow(w) + β ·Rillum(c) dx , (4.1)

wherex = (x, y)⊤∈ Ω denotes the location within the rectangular image domainΩ. The energy
functional consists of a data termD and two regularization terms Rflow andRillum for the flow
field and for the coefficient fields, respectively. Moreover it makes use of two weighting parameters
α and β to allow balancing the relative impact of all three terms.
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Data Term Let us now take a closer look at the data term. Classical data terms for variational
motion estimation seek to explain brightness changes solely by motion [43, 81] or rely on illumi-
nation invariant features to cope with non-motion induced brightness changes [53, 121, 132, 189].
The data term we consider for our baseline, however, explicitly models illumination changes and
hence enables the model to explain brightness variations in terms of illumination changes, which
is why we refer to it as illumination-aware data term, cf. [8].This brings the advantage of enabling
the model to handle illumination changes without discarding potential useful information for the
sake of robustness [54].Hence, the data term of our baselinemodel is composed of an illumination
compensated brightness constancy assumption and illumination compensated gradient constancy
assumption, given by

D(w, c) = Ψc

(
(I2(x+w)− Φ(I1(x), c))

2
)

+ γ ·Ψc

(
|∇I2(x+w)−∇Φ(I1(x), c)|2

)
, (4.2)

where Ψc is the Charbonnier penalizer described in Section 2.4.3 of the foundation chapter, γ
is a weighting parameter, andΦ(I, c) is a parametrized brightness transfer function [72]. In this
context one may note that the use of additional illumination invariant features, i.e., the gradient
constancy, helps to guide the estimation process. In practice this guidance helps to improve the es-
timation accuracy compared to a variant solely based on the illumination compensated brightness
constancy assumption. The parametrized brightness transfer functionΦ(I, c)maps the intensi-
ties of the first frame I1 to the corresponding intensities of the second frame I2. It is defined by
the spatially varying coefficient fields c, a given set ofn basis functions φi : R → R, and the mean
brightness transfer function φ̄(I) : R → R. It reads

Φ(I, c) = φ̄(I) +
n∑

i=1

ci · φi(I) . (4.3)

In contrast toDemetz et al. [54]wedonot learn the parametrizedbrightness transfer function from
training data. Instead, we use a normalized affine brightness transfer function, which is defined by
the following mean and basis functions

φ̄(I) = I , φ1(I) =
I

n1
, and φ2(I) =

1

n2
, (4.4)

where n1 and n2 are normalization factors such that |φi(I)| = 1. Although such a normalized
affine basis function might not offer an ideal representation for a specific domain, it allows to
model most of the occurring illumination changes while offering an intuitive interpretation of the
coefficient fields compared to a learned basis function as used in [54].

Regularization Terms In general, the data term on its own does not provide enough
information to obtain either a unique or a satisfying solution for the entire image domain, hence
spatial regularization of the unknowns is required. In contrast to classical approaches that do not
explicitly model illumination changes, this becomes even more important in our baseline, because
observed brightness changes can be explained in multiple ways, i.e., in terms of motion or in terms
of illumination changes.
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In case of the coefficient regularizerRillum, our baseline uses an anisotropic first-order regularizer
[216],whichmodels the assumption that neighboring locations are exposed to similar illumination
changes and therefore can be expressed by piecewise constant coefficient fields c. Furthermore, it
assumes that discontinuities in the coefficient fields align with image edges in the uncompensated
reference frame I1. This makes sense, since illumination changes tend to align with these edges,
e.g., in case of shadow edges. The corresponding regularizer is given by

Rillum(c) =
2∑

l=1

Ψl

(
n∑

i=1

(
r⊤l ∇ci

)2
)
, (4.5)

where r1 and r2 denote two spatially varying orthogonal directions, i.e., orthonormal vectors,
that enable the desired direction depended smoothing behavior. In practice, these directions are
extracted as the eigenvectors of either the structure tensor [59] or the regularization tensor [216] and
typically represent directions across and along image edges. In our baseline, the penalizer functions
Ψ1 andΨ2 corresponding to the directions r1 and r2 are chosen to be the edge-enhancing Perona-
Malikpenalizer and the edge-preservingCharbonnierpenalizer, respectively,what allows to capture
sharp discontinuities, see Section 2.4.3.

While classical as well as many recent variational optical flow methods resort to such first-order
regularizers also in case of the flow regularizerRflow, the model of Demetz et al. [54] employs a
second-order regularization strategy which directly penalizes the second-order derivatives of the
unknowns. Such a second-order regularizer has the advantage that it does not favor piecewise
constant solutions but piecewise affine solutions, which makes it more suitable for scenarios that
contain a large amount of non-fronto parallel motion. The corresponding regularizer reads

Rflow(w) = Ψc

(
|Hu|2F + |Hv|2F

)
, (4.6)

where |·|F is the Frobenius norm, andHu andHv are the Hessians of u and v, respectively. As
penalizer function the edge-preserving Charbonnier penalizerΨc is used, see Section 2.4.3.

4.1 .4 Regularizers

After introducing our baseline optical flowmodel,we turn to the prototypes of the threemodeling
strategies, i.e., direct, combined and indirect approaches. Furthermore, we introduce isotropic and
anisotropic variants for each of the prototypes. Hence, for the sake of completeness, let us start
with a first-order regularizer.

4.1 .4 .1 First-Order Regularization

Isotropic Since the seminal work of Horn and Schunck [81] first-order regularizers have a
long successful tradition within optical flow estimation. Even quite recent works still use such
regularizers, see Revaud et al. [143].Awell-known isotropic first-order regularizer is given by [36]:

R1-iso(w) = Ψ
(
|∇u|2 + |∇v|2

)
, (4.7)

57



4 Variational Motion Estimation

whereΨ is a penalizer function that allows preserving discontinuities in the flow field. This type
of smoothness term also comprises some variants of the well-known total variation regularization
(TV) [147, 210].

Anisotropic To improve the performance at object boundaries, i.e., by smoothing along
object edges but not across them, researchers proposed several anisotropic extensions. Going back
to the work of Nagel and Enkelmann [124], the idea is to exploit directional information to steer
the smoothing [162, 185, 193, 216].To derive the anisotropic counterpart of the isotropic prototype
in Equation 4.7, it can be rewritten using the unit vectors e1 = (1, 0)⊤ and e2 = (0, 1)⊤:

R1-iso(w) = Ψ

(
2∑

l=1

(
e⊤l ∇u

)2
+
(
e⊤l ∇v

)2
)
. (4.8)

Here, e⊤l ∇u and e⊤l ∇v are the directional derivatives ∂elu and ∂elv, respectively. By replacing
the unit vectors e1,e2 with locally varying directions r1,r2, which form an orthonormal basis, and
by applying the penalization to both directions separately, one obtains the anisotropic counterpart
of Equation 4.7, given by [162, 216]:

R1-aniso(w) =

2∑

l=1

Ψl

((
r⊤l ∇u

)2
+
(
r⊤l ∇v

)2)
. (4.9)

Please note that this model comprises the complementary regularizer from Zimmer et al. [216],
which is related to the steered random field model of Sun et al. [162]. For determining the local di-
rections r1,r2, one can use the eigenvectors of either the structure tensor [162] or the regularization
tensor [216].

4.1 .4 .2 Direct Second-Order Regularization

Isotropic Probably the most intuitive way to model second-order smoothness assumptions
is to penalize the second-order derivatives of the flow directly. A prominent isotropic example
is based on the Hessian, which already has been introduced together with our baseline model
proposed by Demetz et al. [54]. It is given by

R2-iso(w) = Ψ
(
|Hu|2F + |Hv|2F

)
, (4.10)

where |·|F is the Frobenius norm, andHu andHv is the Hessian of u and v, respectively. This
regularizer has also been applied in the context of denoising [115, 149] and Shape from Shading [94,
177].Other matrix norms generalizing the Frobenius norm, e.g., the lp-norm [149] (p = 1) or the
Schattenp-norm [107] (p = 1, 2,∞), have been considered in the literature as well.

Anisotropic To derive the corresponding anisotropic counterpart as for the first-order case,
we reformulate the isotropic regularizer using the unit vectors e1, e2:

R2-iso(w) = Ψ

(
2∑

l=1

2∑

m=1

(
e⊤mHu el

)2
+
(
e⊤mHv el

)2
)
, (4.11)
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where e⊤mHu el and e⊤mHv el are the second-order directional derivatives ∂emel
u and ∂emel

v,
respectively. Once again the unit vectors e1, e2 are replaced with the locally varying directions r1,
r2. As observed by Lellmann et al. [108] in the context of denoising, two possibilities arise how to
penalize the directional derivatives. One can either penalize the directions rk jointly or penalize all
the directional derivatives separately. Please note that this constitutes a substantial difference to
the first-order case, where both options coincide. For our second-order term in Equation 4.11 the
first case leads to

R2-aniso-single(w) =
2∑

l=1

Ψl

(
2∑

m=1

(
r⊤mHu rl

)2
+
(
r⊤mHv rl

)2
)

=
2∑

l=1

Ψl

(
|Hu rl|2 + |Hv rl|2

)
, (4.12)

which we refer to as single anisotropic regularization. The latter case yields

R2-aniso-double(w) =
2∑

l=1

2∑

m=1

Ψl,m

((
r⊤mHu rl

)2
+
(
r⊤mHv rl

)2)
, (4.13)

which we refer to as double anisotropic regularization. To the best of our knowledge, we are the
first to use both the single and the double anisotropic variant in the context of motion estimation.

4 .1 .4 .3 Combined Regularization

Isotropic As a representative of the class of combined regularizers we consider an infimal
convolution approach. To this end, we additively split the actual flow fieldw into two individual
componentswi = (ui, vi)

⊤ with i = {1, 2} such thatw = w1 + w2. Furthermore, a direct
first and direct second-order regularizer are combined by applying them individually to the two
flow components and by balancing them via the parameterλ. The resulting isotropic variant reads

Rinf-iso(w) = inf
w=w1+w2

{
R1-iso(w1) + λ ·R2-iso(w2)

}
. (4.14)

Anisotropic Consequently, combining the single anisotropic variants of the direct first-
order and second-order regularizers from Equation 4.9 and Equation 4.12 yields

Rinf-aniso-single(w) = inf
w=w1+w2

{
R1-aniso(w1) + λ ·R2-aniso-single(w2)

}
, (4.15)

which resembles the combined approach for scalar-valued denoising fromLenzen et al. [109].Anal-
ogously, using the double anisotropic counterparts, we obtain the double anisotropic variant

Rinf-aniso-double(w) = inf
w=w1+w2

{
R1-aniso(w1) + λ ·R2-aniso-double(w2)

}
. (4.16)

As before, we are not aware of any motion estimation methods where such anisotropic infimal
convolution regularizers have been applied.
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4.1 .4 .4 Indirect Second-Order Regularization

Isotropic Finally, as a representative of the class of indirect approaches, we consider a cou-
pling approach. It consists of two terms: a coupling term thatmodels the similarity of the gradients
to auxiliary functions anda smoothness term that enforces smoothness on these auxiliary functions.
An isotropic variant is given by [33]:

Rc-iso(w) = inf
a,b

{
Cc-iso(w,a,b) + λ · Sc-iso(a,b)

}
, (4.17)

whereCc-iso denotes the coupling term and Sc-iso the smoothness term given by

Cc-iso(w,a,b) = Ψ
(
|∇u− a|2 + |∇v − b|2

)
, (4.18)

Sc-iso(a,b) = Ψ
(
|J a|2F + |Jb|2F

)
, (4.19)

respectively. Here, a = (a1, a2)
⊤ and b = (b1, b2)

⊤ are the auxiliary vector fields that approx-
imate the gradients∇u and∇v, respectively,J a andJb denote the Jacobians of a and b, and
λ serves as weighting parameter. This type of smoothness term comprises the well-known total
generalized variation regularizer (TGV) [34].

Anisotropic By first rewriting the isotropic case using the unit vectors e1, e2 as

Cc-iso(w,a,b) = Ψ

(
2∑

l=1

(
e⊤l (∇u− a)

)2
+
(
e⊤l (∇v − b)

)2
)
, (4.20)

Sc-iso(a,b) = Ψ

(
2∑

l=1

2∑

m=1

(
e⊤mJ a el

)2
+
(
e⊤mJbel

)2
)
, (4.21)

and then introducing the directions r1, r2 with separate penalization we obtain the single an-
isotropic case which resembles a vector-valued extension of the anisotropic coupling model of
Hafner et al. [75] that we used in Chapter 3 for our 3D reconstruction method and was originally
proposed in the context of focus fusion. It reads

Rc-aniso-single(w) = inf
a,b

{
Cc-aniso-single(w,a,b) + λ · Sc-aniso-single(a,b)

}
, (4.22)

with the respective coupling and smoothness terms

Cc-aniso(w,a,b) =

2∑

l=1

Ψl

((
r⊤l (∇u− a)

)2
+
(
r⊤l (∇v − b)

)2)
, (4.23)

Sc-aniso-single(a,b) =
2∑

l=1

Ψ

(
2∑

m=1

(
r⊤mJ a rl

)2
+
(
r⊤mJb rl

)2
)

=
2∑

l=1

Ψ
(
|J a rl|2+|Jb rl|2

)
. (4.24)
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Again penalizing all directions separately results in the corresponding double anisotropic variant:

Rc-aniso-double(w) = inf
a,b

{
Cc-aniso-double(w,a,b) + λ · Sc-aniso-double(a,b)

}
, (4.25)

with the respective coupling and smoothness terms given by

Cc-aniso(w,a,b) =
2∑

l=1

Ψl

((
r⊤l (∇u− a)

)2
+
(
r⊤l (∇v − b)

)2)
, (4.26)

Sc-aniso-double(a,b) =
2∑

l=1

2∑

m=1

Ψl,m

((
r⊤mJ a rl

)2
+
(
r⊤mJb rl

)2)
, (4.27)

where r⊤mJ a rl and r⊤mJb rl can be considered to be an approximation of the directional deriva-
tiver⊤k Hu rl andr⊤k Hv rl, respectively. Also for the anisotropic couplingmodels,we arenot aware
of any motion estimation method that makes use of such regularizers. Regarding the anisotropic
coupling term, the work of Ranftl [136] is close in spirit, which introduces anisotropic concepts in
the coupling term but not the smoothness term.

4.1 .5 D iffusion Processes

So far we not only juxtaposed different existing regularizers but also introduced new regularizers
for the three different modeling strategies. Next, we want to analyze these regularizers. Therefore,
we derive the gradient descent equationsw.r.t. the unknowns of the respective regularizers to reveal
the underlying diffusion process [188]. These resulting diffusion processes differ in the order of
the involved derivatives as well as in the degree of anisotropy. Analyzing these diffusion processes
allows us to gain a better understanding of the anisotropy and to highlight the commonalities
between the different techniques. To simplify the analysis, we first provide a summary of the
general structure of the underlying diffusion processes.

4.1 .5 . 1 Second-Order Diffusion

In case of the standard first-order regularization (see Equation 4.7, Equation 4.9, Equation 4.14,
Equation 4.15, and Equation 4.16) two coupled scalar-valued non-linear second-order diffusion
processes occur. We can write the associated scalar-valued diffusion equations as

∂tu = ∇ · (T1∇u) , (4.28)

∂tv = ∇ · (T1∇v) , (4.29)

where∂t denotes an artificial time derivative,∇ · the divergence operator, andT1 is thewell-known
2× 2 symmetric positive-definite diffusion tensor that describes the diffusion process [187],which
has the following structure:

T1 =

(
a b
b c

)
, (4.30)
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where the entries a, b and c are scalars. Furthermore, we introduce∇n = In×n ⊗∇, a generaliza-
tion of the classical nabla operator∇ = ∇1,where In×n denotes then×n identitymatrix,⊗ is the
Kronecker product and the resulting dimension is given by 2n×n. This operator allows rewriting
the coupled diffusion process in terms of a vector-valued diffusion of the floww = (u, v)⊤:

∂tw = ∇2 · (T1∇2w) , (4.31)

whereT1 is a symmetric positive definite 4× 4 tensor with a block diagonal structure holding the
actual diffusion tensor

T1 = I2×2 ⊗ T1 =

(
T1 0
0 T1

)
. (4.32)

This generalized notation offers a convenient way to formulate vector-valued second-order diffu-
sion processes. In particular, it allows to intuitively spot relations to special cases of second-order
diffusion, e.g., guided diffusion and generalized coupled diffusion, which we detail next.

Guided Diffusion One special case of second-order diffusion arises in the context of the
indirect second-order regularization, i.e., guided diffusion [133]. In particular, in case of the flow
components the involved coupling term (see Equation 4.18, Equation 4.23, and Equation 4.26)
leads to a guided second-order diffusion process, for which we can write the associated coupled
diffusion equations as

∂tu = ∇ · (T aux
1 (∇u− a)) , (4.33)

∂tv = ∇ · (T aux
1 (∇v − b)) , (4.34)

where T aux
1 is as before the 2 × 2 symmetric positive-definite diffusion tensor and the vector-

valued auxiliary functions a and b act as guidance functions, respectively. Again, we can write the
diffusion process more compactly using a vector-valued notation

∂tw = ∇2 ·
(
Taux

1

(
∇2w −

(
a

b

)))
, (4.35)

whereTaux
1 is again the stacked diffusion tensor

Taux
1 = I2×2 ⊗ T aux

1 =

(
T aux
1 0
0 T aux

1

)
. (4.36)

Here, one can see that the standard vector valued-diffusion, i.e., Equation 4.31, as well as the guided
vector valued-diffusion, i.e., Equation 4.35, are solely coupled by T1 and T aux

1 , respectively. Fur-
thermore, note that for a = b = 0, the structure of Equation 4.35 comes down to the structure
of the standard second diffusion given in Equation 4.31.

Generalized Coupled Diffusion Another special case is given by the generalized
coupled diffusion process that may occur in case of the indirect second-order. To be more precise,
the smoothness term of the auxiliary functions a = (a1, a2)

⊤ and b = (b1, b2)
⊤ (see Equa-
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tion 4.19, Equation 4.24, and Equation 4.27) leads to two coupled vector-valued second-order
diffusion processes, for which the scalar-valued diffusion equations can be written as

∂ta1 = ∇ · (TA∇a1) +∇ · (TB∇a2) , (4.37)

∂ta2 = ∇ · (TB∇a1) +∇ · (TC∇a2) , (4.38)

and

∂tb1 = ∇ · (TA∇b1) +∇ · (TB∇b2) , (4.39)

∂tb2 = ∇ · (TB∇b1) +∇ · (TC∇b2) , (4.40)

where TA,TB and TC denote the respective 2× 2 positive definite second-order diffusion tensors.
We refer to all the cases where TB is not a zero matrix as generalized coupled (Equation 4.27), since
in this case the interaction is not only given through the diffusion tensor (i.e., TA or TC ) but also
by additional contributions by another unknown, e.g.,∇ · (TB∇a2). Introducing a 4× 4matrix
composed of these three possibly different 2× 2 diffusion tensors

T aux
2 =

(
TA TB

TB TC

)
, (4.41)

allows writing the diffusion process compactly in a vector formulation as

∂ta = ∇2 · (T aux
2 ∇2a) , (4.42)

∂tb = ∇2 · (T aux
2 ∇2b) . (4.43)

This diffusion process, given by two vector-valued diffusion equations, can be seen as an vector-
valued extension to the standard second-order diffusion, e.g., given by two scalar-valued diffusion
equations as shown in Equation 4.28 and Equation 4.29. While in the standard second-order dif-
fusion case the diffusion equations are coupled via the diffusion tensorT1, the diffusion equations
in the generalized coupled diffusion process are coupled via the analogous counterpart T aux

2 .

4 . 1 .5 .2 Fourth-Order Diffusion

Finally, in case of the direct second-order regularization (see Equation 4.10, Equation 4.12, and
Equation 4.13) and the combined regularization (see Equation 4.14, Equation 4.15 and Equa-
tion 4.16), a coupled non-linear fourth-order diffusion process takes place. Here, we can write
the corresponding diffusion equations for the flow components in a similar fashion. Therefore,
we introduce∇2 = ∇ ⊗∇ = (∂xx, ∂xy, ∂yx, ∂yy)

⊤ as a kind of second-order nabla operator
and analog∇2 · as a second-order divergence equivalent. These operators allow us to write the
scalar-valued diffusion equations as

∂tu = ∇2 ·
(
T2∇2u

)
, (4.44)

∂tv = ∇2 ·
(
T2∇2v

)
, (4.45)
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where T2 is the 4× 4 fourth-order diffusion tensor with the following structure

T2 =

(
A B
B C

)
, (4.46)

where A,B and C are 2 × 2 matrices. A derivation hereof can be found in Section A.2. As in
the second-order diffusion case, we can further generalize the differential operator∇2 via∇2

n =
In×n ⊗∇2. This allows to state the vector-valued formulation:

∂tw = ∇
2
2 ·
(
T2∇

2
2w
)
, (4.47)

whereT2 is a 8× 8matrix with a block diagonal structure holding the actual diffusion tensor

T2 = I2×2 ⊗ T2 =

(
T2 0
0 T2

)
. (4.48)

4.1 .6 D iffusion Tensors

In the previous section, we reviewed the general form of the occurring diffusion processes. In all
cases, the underlying diffusion tensor guides the diffusion process. More precisely, the diffusion
tensor encodes the anisotropy of the diffusion process: the smoothing direction is determined by
the eigenvectors and the magnitude by the eigenvalues. Next, we analyze the respective diffusion
tensor that corresponds to each of the introduced regularizers.

4.1 .6 . 1 First-Order Regularization

The first-order regularization induces a second-order diffusion process. This process involves a
2× 2 diffusion tensor as shown in Equation 4.30.

Isotropic In the isotropic case of the first-order regularizer, the diffusion tensor is given by

T1-iso =

2∑

l=1

Ψ′
(
|∇u|2 + |∇v|2

)
· el e⊤l

= I2×2 ·Ψ′
(
|∇u|2 + |∇v|2

)
, (4.49)

which makes explicit that no directional-dependent smoothing occurs since the only eigenvalue is
twofold. AssumingΨ′ is positive and decreasing, what holds for all the considered penalizer func-
tions in this thesis, the smoothing is reduced if the derivatives are large,which typically corresponds
to a discontinuity within the unknowns.

Anisotropic In the anisotropic case the diffusion tensor reads

T1-aniso =
2∑

l=1

Ψ′l

((
r⊤l ∇u

)2
+
(
r⊤l ∇v

)2)
· rl r⊤l . (4.50)
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Here one can see that the two eigenvaluesmay differ,which allows a directional-dependent smooth-
ing. The smoothing along a specific direction rl is reduced if the corresponding directional deriva-
tive is large, but in contrast to the isotropic case, this does not necessarily affect the orthogonal
direction. Consequently, the separate penalization allows adapting the smoothing behavior to
homogeneous regions, edges, and corners.

4 .1 .6 .2 D irect Second-Order Regularization

The direct second-order regularization induces a fourth-order diffusion process. This process in-
volves a 4× 4 diffusion tensor as shown in Equation 4.46.

Isotropic In the isotropic variant of the direct second-order regularization, where we have a
fourth-order diffusion process, the diffusion tensor reads

T2-iso =

2∑

l=1

2∑

m=1

Ψ′
(
|Hu|2F + |Hv|2F

)
·
(
eme⊤m ⊗ ele

⊤
l

)

= I4×4 ·Ψ′
(
|Hu|2F + |Hv|2F

)
. (4.51)

As in the first-order regularization scenario, this makes explicit that no directional adaptation takes
place since again the only eigenvalue is fourfold.

Anisotropic In the single anisotropic case, the fourth-order diffusion tensor reads

T2-aniso-s =
2∑

l=1

2∑

m=1

Ψ′l

(
2∑

m=1

(
e⊤mHu rl

)2
+
(
e⊤mHv rl

)2
)

·
(
eme⊤m ⊗ rlr

⊤
l

)

= I2×2 ⊗
(

2∑

l=1

Ψ′l
(
|Hu rl|2 + |Hv rl|2

)
· rlr⊤l

)
, (4.52)

where there are two eigenvaluesΨ′l which are twofold. By rewriting this equation we canmake the
block diagonal structure of the fourth-order diffusion tensor in the single anisotropic case explicit

T2-aniso-s =

(
A 0
0 A

)
, with A =

2∑

l=1

Ψ′l
(
|Hu rl|2 + |Hv rl|2

)
· rlr⊤l . (4.53)

We provide a derivation of this block structure in Section A.2 of the appendix. In the double
anisotropic case, the respective diffusion tensor reads

T2-aniso-d =
2∑

l=1

2∑

m=1

Ψ′l,m

((
r⊤mHu rl

)2
+
(
r⊤mHv rl

)2)
·
(
rmr⊤m ⊗ rlr

⊤
l

)
, (4.54)

where all four eigenvalues may differ, which constitutes maximal adaptation.
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4.1 .6 .3 Combined Regularization

In case of the combined regularizer, the same diffusion tensors arise as for the first-order and
the direct second-order case. In contrast, however, both diffusion tensors emerge together in the
minimization process. Although we cannot obtain any additional insights from the actual tensors,
we specify them briefly for the sake of completeness.

Isotropic The isotropic case leads to the following two diffusion tensors:

T1-inf-iso = I2×2 ·Ψ′
(
|∇u1|2 + |∇v1|2

)
, (4.55)

T2-inf-iso = I4×4 ·Ψ′
(
|Hu2|2F + |Hv2|2F

)
. (4.56)

Anisotropic The anisotropic variants result in the following diffusion tensors:

T1-inf-aniso =

2∑

l=1

Ψ′l

((
r⊤l ∇u1

)2
+
(
r⊤l ∇v1

)2)
· rl r⊤l , (4.57)

T2-inf-aniso-s = I2×2 ⊗
(

2∑

l=1

Ψ′l
(
|Hu2 rl|2 + |Hv2 rl|2

)
· rlr⊤l

)
, (4.58)

T2-inf-aniso-d =
2∑

l=1

2∑

m=1

Ψ′l,m

((
r⊤mHu2 rl

)2
+
(
r⊤mHv2 rl

)2)
·
(
rmr⊤m ⊗ rlr

⊤
l

)
. (4.59)

4.1 .6 .4 Indirect Second-Order Regularization

The indirect second-order regularizer induces not only a guided diffusion process but also a gener-
alized coupled diffusion process. Hence, we specify the involved 2× 2 diffusion tensor as well as
the stacked 4× 4 diffusion tensor as specified in Equation 4.30 and Equation 4.41, respectively.

Isotropic The indirect second-order regularization involves multiple diffusion tensors again.
In the isotropic case, the tensors are given by the 2× 2 tensor resulting from the coupling term

T aux
1-iso =

2∑

l=1

Ψ′
(
|∇u− a|2 + |∇v − b|2

)
· el e⊤l

= I2×2 ·Ψ′
(
|∇u− a|2 + |∇v − b|2

)
, (4.60)

and the 4× 4 tensor resulting from the smoothness term

T aux
2-iso =

2∑

l=1

2∑

m=1

Ψ′
(
|J a|2F + |Jb|2F

)
·
(
em e⊤m ⊗ el e

⊤
l

)

= I4×4 ·Ψ′
(
|J a|2F + |Jb|2F

)
. (4.61)

For both tensors, the only eigenvalue is twofold and fourfold, respectively. Hence, there is no
directional-dependent smoothing.
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Anisotropic The diffusion tensor of the anisotropic variant is the same for both the single
anisotropic case as well as the double anisotropic case. It reads

T aux
1-aniso =

2∑

l=1

Ψ′l

((
r⊤l (∇u− a)

)2
+
(
r⊤l (∇v − b)

)2)
· rl r⊤l . (4.62)

In contrast, the tensor resulting from smoothness term differs in the two cases. In the single
anisotropic case, the diffusion tensor reads

T aux
2-aniso-s =

2∑

l=1

2∑

m=1

Ψ′l

(
2∑

m=1

(
e⊤mJ a rl

)2
+
(
e⊤mJb rl

)2
)

·
(
eme⊤m ⊗ rlr

⊤
l

)

= I2×2 ⊗
(

2∑

l=1

Ψ′l
(
|J a rl|2 + |Jb rl|2

)
· rlr⊤l

)
. (4.63)

As before only up to two different eigenvalues may appear. In the double anisotropic case, the
diffusion tensor is given by

T aux
2-aniso-d =

2∑

l=1

2∑

m=1

Ψ′l,m

((
r⊤mJ a rl

)2
+
(
r⊤mJb rl

)2)
·
(
rmr⊤m ⊗ rlr

⊤
l

)
. (4.64)

where all four eigenvalues may differ.

4.1 .7 Minimization

After analyzing the diffusion processes resulting from the respective regularization strategies, we
discuss the minimization of the considered prototypes. Here prototypes refer to the different
variants of the considered baseline model in Equation 4.1, where we replace the original flow reg-
ularizerRflow with the different regularizers given in Subsection 4.1.4. To minimize the resulting
non-convex energy functionals, we resort to the coarse-to-fine warping strategy as described in the
foundation chapter, see Subsection 2.4.2. Therefore, we first derive the differential formulations.

4.1 .7 . 1 Differential Formulation

By splitting the unknowns of each resolution level k of the coarse-to-fine scheme into known in-
termediate solutionswk, ck and unknown increments dwk, dck, the solution of the next finer
resolution level k + 1 is defined by

wk+1 = wk + dwk , and ck+1 = ck + dck . (4.65)

Using this splitting, we can write the differential formulation of the baseline energy given in Equa-
tion 4.1 for the unknown increments as

E(dwk,dck) =

∫

Ω
D(dwk,dck) + β ·Rillum(dc

k) + α ·Rflow(dw
k) dx , (4.66)

where the different terms of the original energy functional are replaced by the corresponding
differential formulations, which are specified next.
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Data Term In the case of the data term, we linearize the original term w.r.t. the unknown in-
crements. Since the term is already linear in the coefficient incrementsdck (the brightness transfer
functionΦ is a linear combination of weighted basis functions, cf. Equation 4.3), only the expres-
sions I2(x+wk+1) in the brightness constancy assumption and∇I2(x+wk+1) in the gradient
constancy assumption, have to be linearized. Applying a first-order Taylor expansion results in

I2(x+wk+1) ≈ ∇I2(x+wk)⊤dwk + I2(x+wk) , (4.67)

∇I2(x+wk+1) ≈ H(I2(x+wk))⊤dwk +∇I2(x+wk) . (4.68)

Introducing the abbreviations I1 := I1(x) and Ik2 := I2(x +wk) allows us now to write the
non-normalized differential formulation of the data term as

D(dwk,dck) = Ψc

((
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
)2)

+ γ ·Ψc

(∣∣∣H(Ik2 )
⊤dwk +∇Ik2 −∇Φ(I1, c

k + dck)
∣∣∣
2
)
. (4.69)

As in the previous chapter, we apply an additional constraint normalization [158, 216] to both
constancy assumptions via the following normalization factors

θk :=
(
|∇Ik2 |2 + ζ2

)− 1
2
, (4.70)

θkx :=
(
|∇Ik2,x|2 + ζ2

)− 1
2
, θky :=

(
|∇Ik2,y|2 + ζ2

)− 1
2
, (4.71)

where ζ = 0.01 is a small parameter to prevent division by zero. Combining linearization and
normalization, we obtain the normalized differential formulation as

D(dwk,dck) = Ψc

((
θk
(
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
))2)

+ γ ·Ψc

(∣∣∣θkxy
(
H(Ik2 )

⊤dwk +∇Ik2 −∇Φ(I1, c
k + dck)

)∣∣∣
2
)
, (4.72)

where θkxy is a diagonal matrix holding the two normalization factors given by

θkxy =

(
θkx 0
0 θky

)
. (4.73)

Finally, to avoid a more complex minimization, we followDemetz [55] and omit the coefficient in-
crementsdck within the gradient constancy assumption. Hence, the final differential formulation
of the data term is given by

D(dwk,dck) = Ψc

(
θk ·

(
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
)2)

+ γ ·Ψc

(∣∣∣θkxy
(
H(Ik2 )

⊤dwk +∇Ik2 −∇Φ(I1, c
k)
)∣∣∣

2
)
. (4.74)
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Regularization Terms In the case of the regularization terms, the differential formula-
tion of the baseline is straightforward. The illumination coefficient regularizer reads

Rillum(dc
k) =

2∑

l=1

Ψl

(
N∑

i=1

(
r⊤l ∇(cki + dcki )

)2
)
, (4.75)

and the original flow regularizer is given by

Rflow(dw
k) = Ψc

(∣∣∣H(uk + duk)
∣∣∣
2

F
+
∣∣∣H(vk + dvk)

∣∣∣
2

F

)
. (4.76)

The differential formulations of the other regularizers are derived analogously. Furthermore, in
the case of the combined regularization and the indirect regularization, the splitting is also applied
to the individual flow components and the auxiliary functions, respectively.

4.1 .7 .2 Minimality Conditions

After deriving the differential formulation the next step is to minimize the respective differential
energies at each resolution level k. Therefore, we determine the minimality conditions, i.e., the
Euler-Lagrange equations, corresponding to the particular prototypes. To keep things a little sim-
pler we focus on the actual contributions from the different flow regularizers. To this end, we first
specify the contributions of the data term and the illumination regularization term, which are the
same for all the prototypes. Then we discuss the contributions of the flow regularizers.

Data Term Introducing the following two abbreviations for the non-linear expressions

Ψ′data,bca := Ψ′c

(
θk
(
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
)2)

, (4.77)

Ψ′data,gca := Ψ′c

(∣∣∣θkxy
(
H(Ik2 )dw

k +∇Ik2 −∇Φ(I1, c
k)
)∣∣∣

2
)
, (4.78)

allows us to write the contributions related to the data term as follows

Ddu := Ψ′data,bcaθ
k
(
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
)
Ik2,x (4.79)

+Ψ′data,gca
(
θkxy

(
H(Ik2 )dw

k +∇Ik2 −∇Φ(I1, c
k)
))⊤

∇Ik2,x , (4.80)

Ddv := Ψ′data,bcaθ
k
(
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
)
Ik2,y (4.81)

+Ψ′data,gca
(
θkxy

(
H(Ik2 )dw

k +∇Ik2 −∇Φ(I1, c
k)
))⊤

∇Ik2,y , (4.82)

Ddc1 := Ψ′data,bcaθ
k
(
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
)
(−φ1(I1)) , (4.83)

Ddc2 := Ψ′data,bcaθ
k
(
∇Ik⊤2 dwk + Ik2 − Φ(I1, c

k + dck)
)
(−φ2(I1)) . (4.84)

Regularization Terms As for the data term contributions, we also introduce some use-
ful abbreviations for the regularization terms. To this end, we adapt the diffusion tensor notation
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from Subsection 4.1.6, such that it includes the iteration index k. For example, T1-iso shall denote
the diffusion tensor for the isotropic first-order regularizer given by

T1-iso := I2×2 ·Ψ′
(∣∣∣∇uk+1

∣∣∣
2
+
∣∣∣∇vk+1

∣∣∣
2
)

(4.85)

= I2×2 ·Ψ′
(∣∣∣∇(uk + duk)

∣∣∣
2
+
∣∣∣∇(vk + dvk)

∣∣∣
2
)
. (4.86)

Analogously, we use the same notation for all the other diffusion tensors as well. To enhance the
readability even further we also omit the iteration index k for the unknowns, e.g., u := uk+1.

Euler-Lagrange Equations Next, we turn to the actual Euler-Lagrange equations.
Depending on the applied regularization strategy the Euler-Lagrange equations form a system of
four up to eight coupled non-linear partial differential equations. However, since all prototypes
consider the same data term and the same regularizer for the illumination coefficients, the partial
differential equations of the Euler-Lagrange equations related to the illumination coefficients are
the same for all models. Hence, for the sake of clarity, we do not specify them repeatedly for all the
different prototypes. Please keep in mind that the following two partial differential equations

0 = Ddc1 − β · ∇ · (T1-illum∇c1) , (4.87)

0 = Ddc2 − β · ∇ · (T1-illum∇c2) , (4.88)

with the boundary conditions

0 = n⊤T1-illum∇c1 , (4.89)

0 = n⊤T1-illum∇c2 , (4.90)

and the diffusion tensor

T1-illum :=
2∑

l=1

Ψ′l

(
2∑

i=1

(
r⊤l ∇(cki + dcki )

)2
)

· rl r⊤l , (4.91)

are also part of each set of Euler-Lagrange equations that we discuss in the following.

First-Order Regularization In case of the first-order regularization strategies the
corresponding Euler-Lagrange equations form a system of four coupled non-linear partial differ-
ential equations. The additional two equations for the flow components thereby read

0 = Ddu − α · ∇ · (T1∇u) , (4.92)

0 = Ddv − α · ∇ · (T1∇v) , (4.93)

with the following boundary conditions

0 = n⊤T1∇u , (4.94)

0 = n⊤T1∇v . (4.95)
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Depending if we consider the isotropic or anisotropic regularizer T1 is either T1-iso or T1-aniso.

D irect Second-Order Regularization For the direct second-order regulariza-
tion, we have a system of four coupled non-linear partial differential equations. The additional
two equations for the flow components are given by

0 = Ddu + α · ∇2 ·
(
T2∇2u

)
, (4.96)

0 = Ddv + α · ∇2 ·
(
T2∇2v

)
, (4.97)

with the following associated boundary conditions

0 = n⊤(∇2 · T2∇2u) , (4.98)

0 = n⊤(∇2 · T2∇2v) , (4.99)

0 = n⊤2 T2∇2u , (4.100)

0 = n⊤2 T2∇2v , (4.101)

where n2 is defined as n2 = (I2×2 ⊗ n). Furthermore, as before, depending if we consider the
isotropic or anisotropic variants T2 is either T2-iso, T2-aniso-s or T2-aniso-d.

Combined Regularization In the case of the combined regularization, we implement
the infimal convolution approach by splitting the unknowns not only in the regularization term
but also in the data term, i.e., we replacewwithw = w1+w2. While this does not change the ac-
tual minimizer, it simplifies the implementation. Hence, the additional Euler-Lagrange equations
are given by

0 = Ddu − α · ∇ · (T1∇u1) , (4.102)

0 = Ddv − α · ∇ · (T1∇v1) , (4.103)

0 = Ddu + αλ · ∇2 ·
(
T2∇2u2

)
, (4.104)

0 = Ddv + αλ · ∇2 ·
(
T2∇2v2

)
, (4.105)

with the following boundary conditions

0 = n⊤T1∇u1 , (4.106)

0 = n⊤T1∇v1 , (4.107)

0 = n⊤(∇2 · T2∇2u) , (4.108)

0 = n⊤(∇2 · T2∇2v) , (4.109)

0 = n⊤2 T2∇2u , (4.110)

0 = n⊤2 T2∇2v , (4.111)

As before, depending if we consider the isotropic or anisotropic variants T1 is either T1-inf-iso or
T1-inf-aniso and T2 is either T2-inf-iso, T2-inf-aniso-s or T2-inf-aniso-d.
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Indirect Second-Order Regularization Finally, the indirect second-order reg-
ularization leads to a system of eight non-linear partial differential equations. The additional two
equations for the flow components as well as the four additional equations for the auxiliary func-
tions read

0 = Ddu − α · ∇ · (T aux
1 (∇u− a)) , (4.112)

0 = Ddv − α · ∇ · (T aux
1 (∇v − b)) , (4.113)

0 = T aux
1 (a−∇u)− λ∇2 · (T aux

2 ∇2a) , (4.114)

0 = T aux
1 (b−∇v)− λ∇2 · (T aux

2 ∇2b) , (4.115)

with the associated boundary conditions given by

0 = n⊤T aux
1 (∇u− a) , (4.116)

0 = n⊤T aux
1 (∇v − b) , (4.117)

0 = n⊤2 T
aux
2 (∇2a) , (4.118)

0 = n⊤2 T
aux
2 (∇2b) , (4.119)

where the previous terms in Equation 4.114 and Equation 4.115 are in a vector-valued form to
simplify the notation. Again, depending if we consider the isotropic or anisotropic variants T aux

1
is either T aux

1-iso or T
aux
1-aniso and T

aux
2 is either T aux

2-iso, T
aux
2-aniso-s or T

aux
2-aniso-d.

4.1 .7 .3 Numerical Solution

As in ourminimization example of Subsection 2.4.2, the resulting Euler-Lagrange equations given
in the previous section are non-linear in the unknowns. Hence, to resolve this difficulty, we ap-
proximate the individual non-linear system of equations through a sequence of linear systems of
equations. In particular, we introduce a second fixed point iteration, where we keep the non-linear
contributions lagging [36].This approach leaves us with a linear system of equations in each fixed-
point iteration. To solve this linear system of equations numerically, we discretize it on a regular
grid. Furthermore, we apply the non-standard finite difference approximation of Weickert et al.
[186] in the case of the first-order divergence expressions and the standard finite difference approx-
imation in the case of the second-order divergence equivalents as well as the remaining derivatives.
Finally, we solve the discretized system of equations using a cascadic [32]multicolor [16] variant
of the SORmethod [205].

4.1 .8 Evaluation

After discussing the minimization process, we turn to the evaluation. As already mentioned we
consider the KITTI 2012 [65] and KITTI 2015 [119] benchmark, since these benchmarks contain
mainly scenes with highly non-fronto-parallel motion that constitute the main focus of interest.

Parameter Setting To aim for a fair comparison and to keep the number of adjustable
parameters small, we set most parameters fixed and only optimized the weighting parameters α,
β, γ, and λ for each prototype per benchmark and regularizer, see Subsection B.2.1. Furthermore,
the penalizer functions of the flow regularizers were chosen to be the Charbonnier penalizer.
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Figure 4.1: Sequence #166 of the KITTI 2015 benchmark [119]. First row: Reference frame, ground truth.
Following rows, from left to right: Error and flow visualization. Second row: Anisotropic first-order
regularizer. Third row: Double anisotropic direct second-order regularizer. Fourth row: Double
anisotropic infimal convolution regularizer. Fifth row: Double anisotropic coupling regularizer.

F irst vs. Second-Order The first experiment points out the advantages of second-order
regularization over the first-order regularization when it comes to the estimation of non-fronto-
parallelmotion. Therefore,we used an exemplary training sequence of theKITTI 2015 benchmark
to compute the flow fields applying all the double anisotropic variants, including the first-order
regularizer. The results in terms of both an error visualization and a flow visualization are depicted
in Figure 4.1. Due to the special ego-motion of the camera, the pixels at the image boundary
exhibit a large non-fronto-parallelmotionwhich is not capturedwellwith the first-order regularizer
(second row). Nevertheless, it recovers quite sharp motion discontinuities.

In contrast, the smoothness weightα of the direct second-order (third row) as well as of the infi-
mal convolution approach (fourth row) had to be chosen rather small to obtain a good result. This
parameter choice, in turn, leads to noisy areas that are visible in the flow fields. The couplingmodel
does not show this drawback (fifth row). It yields a result which is sharp at motion discontinuities,
but smooth in homogeneous flow regions.

Furthermore, we included Figure 4.2, which shows the smoothing behavior of the first and the
direct second-order regularizationwhen increasing the smoothness, i.e., theweighting parameterα.
While increasing smoothness leads to slightly blockymotion fields in the first-order case, this is not
the case for the second-order regularization. However, for the direct second-order approach, the
jumps are over-smoothed as well, which was not the case for the indirect second-order approach.
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Figure 4.2: Training sequence #166 of the KITTI 2015 benchmark [119]. Top to bottom: Flow and error
visualization with increased smoothness weight (α=2, 4, 8, 16, 32). First column: Anisotropic
first-order regularizer. Second column: Double anisotropic direct second-order regularizer.
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Table 4.1: Results for the KITTI 2012 [65] and KITTI 2015 [119] training data sets in terms of the average
endpoint error (AEE), the percentage of erroneous pixels (BP) with a 3px threshold, and the
runtimes for the different regularizers.

KITTI 2012 KITTI 2015
AEE BP AEE BP runtime

direct first-order isotropic 4.39 px 16.53% 12.88 px 29.87% 22 s
direct first-order anisotropic 4.26 px 16.25% 12.45 px 28.94% 23 s

direct second-order isotropic 2.75 px 10.07% 11.40 px 24.61% 26 s
direct second-order single anisotropic 2.35 px 9.84% 10.60 px 24.29% 33 s
direct second-order double anisotropic 2.32 px 9.73% 10.49 px 24.05% 33 s

inf-conv. second-order isotropic 2.30 px 9.66% 9.60 px 23.61% 43 s
inf-conv. second-order single anisotropic 2.30 px 9.64% 9.45 px 23.30% 51 s
inf-conv. second-order double anisotropic 2.28 px 9.58% 9.38 px 23.00% 52 s

coupling second-order isotropic 2.18 px 9.65% 9.24 px 22.90% 65 s
coupling second-order single anisotropic 2.20 px 9.57% 9.07 px 22.37% 65 s
coupling second-order double anisotropic 2.20 px 9.57% 8.98 px 22.27% 96 s

Quantitative Evaluation In our second experiment, we not only used a single image
sequence but the entire KITTI 2012 and 2015 training data sets to evaluate the performance of our
regularizer prototypes. Therefore, we first optimized the respective model parameters w.r.t. the
percentage of erroneous pixels (BP) using downhill simplex on a small subset of the training data
and then evaluated the BP and the average endpoint error (AEE) on the entire training data set
[14], see Table 4.1. In accordance with our first experiment, we see that second-order regularization
is beneficial in the presence of non-fronto-parallel motion. One can also see, that introducing a
higher degree of anisotropy allows reducing the errors further. In particular, for the direct second-
order model this is obvious. We achieve the best performance in terms of accuracy with the double
anisotropic couplingmodel. In terms of runtime, the increased complexity also leads to an increase
in runtime. Especially,models with additional terms, i.e., infimal convolutionmodels,models with
additional unknowns, i.e. coupling models, and models with a higher degree of anisotropy, i.e.,
double anisotropic variants, require a longer computation time.

Different Penalizers Up to now, we have restricted our choice of the penalizer func-
tionsΨ of the flow regularizers to the Charbonnier penalizer. Hence, in our third experiment, we
consider the best performing prototype in terms of accuracy – the double anisotropic coupling
model – and analyze different penalization strategies. To this end, we compare different combina-
tions of the edge-enhancing Perona-Malik penalizer (PM) and the edge-preserving Charbonnier
penalizer (Ch). The results in Table 4.2 show that choosing the leading penalizers Ψ1 andΨ1,1

to be edge-enhancing works best. Only regarding the AEE of the KITTI 2015 benchmark, pure
edge-preserving regularization allows achieving better results.

Comparison to the Literature Finally, in our fourth experiment, we compare our
double anisotropic coupling model to other optical flowmethods from the literature. To this end,
we computed the flow fields of the KITTI 2012 and KITTI 2015 test data sets and submitted the
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results to the online evaluation servers. In Table 4.3 and Table 4.4, we listed the best pure two-
frame optical flow methods from the time of submission (8/9 Dec. 2016) that do not make use of
additional information, such as stereo images, extra time-frames, semantic information or assume
an underlying epipolar geometry. As one can see, our novel regularizer allows to obtain excellent
results. In particular, it significantly outperforms all other solely variational approaches including
BTF-ILLUM (our baseline model with the isotropic direct second-order [54]), TGV2ADCSIFT
(isotropic second-order coupling [33]), and NLTGV-SC (non-local second-order coupling [137]).
This observation, confirms once more the benefits of our double anisotropic coupling model.

Table 4.2: Comparison of different penalization strategies for the double anisotropic coupling model.

coupling term smoothness term KITTI 2012 KITTI 2015

Ψ1 Ψ2 Ψ1,1 Ψ1,2 Ψ2,1 Ψ2,2 AEE BP AEE BP

Ch Ch Ch Ch Ch Ch 2.20 px 9.57% 8.98 px 22.27%

PM Ch Ch Ch Ch Ch 2.10 px 9.46% 9.19 px 21.98%
PM Ch Ch Ch 2.05 px 9.33% 9.14 px 21.82%
PM PM Ch Ch 2.07 px 9.37% 9.15 px 21.83%
PM PM PM Ch 2.10 px 9.53% 9.17 px 21.90%

Table 4.3: Comparison of pure two-frame optical flow methods for the KITTI 2012 test sequences. Table
shows the best performing methods at time of submission (8 Dec. 2016). Superscripts denote the
rank of each method in the corresponding column.

Method Out-Noc Out-All Avg-Noc Avg-All

PatchBatch 5.29% 1 14.17% 8 1.3 px 1 3.3 px 5

our method 5.57% 2 10.71% 2 1.3 px 1 2.8 px 1

DDF 5.73% 3 14.18% 9 1.4 px 6 3.4 px 6

PH-Flow 5.76% 4 10.57% 1 1.3 px 1 2.9 px 3

FlowFields 5.77% 5 14.01% 7 1.4 px 6 3.5 px 7

CPM-Flow 5.79% 6 13.70% 6 1.3 px 1 3.2 px 4

NLTGV-SC 5.93% 7 11.96% 4 1.6 px13 3.8 px 9

DDS-DF 6.03% 8 13.08% 5 1.6 px13 4.2 px11

TGV2ADCSIFT 6.20% 9 15.15%11 1.5 px 9 4.5 px12

DiscreteFlow 6.23%10 16.63%12 1.3 px 1 3.6 px 8

BTF-ILLUM 6.52%11 11.03% 3 1.5 px 9 2.8 px 1

DeepFlow2 6.61%12 17.35%14 1.4 px 6 5.3 px13

Data-Flow 7.11%13 14.57%10 1.9 px15 5.5 px14

DeepFlow 7.22%14 17.79%15 1.5 px 9 5.8 px15

EpicFlow 7.88%15 17.08%13 1.5 px 9 3.8 px 9
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Table 4.4: Comparison of pure two-frame optical flow methods for the KITTI 2015 test sequences. Table
shows the best performingmethods at time of submission (9 Dec. 2016). Superscripts denote the
rank of each method in the corresponding column.

Method FI-bg FI-fg FI-all

PatchBatch 19.98%1 30.24%5 21.69% 1

DDF 20.36%3 29.69%3 21.92% 2

our method 20.01%2 32.82%6 22.14% 3

DiscreteFlow 21.53%4 26.68%1 22.38% 4

CPM-Flow 22.32%5 27.79%2 23.23% 5

Full-Flow 23.09%6 30.11%4 24.26% 6

EpicFlow 25.81%7 33.56%7 27.10% 7

DeepFlow 27.96%8 35.28%8 29.18% 8

4.1 .9 Conclusion

In this section, we explored and compared several isotropic and anisotropic second-order regular-
ization strategies for variational optical flow. In particular, we showed how different anisotropic
variants can be derived from a single isotropic smoothness term, and how modeling a higher de-
gree of anisotropy in terms of double anisotropic models can further improve the accuracy. Finally,
experiments with the KITTI 2012 and 2015 benchmarks not only showed favorable results but
also demonstrated that second-order coupling models, including the new double anisotropic reg-
ularizer, are among the state-of-the-art in the context of variational motion estimation.

4.2 An Order-Adaptive Regularization Strategy

So far we focused on second-order regularization techniques since they are known to be very ben-
eficial when it comes to piecewise affine flow fields resulting from a moving camera. However,
second-order priors also have a drawback. In particular, they are less suited to estimate fronto-
parallel motion, since they are likely to misinterpret local fluctuations as affine motion (regulariza-
tion order vs. robustness). This fact is also reflected in themost commonly usedbenchmarks.While
leading variationalmethods in the automotiveKITTI 2012 [65] andKITTI 2015 [119]benchmarks
make use of second-order smoothness terms, the best performing variational approaches on the
synthetic MPI Sintel [44] andMiddlebury [23] benchmark rely on first-order priors.
It would be desirable to bridge this gap by developing an adaptive regularization strategy that

selects the most appropriate regularization order. This adaptation would enable to combine the
benefits of both techniques and hence allow to apply the corresponding approach to a broader
range of applications and domains.

4.2 .1 Related Work

The simplestway to implement suchan adaptation is to resort to anuser-based selectionof themost
appropriate regularization order [175].This implementation, however, requires prior knowledge
on the underlying application which might not always be available beforehand. Moreover, such
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a hand-tuned strategy focuses on the entire application and hence does not allow to choose the
most suitable order in a scene-wise or even pixel-wise manner.

Furthermore, one can consider second-order couplingmodels [33, 137] (indirect models), which
we introduced in theprevious section,as implicit adaptation techniques.Originallyproposed in the
context of denoising [34], the essential idea of suchmodels is to add auxiliary functions that approx-
imate first-order derivatives while imposing smoothness on these auxiliary functions themselves.
Due to this design, coupling models allow the preservation of motion discontinuities in both the
original and the auxiliary function. This behavior, in turn, comes down to edge-preserving first and
second-order regularization, respectively. Although this strategy alleviates the problem of always
performing second-order, one can observe that the performance of coupling models cannot keep
up with the performance of first-order regularizers for benchmarks with mainly fronto-parallel
motion (Middlebury, MPI Sintel). This fact clearly shows that there is room for improvement
when it comes to the design of adaptive schemes for selecting the regularization order.

The only explicit order-adaptive approach that we found in the context of optical flow is the
method of Volz et al. [179]. However, instead of selecting the spatial regularization order, the
method determines themost appropriate order of the trajectorial regularization.Moreover, it relies
on fitting polynomial approximations to the results of a preliminary estimation. In that sense, the
selection process is not really self-contained, since it requires multiple estimations.

Finally, thework thatwe considermost similar in spirit to ourmethod is the approach of Lenzen
et al. [109].Although the approach has been proposed in the context of denoising, the underlying
variational model adaptively combines a direct first and second-order regularizer. Thereby the
switching between the two regularizers is steered by local image information. While adapting the
regularization order to the underlying imagemay be useful in the context of denoising, one should
keep in mind that we are interested in motion estimation. Hence, slopes in the input images are
typically unrelated to slopes in the flow field and hence do not provide useful information.

4.2 .2 Contributions

In this section, we address all the shortcomings mentioned above: Based on an anisotropic first
and an anisotropic second-order regularizer we derive a general strategy for variational methods,
that allows adapting the regularization order automatically during the estimation. This strategy,
that is based on the structural similarity of first-order models and second-order coupling models,
not only allows to combine the advantages of both regularization orders, it is also solution-driven
in that sense that the decision on the regularization order relies exclusively on the approximation
quality of the resulting flow field. Based on this strategy, we propose four variational regularization
techniques with a different degree of adaptation, ranging from a frame-wise adaptation to a pixel-
wise selection. In this context, we also introduce concepts for spatially regularizing the decision
process in terms of a non-local neighborhood or a global smoothness term. Finally,we demonstrate
the usefulness of the proposed adaptation strategies by providing results for the most popular
benchmarks. These results not only show the clear advantages of the global selection strategy
compared to a standard single-order regularization, but it also makes explicit that a local selection
strategy can be very beneficial if one combines it with some form of spatial coherence.
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4.2 .3 Baseline Model

As before, we seek to estimate the motion fieldw = (u, v)⊤ : Ω → R
2 between two consecutive

image frames I1, I2 : Ω → R, whereΩ ⊂ R
2 is the image domain, as the minimizer of an energy

functional. The form of the considered energy functional is given by

E(w) = D(w) + α ·R(w) , (4.120)

which consists of a data termD, a regularization termR, and a weighting parameter α.

Data Term To keep things simple and the focus on the flow regularization, we do not use
the entire illumination-aware model of Demetz et al. [54] as before, but drop the illumination
change estimation and compensation components, i.e., this choice comes down to the data term as
proposed by Bruhn andWeickert [38]. Therefore, the data term combines a separately robustified
brightness and gradient constancy assumption and is given by

D(w) =

∫

Ω
Ψc

(
(I2(x+w)− I1(x))

2
)
+ γ ·Ψc

(
|∇I2(x+w)−∇I1(x)|2

)
dx , (4.121)

where x = (x, y)⊤ ∈ Ω denotes the location within the image domain Ω, γ is a weighting
parameter to balance the two assumptions, andΨc is the Charbonnier penalizer function.

Regularization Term In case of the regularization termR one typically employs either
a first or a second-order regularization strategy. In the following, we will review a first-order regu-
larizer as well as a second-order regularizer that we will combine in our order-adaptive framework
later on. Our choice for these specific regularizers is motivated on the fact that they share essential
structural properties and are thus particularly suited for a combination.

Asfirst-order regularizer,weuse the anisotropic complementary regularizerofZimmeret al. [216]

R1(w) =

∫

Ω

2∑

l=1

Ψl

((
r⊤l ∇u

)2
+
(
r⊤l ∇v

)2)

︸ ︷︷ ︸
=S1(w)

dx . (4.122)

As in the previous chapter r1 and r2 denote two spatially varying orthonormal vectors obtained
as the eigenvectors of the regularization tensor [216],which can be considered a generalization of
the structure tensor [59] to arbitrary constancy assumptions. Following Volz et al. [179],we apply
the edge-enhancing Perona-Malik penalizer in case ofΨ1 (across edges) and the edge-preserving
Charbonnier penalizer in case ofΨ2 (along edges).

Regarding the second-order regularization model we opt for the recent anisotropic coupling
model of Hafner et al. [75], i.e., the single anisotropic coupling model as described in the previous
section. It can be seen as an anisotropic variant of TGV [34] and is given by

R2(w) =

∫

Ω
inf
a,b

{
S2(w,a,b) + λ · Saux(a,b)

}
dx . (4.123)
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It consists of two terms: the coupling term S2 that connects the gradients∇u and∇v of the flow
to the auxiliary functions a = (a1, a2)

⊤ and b = (b1, b2)
⊤ via

S2(w,a,b) =
2∑

l=1

Ψl

((
r⊤l (∇u− a)

)2
+
(
r⊤l (∇v − b)

)2)
, (4.124)

and a smoothness term Saux that enforces smoothness on these auxiliary functions themselves

Saux(a,b) =
2∑

l=1

Ψl

(
2∑

m=1

(
r⊤mJ a rl

)2
+
(
r⊤mJb rl

)2
)
. (4.125)

Here J a and Jb denote the Jacobian of a and b, respectively, and the weighting parameter λ
allows to adjust the smoothness of the auxiliary functions.
At this point, let us point out the substantial similarity between the first-order model S1 and

the coupling term S2 of the second-order model. While the first-order model assumes the direc-
tional derivatives in r1 and r2-direction to be close to zero, the coupling term assumes them to be
close to the auxiliary functions, which should be smooth by themselves. This similarity, in turn,
makes the energies of both terms comparable and, consequently, makes them ideal candidates for
a combination within our order-adaptive regularization framework.

4.2 .4 Order-Adaptive Regularization

Having analyzed the structural similarity between the considered first and second-order regular-
izer, we are now in the position to introduce our order-adaptive regularization framework, that
combines the advantages of both first and second-order regularization. In particular, we present
four variants that differ in their degree of adaptivity, which ranges from a global (frame-wise) to a
local (pixel-wise) adaptation.

Global Adaptive Scheme The first step to derive the order-adaptive framework is a
simple combination of the previously introduced first and second-order regularizers, which reads

R(w) =

∫

Ω
inf
a,b

{
S1(w) + S2(w,a,b) + λ · Saux(a,b)

}
dx . (4.126)

To implement the frame-wise adaption scheme, we introduce a weighting parameter o ∈ (0, 1)
and a selection term φ(o) similar in spirit to half-quadratic regularization [29]:

R(w, o) =

∫

Ω
inf
a,b

{
o ·S1(w)+(1−o) ·S2(w,a,b)+λ ·Saux(a,b)+φθ(o)

}
dx . (4.127)

Next, we derive a suitable selection term φθ(o) that allows for a meaningful selection of the
regularization order. In this context, it also becomes explicit why the convex combination only
includes the first-order regularization term S1 and the coupling term S2 and not the smoothness
term on the auxiliary functions Saux. When deciding on the more suitable regularization order,
the question naturally arises which model fits better: a constant model or an affine model. In the
global adaptive scheme, we can answer this question by comparing the average energies related
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Figure 4.3: Plot of the sigmoid function for different θ values (top) and τ values (bottom).

to S1 and S2. Since the affine model S2, however, includes the constant model S1 one should
only prefer the affine model S2 if it yields a minimum average benefit τ compared to the constant
modelS1. Thisminimum average benefit avoids overemphasizing small fluctuations, whichwould
eliminate the advantage of the first-order regularizer, i.e., the robustness in case of nearly constant
motion. Formulating this requirement in terms of a differentiable sigmoid function, we propose
to determine the weighting parameter as

o =
1

1 + e−(∆+τ)/θ
with ∆ =

1

|Ω|

∫

Ω
S2 − S1 dx , (4.128)

where θ allows to adjust the slope, i.e., the sensitivity of the sigmoid function, see Figure 4.3 (top).
As desired, o approaches a value of one if the average gain∆ ≫ τ and o approaches a value of
zero if the average gain∆ ≪ τ . Thereby, the minimum average benefit τ leads to a shift of the
sigmoid function as shown in Figure 4.3 (bottom).

Let us now derive a selection term that models this desired behavior. To this end, we begin with
the regularizer as given in Equation 4.127 and look at the derivative w.r.t. the weighting parameter
∂oR = 0, which reads

0 =

∫

Ω
S1(w)− S2(w,a,b) + φ′θ(o) dx (4.129)

=

∫

Ω
S1(w)− S2(w,a,b) dx+

∫

Ω
φ′θ(o) dx (4.130)

=

∫

Ω
S1(w)− S2(w,a,b) dx+ |Ω| · φ′θ(o) . (4.131)
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By rearranging the differentiable sigmoid function given in Equation 4.128 as follows:

1

1 + e−(∆+τ)/θ
= o (4.132)

1 + e−(∆+τ)/θ =
1

o
(4.133)

−(∆ + τ)/θ = ln

(
1

o
− 1

)
(4.134)

−∆ = θ · ln
(
1

o
− 1

)
+ τ (4.135)

− 1

|Ω|

∫

Ω
S2(w,a,b)− S1(w) dx = θ · ln

(
1

o
− 1

)
+ τ (4.136)

∫

Ω
S1(w)− S2(w,a,b) dx = |Ω| ·

(
θ · ln

(
1

o
− 1

)
+ τ

)
, (4.137)

andplugging it into the derivative of the regularizer given inEquation 4.131weobtain the following
expression for the derivative of the selection term

φ′θ(o) = −θ · ln
(
1

o
− 1

)
− τ . (4.138)

Integrating both sides of this expression allows us to come up with a selection term that has the
desired properties. Carrying out this integration yields

φθ(o) = θ

(
ln(1− o)− o · ln

(
1

o
− 1

))
− τ · o+ constant . (4.139)

Now, we could simply plug in the selection function of Equation 4.139 into our model Equa-
tion 4.127. However, to obtain a more transparent write up of the model, we set the integration
constant to be τ and introduce the following function

φ(o) =
φθ(o)− (1− o) · τ

θ
(4.140)

= ln(1− o)− o · ln
(
1

o
− 1

)
(4.141)

= ln(1− o)− o · ln
(
1− o

o

)
(4.142)

= ln(1− o)− o ·
(
ln(1− o) + ln

(
1

o

))
(4.143)

= ln(1− o)− o · ln(1− o)− o · ln
(
1

o

)
(4.144)

= (1− o) · ln(1− o) + o · ln(o) , (4.145)

which turns out to be the negative of the entropy function, as plotted in Figure 4.4. This particular
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Figure 4.4: Plot of the selection function φ(o).

selection function allows us to rewrite the global order-adaptive regularizer more intuitively as

Rglobal(w, o) =

∫

Ω
inf
a,b

{
o · S1(w) + (1− o) · (S2(w,a,b) + τ)

+ λ · Saux(a,b) + θ · φ(o)
}
dx , (4.146)

which can be regarded as a combination of a first-order regularizer and a second-order regularizer
with activation cost τ , subject to a selection term with weight θ.

Local Adaptive Scheme Analogous to the global adaptive scheme, we can derive a local
adaptive variant. The main difference is that we replace the global weighting parameter owith a
spatially varying weighting function olocal : Ω → (0, 1). Furthermore, the new requirement on
how to determine the weighting function relies on the local energy difference of S1 and S2 via

olocal =
1

1 + e−(∆+τ)/θ
with ∆ = S2 − S1 . (4.147)

The corresponding local adaptive regularizer reads

Rlocal(w, olocal) =

∫

Ω
inf
a,b

{
olocal · S1(w) + (1− olocal) · (S2(w,a,b) + τ)

+ λ · Saux(a,b) + θ · φ(olocal)
}
dx , (4.148)

where we define the selection term φ as in case of the global scheme, see Equation 4.145. A similar
weighting strategy has been used in the work of Xu et al. [199] to locally decide between two
different constancy assumptions in the data term.

Non-Local Adaptive Scheme Besides the global approach, that performs a frame-wise
adaption, and the local method, which operates on a location-wise basis, we further propose a
variant that runs on an intermediate level, i.e., it takes a small neighborhood into account, when
deciding on the regularization order. It is given by

Rnon-local(w, onon-local) =

∫

Ω
inf
a,b

{
onon-local · S1(w) + (1− onon-local) · (S2(w,a,b) + τ)

+ λ · Saux(a,b) + θ · φ(onon-local)
}
dx , (4.149)
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where onon-local integrates the actual weighting function onon-local over a small area via

onon-local(x) =
1

|N (x)|

∫

N (x)
onon-local(y) dy . (4.150)

HereN (x) denotes a rectangular shaped neighborhood around x and |N (x)| is the size of the
neighborhood, such that 1

|N (x)|
∫
N (x) 1 dy = 1. Furthermore, please note that we defineN (x)

in a way that only locations inside the image domain contribute to the area, i.e., |N (x)| becomes
smaller towards image boundaries.

Employing the same selection term function φ as in the previous two cases, minimizing Equa-
tion 4.149 w.r.t. the weighting function onon-local yields

onon-local =
1

1 + e−∆/θ
with ∆ =

∫

N (x)

1

|N (y)|(τ + S2 − S1) dy . (4.151)

Furthermore, at locations where all neighborhoods have equal size, it further simplifies to

onon-local =
1

1 + e−(∆+τ)/θ
with ∆ =

1

|N (x)|

∫

N (x)
(S2 − S1) dy . (4.152)

Therefore, the non-local approach can be seen as a generalization of our proposed adaptation
scheme. In particular, it contains both the global and local variant, which constitute the largest
and smallest choice of all possible neighborhoods.

Region Adaptive Scheme As a final variant, we propose a slightly different scheme,
which also operates on an intermediate level. In contrast to the non-local approach, it does not
integrate information over a neighborhood but employs smoothness constraints on the weighting
function. Since it is not straightforward to realize this smoothness constraint in the same manner
thatwe used so far,we pursue a level-set-based approach. In particular,we replace the selection cost
term φ with a spatial smoothness term. Let z : Ω → R be a level-set function and let oregion(z)
denote a differential sigmoid function that approximates the Heaviside function

oregion(z) =
1

1 + e−z/θ
. (4.153)

We propose the following region adaptive scheme

Rregion(w, z) =

∫

Ω
inf
a,b

{
oregion(z) · S1(w) + (1− oregion(z)) · (S2(w,a,b) + τ)

+ λ · Saux(a,b) + κ · |∇oregion(z)|
}
dx . (4.154)

Let us point out that this scheme differs in several aspects from the other three variants. Firstly, the
factor θ in front of the selection term determines the slope of the resulting sigmoid; in contrast,
the weighting parameter κ in front of the smoothness term determines the amount of smoothing.
Secondly, the region adaptive scheme comes with a slight drawback regarding the computational
effort. While all previous approaches allow estimating the weighting parameter/function in closed
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form, this is not possible for the region adaptive scheme. The reason is the spatial smoothness term,
which requires to evolve the underlying level-set function z, see [18, 51].

4.2 .5 M inimization

After proposing four different regularization models, we address their minimization. To this end,
we employ the coarse-to-fine warping strategy, see Subsection 2.4.2.

4.2 .5 .1 Differential Formulation

The first step is to split the unknowns of each resolution levelk of the coarse-to-fine scheme into the
known intermediate solution and the unknown increment. However, in contrast to the previous
implementations,we precede slightly different.Whilewe perform the additive splitting for the flow
fieldw as well as the auxiliary functionsa andb,we do not split theweighting parameter/function
o, because we can explicitly compute its solution. Using the following splitting

wk+1 = wk + dwk , (4.155)

ak+1 = ak + dak , (4.156)

bk+1 = bk + dbk , (4.157)

we can specify the differential energy related to the first three variants as follows

E(dwk, ok) = D(dwk) + α ·R(dwk, ok) , (4.158)

where D is the differential formulation of the data term, and R denotes a placeholder for the
differential formulations of the regularizers corresponding to the different adaptation schemes. In
the case of the region based strategy, which uses level-sets we also do not split the level-set function
z. Hence, the differential formulation of the region based strategy is given by

E(dwk, zk) = D(dwk) + α ·Rregion(dw
k, zk) , (4.159)

whereD is the same differential formulation of the data term as in Equation 4.158 andRregion is
the differential formulation of the region based order-adaptive smoothness term.

Data Term As in the previous section, we obtain the differential formulation of the data
term by linearizing the original expression w.r.t. the unknown flow increments. This linearization
concerns I2(x+wk+1) in case of the brightness constancy assumption and∇I2(x+wk+1) in
case of the gradient constancy assumption. Applying a first-order Taylor expansion results in

I2(x+wk+1) ≈ ∇I2(x+wk)⊤dwk + I2(x+wk) , (4.160)

∇I2(x+wk+1) ≈ H(I2(x+wk))⊤dwk +∇I2(x+wk) . (4.161)

Introducing the abbreviations I1 := I1(x) and Ik2 := I2(x + wk) allows writing the non-
normalized differential formulation of the data term as
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D(dwk) =

∫

Ω
Ψc

((
∇Ik⊤2 dwk + Ik2 − I1

)2)

+ γ ·Ψc

(∣∣∣H(Ik2 )
⊤dwk +∇Ik2 −∇I1

∣∣∣
2
)
dx . (4.162)

Once more, we apply the constraint normalization [158, 216] to both constancy assumptions via
the following normalization factors

θk :=
(
|∇Ik⊤2 |2 + ζ2

)− 1
2
, (4.163)

θkx :=
(
|∇Ik⊤2,x |2 + ζ2

)− 1
2
, (4.164)

θky :=
(
|∇Ik⊤2,y |2 + ζ2

)− 1
2
, (4.165)

where ζ = 0.01 is a small parameter to prevent division by zero. Combining linearization and
normalization, we obtain the normalized differential formulation as

D(dwk) = Ψc

((
θk
(
∇Ik⊤2 dwk + Ik2 − I1

))2)

+ γ ·Ψc

(∣∣∣θkxy
(
H(Ik2 )

⊤dwk +∇Ik2 −∇I1

)∣∣∣
2
)
, (4.166)

where θkxy is a diagonal matrix that holds the two normalization factors given by

θkxy =

(
θkx 0
0 θky

)
. (4.167)

Regularization Terms To keep the differential formulation of the smoothness term
more compact, we first introduce the following abbreviations

Sk
1 :=

2∑

l=1

Ψl

((
r⊤l ∇uk+1

)2
+
(
r⊤l ∇vk+1

)2)
, (4.168)

Sk
2 :=

2∑

l=1

Ψl

((
r⊤l
(
∇uk+1 − ak+1

))2
+
(
r⊤l
(
∇vk+1 − bk+1

))2)
, (4.169)

Sk
aux :=

2∑

l=1

Ψl

(
2∑

m=1

(
r⊤mJ (ak+1) rl

)2
+
(
r⊤mJ (bk+1) rl

)2
)
. (4.170)

Please note that the superscript k of the abbreviation refers to the increments, e.g., duk within
uk+1 = uk + duk. Now, we can write the differential formulation of the four regularizers as

Rglobal(dw
k, ok) =

∫

Ω
inf

da
k,dbk

{
ok · Sk

1 + (1− ok) · (Sk
2 + τ) + λ · Sk

aux

+ θ · φ(ok)
}
dx ,

(4.171)
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Rlocal(dw
k, oklocal) =

∫

Ω
inf

da
k,dbk

{
oklocal · Sk

1 + (1− oklocal) · (Sk
2 + τ) + λ · Sk

aux

+ θ · φ(oklocal)
}
dx ,

(4.172)

Rnon-local(dw
k, oknon-local) =

∫

Ω
inf

da
k,dbk

{
oknon-local · Sk

1 + (1− oknon-local) · (Sk
2 + τ)

+ λ · Sk
aux + θ · φ(oknon-local)

}
dx ,

(4.173)

Rregion(dw
k, zk) =

∫

Ω
inf

da
k,dbk

{
oregion(z

k) · Sk
1 + (1− oregion(z

k)) · (Sk
2 + τ)

+ λ · Sk
aux + κ · |∇oregion(z

k)|
}
dx .

(4.174)

4 .2 .5 .2 M inimality Conditions

With the differential formulation at hand, we next derive the associated Euler-Lagrange equations
for all four differential formulations. Therefore, we first specify the contributions of the data term,
which are the same for all models, as well as the diffusion tensors related to the first and second-
order regularizers. This not only keeps things clearly arranged but also allows us to focus on the
contributions of the regularizers and the different adaptation schemes.

Data Term Contributions Introducing the following two abbreviations for the non-
linear expressions within the differential energy of the data term (Equation 4.166)

Ψ′data,bca := Ψ′c

(
θk
(
∇Ik⊤2 dwk + Ik2 − I1

)2)
, (4.175)

Ψ′data,gca := Ψ′c

(∣∣∣θkxy
(
H(Ik2 )dw

k +∇Ik2 −∇I1

)∣∣∣
2
)
, (4.176)

allows to write the contributions related to the data term as

Ddu := Ψ′data,bcaθ
k
(
∇Ik⊤2 dwk + Ik2 − I1

)
Ik2,x (4.177)

+Ψ′data,gca
(
θkxy

(
H(Ik2 )dw

k +∇Ik2 −∇I1

))⊤
∇Ik2,x , (4.178)

Ddv := Ψ′data,bcaθ
k
(
∇Ik⊤2 dwk + Ik2 − I1

)
Ik2,y (4.179)

+Ψ′data,gca
(
θkxy

(
H(Ik2 )dw

k +∇Ik2 −∇I1

))⊤
∇Ik2,y . (4.180)

Diffusion Tensors To compactly state the contributions of the regularization terms and
the different adaptation schemes, we make use of the diffusion tensor notation as introduced
in Subsection 4.1.6. Therefore, we state the diffusion tensors associated to the anisotropic first-
order regularizer and the indirect second-order regularizer, i.e., the diffusion tensors T1, T aux

1 , and
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T aux
2 , associated with the first-order smoothness term S1, the coupling term S2, and the auxiliary

smoothness term Saux, respectively. They are given by

T1 =
2∑

l=1

Ψ′l

((
r⊤l ∇uk+1

)2
+
(
r⊤l ∇vk+1

)2)
· rl r⊤l , (4.181)

T aux
1 =

2∑

l=1

Ψ′l

((
r⊤l ∇(uk+1 − ak+1)

)2
+
(
r⊤l (∇vk+1 − bk+1)

)2)
· rl r⊤l , (4.182)

T aux
2 = I2×2 ⊗

(
2∑

l=1

Ψ′l

(∣∣∣J ak+1 rl

∣∣∣
2
+
∣∣∣Jbk+1 rl

∣∣∣
2
)
· rlr⊤l

)
. (4.183)

Euler-Lagrange Equations After deriving the individual contributions, we can fi-
nally specify the Euler-Lagrange equations. For all order-adaptive variants, the first four non-linear
partial differential equations of the system of equations are given by

0 = Ddu − α · (∇ · (o · T1∇u) +∇ · ((1− o) · T aux
1 (∇u− a))) , (4.184)

0 = Ddv − α · (∇ · (o · T1∇v) +∇ · ((1− o) · T aux
1 (∇v − b))) , (4.185)

0 = o · T aux
1 (a−∇u)− λ ·∇2 · (T aux

2 ∇2a) , (4.186)

0 = o · T aux
1 (b−∇v)− λ ·∇2 · (T aux

2 ∇2b) , (4.187)

where we dropped the superscripts k+1 ofu,v,a andb for the sake of clarity and depending if we
consider the global, local, non-local or region based adaptation scheme o is either o, olocal, onon-local
or oregion, respectively. Furthermore, depending on the different adaptation scheme, additional
equations come along.

Global Adaptive Scheme In the case of the global adaption scheme, a single equation
related to the weighting parameter o comes along, i.e.,

o =
1

1 + e−(∆+τ)/θ
with ∆ =

1

|Ω|

∫

Ω
S2 − S1 dx . (4.188)

Local Adaptive Scheme For the local scheme, we havemultiple equations related to the
weighting function olocal given by

olocal =
1

1 + e−(∆+τ)/θ
with ∆ = S2 − S1 . (4.189)

Non-Local Adaptive Scheme In the case of the non-local adaptation scheme, we have
multiple equations related to the weighting function onon-local given by

onon-local =
1

1 + e−(∆+τ)/θ
with ∆ =

1

|N (y)|

∫

N (x)
(S2 − S1) dy . (4.190)
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Region Adaptive Scheme For the region based scheme,wherewe did not directly design
the behavior, the additional equations that we have to solve for the level set function z is given by

0 = o′region(z) ·
(
S1 − (S2 + τ)− κ ∇ ·

( ∇z

|∇z|

))
. (4.191)

4.2 .5 .3 Numerical Solution

With the Euler-Lagrange Equations at hand, we now address the numerical solution. Therefore,
once again, to overcome the non-linearity we first introduce a second fixed-point iteration [36].
This second fixed-point iteration approximates the non-linear system of equations at each resolu-
tion level as a series of linear system of equations by keeping the non-linear expressions related to
the data and smoothness term fixed, see Subsection 2.4.2. Next, to solve each of the linear systems
of equations numerically, we first discretize them using a finite difference approximation. Finally,
we apply a cascadic [32] multicolor [16] variant of the SOR method[205] to solve the discrete
system of linear equations related to the increments of the flow field and the auxiliary functions.

Moreover, in case of the global, local and non-local scheme we update the weighting parameter
o, the weighting functions olocal and onl/ōnl in the same fashion as the non-linear expressions.
To this end, we explicitly evaluate the corresponding Equations (4.128), (4.147), and (4.150) and
(4.151), respectively. Since we cannot compute the level-set function z in closed form, we employ
an explicit scheme for its computation based on an upwind discretization [131].

4.2 .6 Evaluation

Parameter Setting As in the last evaluation section we used a fixed set of parameters for
our optimization scheme. The remaining parameters γ, α, λ, θ, τ and κwere set individually for
each benchmark, see Subsection B.2.2.

Comparison of Selection Strategies In our first experiment, we investigate the
performance of our introduced order-adaptive regularizers. Therefore, we created a set of synthetic
image sequences, shown in Figure 4.5, that contain mainly fronto-parallel motion (sequence 4),
affine motion (sequence 3), or a combination of both (sequence 1 and 2). Furthermore, to visually
assess the order-adaption quality of the different regularizers, we made use of the gradient magni-
tude of the ground truth flow. It yields small values for fronto-parallel motion and large values for
affine motion and thus may serve as a rough indicator of the present type of motion. The gradient
magnitude, as well as the computed weighting maps o, olocal, onon-local, oregion of the different selec-
tion schemes, are depicted in Figure 4.6. It shows the image-wise adaptation of the global approach
as well as the pixel-wise adaptation of the other strategies. Moreover, one can see that the local
approach exhibits a quite noisy selection behavior which is less prominent in the methods that
consider additional neighborhood information or employ spatial smoothness constraints. Finally,
one can observe that first-order regularization is preferred atmotion discontinuities, while in other
regions the order depends on the local fit.
Besides this qualitative evaluation, we also conducted a quantitative. Therefore, we chose a

single parameter set per model by optimizing the average error of all sequences in terms of the
average endpoint error (AEE). Table 4.5 shows the results. As one can see, regarding the average
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Figure 4.5: Synthetic Classroom sequences. From left to right: Sequence 1 to 4. First row: First frame. Second
row: Second frame. Third row: Ground truth flow field.

Figure 4.6: Adaptation behavior of the approaches in terms of the weighting map. From left to right: Se-
quence 1 to 4. From top to bottom: Gradient magnitude of the ground truth flow field, global
approach o, local approach olocal, non-local approach onon-local, and region-based approach oregion.
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Table 4.5: Comparison of different regularization strategies for the four synthetic Classroom sequences in
terms of the average endpoint error (AEE) and runtime.

seq. #1 seq. #2 seq. #3 seq. #4 avg. runtime

first-order 0.129 px 0.358 px 2.038 px 0.088 px 0.653 px 17 s
second-order 0.141 px 0.370 px 0.669 px 0.102 px 0.321 px 75 s

adaptive order global 0.141 px 0.365 px 0.667 px 0.095 px 0.317 px 100 s
adaptive order local 0.111 px 0.260 px 1.115 px 0.088 px 0.393 px 105 s
adaptive order non-local 0.116 px 0.275 px 0.737 px 0.095 px 0.307 px 120 s
adaptive order region 0.125 px 0.366 px 0.662 px 0.098 px 0.313 px 180 s

performance both non-adaptive approaches, i.e., the first-order regularizer and the second-order
regularizer, are already outperformed by the global selection strategy. Please note that this strategy
does not just come down to a frame-wise selection of the first and second-order results. On the one
hand, it has to rely on the same parameters for both regularization orders, since the energy of both
terms must be comparable to allow for a reasonable decision. On the other hand, the selection
of the regularization order can be applied level-wise during the coarse-to-fine optimization, since
this allows to correct less reliable decisions from coarse grid data. This behavior also explains why
even for the individual error scores, the global decision strategy is sometimes able to outperform
the results of the non-adaptive regularizers. Furthermore, recall that the considered second-order
regularizer is an anisotropic variant of TGV [34].This fact demonstrates that explicitly combining
first and second-order smoothness terms in an adaptive manner allow us to outperform such
implicit strategies based on robust coupling terms.

In contrast to the global strategy, the overall result of the local decision schemedoes not seemvery
convincing. However, a closer look at the individual error values reveals that this strategy provides
the best results for three out of four sequences. The main problem lies in the noisy selection
behavior which results from the pixel-wise decision process. The non-local strategy and the region-
based method provide the best overall performance. They combine the flexibility of the local
approach with the robustness of the global strategy.

Comparison on Benchmark Data In our second experiment, we compare the four
regularizers using the most popular optical flow benchmarks. To this end, we computed results
for the training data sets of the Middlebury [23], the KITTI 2012 [65], the KITTI 2015 [119] and
the MPI Sintel [44] benchmark. Following standard practice, we optimized the parameters per
benchmark using the provided training data and the more common error metric, i.e., the AEE or
the bad pixel measure (BP), respectively. Table 4.6 lists the corresponding results.

On the one hand, it becomes explicit that the order-adaptive strategies successfully combine the
benefits of the simple first and second-order regularization methods. In most cases they even out-
perform the best non-adaptive result. On the other hand, the tendency of the different strategies
confirms our observations from the first experiment. While the local approach can yield outstand-
ing results (Sintel), it suffers from noisy decisions at the same time (KITTI 2012 and KITTI 2015).
In contrast, the non-local scheme and the region-based scheme perform best. Also, the global se-
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Table 4.6: Quantitative comparison of different regularization strategies for the four most popular bench-
marks in terms of the average endpoint error (AEE) and the bad pixel error (BP).

Middlebury Sintel KITTI 2012 KITTI 2015
AEE AEE BP BP

first-order 0.213 px 4.327 px 18.026% 30.053%
second-order 0.222 px 6.518 px 9.461% 22.736%

adaptive order global 0.211 px 4.213 px 9.423% 22.424%
adaptive order local 0.211 px 4.082 px 11.537% 24.938%
adaptive order non-local 0.211 px 4.145 px 9.468% 22.158%
adaptive order region 0.208 px 4.358 px 9.415% 22.343%

lection strategy performs surprisingly well due to its robustness. Please note that by optimizing
the activation cost τ jointly with the other parameters, the resulting decision scheme may favor a
specific regularization order depending on the training data. However, the decision schemes still
allow choosing between both regularization orders which significantly differs from just learning
the regularization order. In this regard we also refer to the following chapter, i.e. Chapter 5, were
we will see that one can choose a fixed activation cost τ across different data sets and still achieve
excellent results.

Comparison to the Literature In our final experiment, we compare our results
to related approaches from the literature. To this end, we submitted the results of our non-local
variant to the public evaluation servers of all four benchmarks as mentioned earlier. The results
in Table 4.7 show that we obtain similar results as comparable first-order methods, i.e., Zimmer
et al. [216] on the Middlebury and the MPI Sintel benchmark. Furthermore, we achieve even
better results than comparable second-order methods (i.e., Demetz et al. [54],Ranftl et al. [137])
on the KITTI 2012 and KITTI 2015 benchmark. This observation confirms that regularization
order-adaptation is indeed worthwhile.

4.2 .7 Conclusion

In this section, we investigated the usefulness of automatically adapting the regularization order in
variational optical flow estimation. In this context, we proposed four different adaptation schemes
together with four new order-adaptive regularizers that subtly fuse two anisotropic smoothness
terms. Thereby, we introduced a local and a global selection strategy as well as a non-local and
a region-based variant. While the global selection strategy turned out to be highly robust at the
expense of being less adaptive, the local approach allowed a flexible point-wise selection at the
cost of producing noisy decisions. By imposing some form of spatial regularity, i.e., neighborhood
information or a spatial smoothness term, we finally succeeded to combine the advantages of
both strategies. Our experiments confirmed these considerations. They showed that adaptively
combining different regularization orders not only allows outperforming the non-adaptive strategy
but also that in-frame-adaptivity may turn out useful if we regularize the decision process.
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Table 4.7: Quantitative comparison of selected approaches for the four most popular benchmarks in terms
of the average endpoint error (AEE) and the bad pixel error (BP).

benchmark metric / sequence(s) Our approach Demetz et al. [54] Ranftl et al. [137] Zimmer et al. [216]

Middlebury AEE / Army 0.08 px – – 0.10 px
/Mequon 0.26 px – – 0.19 px
/ Schefflera 0.38 px – – 0.43 px
/Wooden 0.16 px – – 0.17 px
/ Grove 0.83 px – – 0.87 px
/ Urban 0.31 px – – 0.43 px
/ Yosemite 0.08 px – – 0.10 px
/ Teddy 0.52 px – – 0.59 px

KITTI 2012 BP / non-occ. 5.69% 6.52% 5.93% –
/ all 10.72% 11.03% 11.96% –

AEE / non-occ. 1.4 px 1.5 px 1.6 px –
/ all 2.8 px 2.8 px 3.8 px –

KITTI 2015 BP / bg 20.62% – – –
/ fg 27.67% – – –
/ all 21.79% – – –

Sintel (final) AEE / all 8.179 px – 8.746 px 8.204 px
/ non-occ. 4.578 px – 4.635 px 4.448 px
/ occluded 37.525 px – 42.242 px 38.805 px

Sintel (clean) AEE / all 6.227 px – 7.680 px 6.496 px
/ non-occ. 2.760 px – 3.565 px 2.849 px
/ occluded 34.455 px – 41.168 px 36.216 px

4.3 Summary

In this chapter, we first identified suitable second-order regularization approaches for variational
optical flow by comparing several different modeling strategies. Subsequently, we combined two
regularizers of first and second-order in a sophisticatedway to improve upon existing regularization
techniques and proposed our new order-adaptive regularizer. This new regularizer shows a great
flexibility and removes the need to decide on a specific regularization order prior to the estimation.
Consequently, it offers an ideal choice for variational optical flow estimation.
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Estimation

5.1 Introduction

So far we focused on purely variational methods to solve the motion estimation problem. To
render the optimization feasible, one typically applies a linearization of the highly non-convex
data term. This linearization, however, complicates the estimation of large displacements, since
it is generally only valid for small displacements. To cope with this issue, we made use of the
warping strategy [36], as described in Subsection 2.4.2. While this improves the estimation of large
displacements, it does not resolve the problem for small objects that undergo a large displacement,
since they disappear on coarser resolution levels. To deal with these large displacements of small
objects, researchers proposed different solutions, e.g., the integration of point correspondences
obtained via a preceding descriptor matching step [37, 159, 191] or the embedding of additional
candidate matches to improve the initialization at each coarse-to-fine level [168, 199]. Another
approach is to replace the coarse-to-fine scheme by a proper initialization, obtained via a sparse-to-
dense interpolationofpoint correspondences [143]. In fact,most state-of-the-art large displacement
optical flow pipelines use the latter method and refer to the variational component as variational
refinement [20, 50, 61, 85, 120].
Since the variational refinement plays an essential role in many recent motion estimation ap-

proaches, it is surprising thatmostof thosemethods rely on rather simplemodels for the refinement.
In particular, the employed refinement strategy typically cannot keep up with the adaptivity and
robustness of the preceding pipeline steps – descriptormatching, filtering, and inpainting –which
are typically rather elaborated. The most prominent example is the widely used refinement model
of the EpicFlow pipeline [143] that essentially combines a classical gradient constancy assumption
with a simple isotropic first-order smoothness term. In the last few years, however, there has been
significant progress in themodeling of variational methods. This progress includes more advanced
data terms with a higher degree of invariance [53, 112, 121, 140], the joint estimation of motion
and illumination changes [54], higher-order regularizers [33, 9, 137], as well as anisotropic [9, 216]
and non-local smoothness terms [137, 192].All those developments address significant real-world
problems such as robustness under varying illumination, the estimation of motion induced by a
moving camera, or the sharp separation of motion boundaries – problems that are also reflected
in recent motion estimation benchmarks [44, 65, 119].Hence, it is quite surprising that there have
been no attempts in the literature so far to develop variational methods for optical flow refinement
that consider these advanced concepts.
In this chapter, we introduce such an advanced variational refinement scheme based on recent

concepts. In particular, one of the key ingredients is our order-adaptive regularization that we
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introduced in the previous chapter, see Section 4.2. This choice allows us to come up with a refine-
ment method that eliminates one of the major shortcomings of current refinement models. Main
parts of this chapter are based on the work published in [8].

5.2 Related Work

Conceptually closest related to our overall approach is the EpicFlow pipeline byWeinzaepfel et al.
[191] as well as several follow-up works based on this pipeline. While most of these works focus on
improving the matching step [20, 50, 61, 85, 120], there have hardly been any attempts to improve
the sparse-to-dense inpainting [84, 219] and, to the best of our knowledge, no efforts to improve the
refinement step. Apart from that, also recent works based on discrete optimization also make use
of variational refinement [50, 120].While these approaches do not necessarily suffer from the large
displacement problem, they typically do not provide sub-pixel precise flow fields. To alleviate the
latter shortcoming, they also resort to a variational refinement in terms of post-processing. Finally,
from a variational viewpoint, closest related to our work are the works of Demetz et al. [54] that
already served as a baseline method in the previous chapter, see Subsection 4.1.2, and our work
on order-adaptive regularization [9] presented in the Section 4.2, which both use a traditional
coarse-to-fine minimization scheme. These methods, however, have difficulties in dealing with
fine structures and large displacements.

5.3 Contributions

In this chapter, we propose a novel model for variational refinement that combines robustness
under varying illumination with our novel adaptive estimation of higher-order motion fields. To
this end,we use an illumination-aware data term that is able to copewith locally affine illumination
changes together with our anisotropic order-adaptive regularizer form the previous chapter that is
able to produce solutions with gradual transitions where necessary while preserving sharp motion
discontinuities at the same time. Moreover, we suggest a reduced coarse-to-fine scheme that is
able to benefit from a good initialization within the pipeline approach while still being able to
correct errors in the intermediate results. The benefits of our new refinement method become
explicit in the experimental evaluation. The experiments not only show improvements compared
to conventional refinement schemes and pure variational methods, they also demonstrate good
results on all major benchmarks such as KITTI 2012 [65],KITTI 2015 [119] andMPI Sintel [44].

5.4 Pipeline for Large Displacement Optical Flow

Many state-of-the-art methods for large displacement optical flow use a pipeline approach as pre-
sented in [143],which is composed of four main steps: matching, outlier filtering, inpainting, and
variational refinement. Figure 5.1 illustrates these four steps of the pipeline. In the following, we
will detail each of these four steps as they also form the basis of our algorithm.
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1 matching

2 outlier filtering

3 inpainting

4 variational
refinement

Figure 5.1: Illustration of the commonly used pipeline for large displacement optical flow by the example
of a sequence from theMPI Sintel benchmark [44].

5.4 .1 Matching

The goal of the first step in the pipeline is the generation of input matches. Generally, one can use
all kinds of different algorithms, but as a matter of course, the matches should be rather dense, so
that one obtains a reasonable initialization.

In our work we consider three different approaches to obtain input matches, of which all are
tailored to the problem of optical flow estimation. Our first choice is the DeepMatching approach
[191],which creates matches by computing similarities of non-rigid patches. It is based on a hierar-
chical, multi-layer, correlational architecture (inspired by deep convolutional approaches but not
learning based) and is the favored choice in the work [143].Our second choice is the recent CPM
method [85] – a coarse-to-fine variant of PatchMatch [25] – which comes down to an approxi-
mate nearest neighbor field algorithmwith an implicit regularization. Tomeasure the similarities of
matches the CPMalgorithmmakes use of SIFT features [114].Our last choice isDiscreteFlow [120].
In contrast to the other two approaches, it contains explicit regularization. To obtain the matches,
it first extracts a set of suitable proposals and optimizes a cost function via dynamic programming.
Like the other approaches, it makes use of a robust feature descriptor, in this case, DAISY [166].

5.4 .2 Outlier Filtering

The computed matches from the first step typically contain a certain amount of outliers, which
occur for example due to occluded or low textured image regions. Since such erroneous matches
can deteriorate the estimation substantially, it is essential to perform some sort of outlier filtering
such as bidirectional consistency checking and removal of small isolated segments. In practice, this
second step does not eliminate all outliers, but considerably reduces their amount. In our approach,
we stick to the filtering steps as proposed by the respective matching approaches [85, 120, 191].
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5.4 .3 Inpainting

After removing outliers, the resulting flow field is typically non-dense. However, since the last
step of the pipeline – the variational refinement – requires a dense flow field for initialization, the
missing locations have to be inpainted. For this purpose, we use the locally-weighted affine variant
of the Edge-Preserving Interpolation of Correspondences (EpicInpainting) as presented in [143],
which locally fits an affine transformation to estimate missing flow vectors. The algorithm applies
a weighted least-squares fit, where the weights are determined using a geodesic distance based on
the image edges which are assumed to be a superset of the motion boundaries.

5.4 .4 Variational Refinement

The final step refines the inpainted flow field using a variational method. Typically, this step aims
at obtaining sub-pixel precision while it additionally introduces some regularization. In our case,
we investigate and compare two variational models that we explain in the following sections: the
commonly used EpicFlow [143] model that serves as a baseline in our evaluation and our novel
order-adaptive illumination-aware model.

5.5 The EpicFlow Refinement Model

Let us start by discussing the commonly used EpicFlow refinement model [143]. To this end, let
I1, I2 : Ω → R denote two consecutive frames of an image sequence defined on the rectangular
image domain Ω ⊂ R

2. Furthermore, letw = (u, v)⊤ : Ω → R
2 be the motion field we aim

to estimate. Then the EpicFlow model computes the refined flow as a minimizer of an energy
functional of the form

Eepic(w) =

∫

Ω
Depic(w) + α ·Repic(w) dx , (5.1)

whereDepic andRepic denote the data term and the regularization term, respectively, and α is the
weighting parameter that steers the relative impact of both terms.

Data Term The data termDepic comprises a brightness constancy assumption and a gradient
constancy assumption with an additional constraint normalization as proposed in [216].The data
term equates to the model that we used in Section 4.2 with included constraint normalization,
which reads

Depic(w) = Ψr

(
(θ(I2(x+w)− I1(x)))

2
)
+ γ ·Ψr

(
|θxy(∇I2(x+w)−∇I1(x))|2

)
,

(5.2)
Here x = (x, y)⊤ denotes a position within the rectangular image domain Ω ⊂ R

2,Ψr the
regularized linear penalizer function, and θ, θxy are normalization factors defined as

θ =
1√

|∇I⊤2 |2 + ζ2
, θxy =




1
√

|∇I⊤2,x|2+ζ2
0

0 1
√

|∇I⊤2,y |2+ζ2


 , (5.3)
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where the parameter ζ not only avoids a division by zero but also reduces the influence of small
gradients, e.g., noise in flat regions. While this data term works quite well in practice, it comes
with the slight drawback that the gradient constancy assumption only allows handling additive
illumination changes but not multiplicative ones – in contrast to the descriptors of the initial
matching process; see e.g., SIFT [114] or DAISY [166] descriptors.

Regularization Term In case of the regularization term,Repic the EpicFlowmodel uses
an isotropic first-order flow-driven model with an image based weighting similar to [182], given by

Repic(w) = g(|∇I1)|) ·Ψr

(
|∇u|2 + |∇v|2

)
with g(|∇I1|) = exp(−κ · |∇I1|) . (5.4)

Here the robust penalizer functionΨr allows to preserve motion discontinuities and the spatially
adaptive weight g tries to align these discontinuities with image boundaries, i.e., it reduces the
impact of the smoothness term at image edges depending on the parameter κ. This smoothness
term has two major drawbacks: On the one hand, since it uses the first-order regularization that
prefers piecewise constant flow fields, it has problems with estimating highly non-fronto-parallel
motion, e.g., an affine motion that is typically present in ego-motion scenes. On the other hand, it
does notmakeuse ofdirectional information to refinemotionboundaries,whichusually gives a less
distinct separation of objects in the flow field compared to smoothness terms based on anisotropic
regularization.

5.6 Order-Adaptive Illumination-Aware

Refinement Model

Based on the drawbacks of the EpicFlow model, we propose a novel order-adaptive and illumina-
tion-aware refinement model that combines recent concepts of variational optical flow estimation
to eliminate these shortcomings. The two main concepts for this purpose we, actually, already in-
troduced in the previous chapter: the illumination-aware data term ofDemetz et al. [54] explained
in Subsection 4.1.2 and our novel order-adaptive regularizer presented in Section 4.2. Hence, we
revise the concepts briefly but clearly. To this end, we start with the data term proposed of Demetz
et al. [54], that explicitly models local illumination changes in terms of a set of coefficient fields
c = (c1, . . . , cn)

⊤ : Ω → R
n, and then turn to our recent anisotropic order-adaptive regularizer,

that locally selects between first and second-order regularization using a spatially varyingweighting
function o : Ω → (0, 1). Our new refinement model has the following form

Eoir(w, c, o) =

∫

Ω
Dillum(w, c) + α ·Roar(w, o) + β ·Rillum(c) dx , (5.5)

whereDillum is the illumination-aware data term,Roar is the order-adaptive regularizer, andRillum

is the coefficient regularizer with the two weighting parameters α and β. Let us now detail the
different components of the energy, starting with the data term.

Data Term As in the EpicFlow model, the data term consists of a brightness and gradient
constancy assumption. To account formore general illumination changes, however, it additionally
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5 Beyond Variational Motion Estimation

uses a parametrized brightness transfer functionΦ(I, c) in both assumptions [71]. The resulting
illumination-aware data term reads

Dillum(w, c) = Ψc

(
(θ(I2(x+w)− Φ(I1(x), c)))

2
)

+ γ ·Ψc

(
|θxy(∇I2(x+w)−∇Φ(I1(x), c))|2

)
, (5.6)

whereΨc is the Charbonnier penalizer and θ, θxy are again the normalization factors defined as
before, see Equation 5.3. The general parametrized brightness transfer function [54, 71] is given by

Φ(I, c) = φ̄(I) +
n∑

i=1

ci · φi(I) , (5.7)

where φi(I) : R → R denote the n basis functions and φ̄(I) : R → R is the mean brightness
transfer function. As in the previous chapter, see Subsection 4.1.2, we choose Φ(I, c) to be the
normalized affine function, i.e.,

φ̄(I) = I , φ1(I) =
I

n1
, and φ2(I) =

1

n2
, (5.8)

where n1 and n2 are normalization factors such that ‖φi(I)‖2=1. Compared to a learned bright-
ness transfer function, this choice not only offers an intuitive interpretation of the coefficient fields
but also is suitable for a broad variety of different domains.

Regularization Term (Illumination) In the case of the regularizer for the illumi-
nation coefficients we follow [54] and use a joint anisotropic first-order regularizer which reads

Rillum(c) =

2∑

l=1

Ψl

(
n∑

i=1

(
r⊤l ∇ci

)2
)
. (5.9)

It not only enables the regularization to locally adapt to the underlying image structure in terms
of two spatially varying directions r1 and r2, which we obtain as eigenvectors of the regularization
tensor [54, 216]. It also allows treating both directions independently which is reflected in the use
of two separate penalizer functions, which we choose to be the Perona-Malik penalizer (Ψ1 =Ψp)
and the Charbonnier penalizer (Ψ2 =Ψc), respectively.

Regularization Term (Flow) In the case of the order-adaptive regularizer, we choose
the non-local selection scheme introduced in Section 4.2.4, which has shown to perform equally
well in scenes with fronto-parallel and affine motion. The regularizer combines a first and second-
order smoothness term with a locally varying weight. Its general form is given by

Roar(w, o) = inf
a,b

{
ō ·S1(w)+(1− ō) ·(S2(w,a,b)+τ)+λ ·Saux(a,b)+θ ·φ(o)

}
, (5.10)

where S1 is a first-order regularizer, S2 and Saux form the coupling and smoothness term of a
second-order regularizer, respectively, and φ is the associated selection term function. In order to
avoid over-fitting the data by only selecting the less restrictive second-order regularizer, an activa-
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tion cost τ is introduced in the coupling term. Moreover, the selection process is rendered more
robust by integrating the order weights owithin a rectangular shaped neighborhoodN (x) via

ō(x) =
1

|N (x)|

∫

N (x)
o(y) dy , (5.11)

where |N (x)| is the size of the neighborhood.
Let us now detail the employed first and second-order smoothness terms. While the first-order

smoothness term is given by the anisotropic model [216]

S1(w) =
2∑

l=1

Ψl

((
r⊤l ∇u

)2
+
(
r⊤l ∇v

)2)
, (5.12)

the second order coupling approach is given by [75, 10]

S2(w,a,b) =

2∑

l=1

Ψl

((
r⊤l (∇u− a)

)2
+
(
r⊤l (∇v − b)

)2)
, (5.13)

which couples the flow gradients to the auxiliary functions a and b and

Saux(a,b) =

2∑

l=1

Ψl

(
2∑

m=1

(
r⊤mJ a rl

)2
+
(
r⊤mJb rl

)2
)
, (5.14)

that enforces smoothness on these auxiliary functions via penalizing their JacobiansJ a andJb.
In this context, the weight λ determines the amount of smoothness and both the directions r1, r2
and the penalizer functionsΨ1,Ψ2 are defined as in case of the illumination coefficient regularizer,
i.e., as thePerona-Malikpenalizer (Ψ1 =Ψp) and theCharbonnierpenalizer (Ψ2 =Ψc), respectively.
Finally, the selection term φ is given by

φ(o) = (1− o) ln(1− o)− o ln(o) , (5.15)

which leads to the order adaptive selection via a sigmoid function based on the local energy dif-
ferences of S1 and S2, where the slope is determined by the factor θ of the selection term. Subsec-
tion 4.2.4 includes a detailed derivation of this selection term.

5.7 M inimization

Regarding the minimization of the variational refinement model, we proceed as in Chapter 4 with
some slight changes. In contrast to the original approach, we do not estimate the optical flow from
scratch which would require to start at a very coarse resolution. Instead, we aim at refining the
initial flow field provided by the preceding pipeline steps such that we can benefit from a typically
somewhat decent initialization. While the classical optical flow pipeline [143] only operates on the
finest resolution, to obtain sub-pixel precision [20, 50, 85, 120, 143],we also do not follow this other
extreme. Considering the problem that depending on the matching strategy, the initial matches
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5 Beyond Variational Motion Estimation

Figure 5.2: Training sequence #28 ofKITTI 2012 [65]. First row: Reference image, CPMmatches. From left
to right: Error andmotion field visualization. Second row: Inpainted CPMmatches (BP: 7.86%).
Third row: EpicFlow refinement (BP: 10.80%). Fourth row: Proposed refinement (BP: 7.03%).

can be off by several pixels – in particular if matching approaches operate with reduced image
resolution, e.g., [50]–wepropose a compromise instead: a reduced coarse-to-fine scheme that starts
the refinement at an intermediate level and hence still allows for sufficient corrections compared
to a refinement on a single scale.

5.8 Evaluation

Evaluation Setup Thematching and the inpainting is performed using the publicly avail-
able code, provided by the respective authors. Thereby, we set all the parameters to the provided
default values. In the case of our model, we set most parameters fixed γ, ζ , τ , θ, and only optimize
the three smoothness weights α, β, λ using downhill simplex on the provided training data [14],
see Section B.3. To avoid a bias towards a specific matching approach (DeepMatching, CPM, Dis-
creteFlow), we compute an individual set of these three parameters for each of the three methods,
respectively. Moreover, we set the minimum average benefit τ of the order-adaptive regularizer
fixed, such that the regularization order is not implicitly learned from the training data for each
benchmark in advance (as in Section 4.2), but purely determined online, i.e., during the estimation.

Order-Adaptive Refinement In our first experiment, we demonstrate the benefit of
our order-adaptive refinement strategy compared to the first-order refinement of the EpicFlow
model in case of highly non-fronto-parallel motion. Therefore, we depicted the results for a se-
quence of the KITTI 2012 benchmark [65] in Figure 5.2. Taking a look at the second row, which
shows the inpainted CPMmatches before variational refinement, one can see in the error visualiza-
tion that the affine inpainting did an excellent job at the bottom boundary, e.g., red framed region.
When applying the refinement with the first-order EpicFlow model (third row) this inpainted
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Table 5.1: Results for the KITTI 2012 [65], the KITTI 2015 [119] and theMPI Sintel [44] training data sets.
The listed error measures are the average endpoint error (AEE) and the percentage of erroneous
pixels (BP) with a threshold of 3px.

KITTI 2012 KITTI 2015 Sintel
non-occluded all non-occluded all clean
AEE BP (%) AEE BP (%) AEE BP (%) AEE BP (%) AEE

no refinement
DeepMatches 1.86 px 11.39% 3.52 px 18.92% 5.12 px 24.74% 9.37 px 31.96% 2.68 px
DiscreteFlow 1.36 px 7.25% 3.06 px 16.02% 3.14 px 15.31% 6.67 px 24.37% 2.21 px
CPM 1.43 px 6.23% 2.99 px 10.99% 3.66 px 16.43% 7.77 px 23.36% 2.19 px

EpicFlow refinement
DeepMatches 1.42 px 7.64% 3.24 px 16.24% 4.71 px 20.06% 9.18 px 28.38% 2.27 px
DiscreteFlow 1.17 px 5.70% 2.97 px 14.89% 2.94 px 13.62% 6.68 px 23.14% 1.94 px
CPM 1.25 px 5.37% 3.00 px 14.58% 3.43 px 14.58% 7.78 px 22.86% 2.00 px

our refinement (η = 1.00)
DeepMatches 1.32 px 7.65% 2.83 px 12.82% 4.59 px 19.60% 8.82 px 26.14% 2.26 px
DiscreteFlow 1.08 px 5.80% 2.54 px 11.09% 2.83 px 13.03% 6.29 px 20.08% 1.91 px
CPM 1.20 px 5.66% 2.92 px 10.19% 3.85 px 14.11% 8.88 px 20.57% 1.99 px

our refinement (η = 0.95)
DeepMatches 1.20 px 6.28% 2.61 px 10.91% 4.45 px 17.69% 8.45 px 23.89% 2.24 px
DiscreteFlow 1.02 px 5.05% 2.39 px 9.77% 2.79 px 12.43% 5.99 px 18.56% 1.91 px
CPM 1.14 px 5.20% 2.79 px 9.83% 3.25 px 13.39% 7.43 px 19.43% 2.01 px

our refinement (η = 0.90)
DeepMatches 1.16 px 5.67% 2.52 px 10.06% 4.32 px 16.25% 8.25 px 22.33% 2.23 px
DiscreteFlow 1.01 px 4.87% 2.34 px 9.29% 2.77 px 12.16% 5.89 px 18.10% 1.94 px
CPM 1.14 px 5.18% 2.78 px 9.68% 3.24 px 13.25% 7.36 px 19.21% 2.04 px

region deteriorates, but small displacements located at the image center improve. In contrast, our
order-adaptive refinement strategy (fourth row) improves both the inpainted areas as well as the
small displacements located at the image center. This finding is also reflected in the error measures
of the entire KITTI 2012 benchmark for the CPMmatches that are listed in Table 5.1. While the
BP error increases after the EpicFlow refinement from 10.99% to 14.58%, it decreases to 9.68%
with our new refinement scheme.

Reduced Coarse-to-fine Scheme In our second experiment, we investigate the pro-
posed reduced coarse-to-fine scheme. Using 10 resolution levels, we thereby compare three differ-
ent settings for the downsampling parameter η which correspond to three different initial scales:
η = 1.0 (no coarse-to-fine scheme, i.e., full resolution), η = 0.95 (0.63×full resolution), and
η = 0.90 (0.39×full resolution). Table 5.1 lists the outcome. Here one can see, that in case of the
KITTI benchmarks the results benefit significantly from the reduced coarse-to-fine scheme. This
improvement is due to the fact that the smaller initial resolution allows for greater corrections. In
contrast, one cannot observe such an improvement for the MPI Sintel benchmark. This probably
results from the fact that the errors in the inpainted motion field are either small enough to be
corrected at a finer resolution or too large to be corrected by the refinement scheme. Regarding
the setting with the coarsest resolution the DiscreteFlow matches and the CPMmatches turn out
to produce slightly worse results, which probably results from the fact that very small structures
that are present in the full resolution initialization are lost on the coarser resolution levels.
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Table 5.2: Results for the KITTI 2012 [65] and KITTI 2015 [119] test data set. Table shows the top non-
anonymous pure optical flowmethods at time of submission (Apr. 2017), excludingmethods that
rely on additional information, such as stereo images, extra time-frames, semantic information
or assume an underlying epipolar geometry, and related methods. Our approach (DF+OIR) and
the original DiscreteFlow approach are highlighted in red. The methods presented in Section 4.1
(SODA-Flow) and Section 4.2 (OAR-Flow) are highlighted in blue.

KITTI 2012 Out-Noc Out-All Avg-Noc Avg-All

ImpPB+SPCI [154] 4.65% 13.47% 1.1 px 2.9 px
FlowNet2 [89] 4.82% 8.80% 1.0 px 1.8 px
FlowFieldCNN [22] 4.89% 13.01% 1.2 px 3.0 px
RicFlow [84] 4.96% 13.04% 1.3 px 3.2 px
FlowFields+ [21] 5.06% 13.14% 1.2 px 3.0 px
DF+OIR [8] 5.17% 10.43% 1.1 px 2.9 px
PatchBatch [61] 5.29% 14.17% 1.3 px 3.3 px
SODA-Flow [10] 5.57% 10.71% 1.3 px 2.8 px
OAR-Flow [9] 5.69% 10.72% 1.4 px 2.8 px
DDF [73] 5.73% 14.18% 1.4 px 3.4 px
PH-Flow [202] 5.76% 10.57% 1.3 px 2.9 px
FlowFields [20] 5.77% 14.01% 1.4 px 3.5 px
CPM-Flow [85] 5.79% 13.70% 1.3 px 3.2 px
NLTGV-SC [137] 5.93% 11.96% 1.6 px 3.8 px
DDS-DF [184] 6.03% 13.08% 1.6 px 4.2 px
TGV2ADCSIFT [33] 6.20% 15.15% 1.5 px 4.5 px
S2F-IF [203] 6.20% 15.68% 1.4 px 3.5 px
DiscreteFlow [120] 6.23% 16.63% 1.3 px 3.6 px
BTF-ILLUM [54] 6.52% 11.03% 1.5 px 2.8 px

EpicFlow [143] 7.88% 17.08% 1.5 px 3.8 px

KITTI 2015 Fl-bg Fl-fg Fl-all

FlowNet2 [89] 10.75% 8.75% 10.41%
DCFlow [198] 13.10% 23.70% 14.86%
SOF [156] 14.63% 22.83% 15.99%
DF+OIR [8] 15.11% 23.45% 16.50%
ImpPB+SPCI [154] 17.25% 20.44% 17.78%
FlowFieldCNN [22] 18.33% 20.42% 18.68%
RicFlow [84] 18.73% 19.09% 18.79%
FlowFields+ [21] 19.51% 21.26% 19.80%
PatchBatch [61] 19.98% 26.50% 21.07%
DDF [73] 20.36% 25.19% 21.17%
SODA-Flow [10] 20.01% 29.14% 21.53%
DiscreteFlow [120] 21.53% 21.76% 21.57%
OAR-Flow [9] 20.62% 27.67% 21.79%
CPM-Flow [85] 22.32% 22.81% 22.40%
FullFlow [50] 23.09% 24.79% 23.37%
SPM-BP [110] 24.06% 24.97% 24.21%
EpicFlow [143] 25.81% 28.69% 26.29%
DeepFlow [191] 27.96% 31.06% 28.48%
HS [164] 39.90% 51.39% 41.81%
DB-TV-L1 [210] 47.52% 48.27% 47.64%

Qualitative Results In the Figures 5.3-5.8, we provide additional qualitative results
for sequences of all three considered benchmarks, namely the KITTI 2012 benchmark [65], the
KITTI 2015 benchmark [119] and the MPI Sintel benchmark [44]. To emphasize some aspects
of our novel refinement strategy, we highlighted specific regions in the images. Figure 5.3 and
Figure 5.4, for example, nicely show the benefit of the proposed reduced coarse-to-fine scheme,
which allows correcting errors. Figure 5.5 andFigure 5.8 bring out the adaptation to the underlying
image structure, as can be seen at the traffic lights and the ear of the villain, respectively. Finally,
the benefit of the order-adaptive regularization not only becomes present in ego-motion scenarios,
e.g., the boundary areas of the KITTI sequences (Figures 5.3-5.5), but also in case of non-rigid
motion, e.g., the shoulder of the character Sintel in Figure 5.7.

Comparison to the Literature Finally, we evaluate our new order-adaptive varia-
tional refinement strategy on the withhold test data sets of the KITTI 2012 benchmark [65], the
KITTI 2015 benchmark [119] and the MPI Sintel benchmark [44], by uploading the computed
flow field to the online evaluation servers. Following the submission policy, we submitted the best
performing setting, i.e., the combination of our DiscreteFlow setting (DiscreteFlow matches +
filtering + inpainting) with our order-adaptive refinement strategy. For a convenient overview, we
provide the results from the time of submission (Apr. 2017) in Table 5.2 and Table 5.3 where we
only listed non-anonymous pure optical flowmethods that do not rely on additional information,
such as stereo images, extra time-frames, semantic information or assume an underlying epipo-

104



5.8 Evaluation

Table 5.3: Results for the MPI Sintel [44] test data set in terms of the average enpoint error (AEE). Top
non-anonymous optical flow methods and related methods at time of submission (Apr. 2017).
Our approach (DiscreteFlow+OIR) and the original DiscreteFlow approach are highlighted in
red. The method presented in Section 4.2 (OAR-Flow) is highlighted in blue.

clean render path all matched unmatched

FlowFields+ [21] 3.102 px 0.820 px 21.718 px
CPM2 [111] 3.253 px 0.980 px 21.812 px
DiscreteFlow+OIR [8] 3.331 px 0.942 px 22.817 px
S2F-IF [203] 3.500 px 0.988 px 23.986 px
SPM-BPv2 [110] 3.515 px 1.020 px 23.865 px
DCFlow [198] 3.537 px 1.103 px 23.394 px
RicFlow [84] 3.550 px 1.264 px 22.220 px
CPM-Flow [85] 3.557 px 1.189 px 22.889 px
DiscreteFlow [120] 3.567 px 1.108 px 23.626 px
FullFlow [50] 3.601 px 1.296 px 22.424 px
PatchBatch+Inter [154] 3.624 px 1.324 px 22.397 px
FlowFields [20] 3.748 px 1.056 px 25.700 px
FlowFieldsCNN [22] 3.778 px 0.996 px 26.469 px
DeepDiscreteFlow [73] 3.863 px 1.296 px 24.820 px
FlowNet2 [89] 3.959 px 1.468 px 24.294 px
EpicFlow [143] 4.115 px 1.360 px 26.595 px

OAR-Flow [9] 6.227 px 2.760 px 34.455 px

final render path all matched unmatched

DCFlow [198] 5.119 px 2.283 px 28.228 px
FlowFieldsCNN [22] 5.363 px 2.303 px 30.313 px
S2F-IF [203] 5.417 px 2.549 px 28.795 px
RicFlow [84] 5.620 px 2.765 px 28.907 px
FlowFields+ [21] 5.707 px 2.684 px 30.356 px
DeepDiscreteFlow [73] 5.728 px 2.623 px 31.042 px
FlowNet2-ft-sintel [89] 5.739 px 2.752 px 30.108 px
FlowFields [20] 5.810 px 2.621 px 31.799 px
SPM-BPv2 [110] 5.812 px 2.754 px 30.743 px
DiscreteFlow+OIR [8] 5.862 px 2.864 px 30.303 px
FullFlow [50] 5.895 px 2.838 px 30.793 px
CPM-Flow [85] 5.960 px 2.990 px 30.177 px
FlowNet2 [89] 6.016 px 2.977 px 30.807 px
GlobalPatchCollider [180] 6.040 px 2.938 px 31.309 px
DiscreteFlow [120] 6.077 px 2.937 px 31.685 px

EpicFlow [143] 6.285 px 3.060 px 32.564 px
OAR-Flow [9] 8.179 px 4.578 px 37.525 px

lar geometry. Moreover, we added results from EpicFlow [143] and OAR-Flow [9], if not already
present among the list of the best results, since these methods rely on the standard pipeline and
our order-adaptive regularization from Section 4.2, respectively. As one can see, our variational
refinement not only improves the results compared to the original DiscreteFlow approach (Dis-
creteFlow matches + filtering + inpainting + EpicFlow refinement) and the standard EpicFlow
pipeline (DeepMatches + filtering + inpainting + EpicFlow refinement), it also outperforms recent
purely variational methods with full coarse-to-fine schemes such as our double anisotropic second-
order approach from Section 4.1 (SODA-Flow), our order-adaptive approach from Section 4.2,
and our baseline approach [54]with the illumination-aware data term from Subsection 4.1.2 (BTF-
Illum). Moreover, with Rank 6 (KITTI 2012), Rank 4 (KITTI 2015), and Ranks 3 and 10 (MPI
Sintel) in the above Tables, the novel refinement approach offers a favorable performance in all
benchmarks. These results demonstrate that combining good initial matches with a sophisticated
variational refinement allows to further improve the results by combining the advantages of both
techniques.

Runtime For a color image pair of size 1242×375 (KITTI 2015 [119]), our C/C++ imple-
mentation of the variational refinement step running on a single core with 3.40 GHz (Intel Core
i7-2600 CPU) requires about 35s (η = 0.90), 50s (η = 0.95), and 70s (η = 1.00). Consequently,
our reduced coarse-to-fine approach not only allows to improve the estimation accuracy but also
to reduce the runtime. Furthermore, the overall runtime of the presented approach is dependent
on the previous steps of the pipeline. Using the same hardware the previous pipeline steps sum up
to 12s (CPM), 80s (Deepmatches) and 120s (DiscreteFlow).
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Figure 5.3: Results for the sequence #15 of the KITTI 2012 benchmark [65]. First row: Reference frame
and ground truth. Second to fourth row: Outlier-filtered matches and inpainted matches (Deep-
Matching, DiscreteFlow, CPM). Fifth to seventh row: Flow field visualization of the EpicFlow
refinement and proposed refinement (DeepMatching,DiscreteFlow, CPM).Eighth to tenth row:
Error visualization of the EpicFlow refinement and our refinement (DeepMatching, Discrete-
Flow, CPM).
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Figure 5.4: Results for the sequence #9 of the KITTI 2012 benchmark [65]. First row: Reference frame
and ground truth. Second to fourth row: Outlier-filtered matches and inpainted matches (Deep-
Matching, DiscreteFlow, CPM). Fifth to seventh row: Flow field visualization of the EpicFlow
refinement and proposed refinement (DeepMatching,DiscreteFlow, CPM).Eighth to tenth row:
Error visualization of the EpicFlow refinement and our refinement (DeepMatching, Discrete-
Flow, CPM).
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Figure 5.5: Results for the sequence #07 of the KITTI 2015 benchmark [119]. First row: Reference frame
and ground truth. Second to fourth row: Outlier-filtered matches and inpainted matches (Deep-
Matching, DiscreteFlow, CPM). Fifth to seventh row: Flow field visualization of the EpicFlow
refinement and proposed refinement (DeepMatching,DiscreteFlow, CPM).Eighth to tenth row:
Error visualization of the EpicFlow refinement and our refinement (DeepMatching, Discrete-
Flow, CPM).
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Figure 5.6: Results for the sequence #31 of the KITTI 2015 benchmark [119]. First row: Reference frame
and ground truth. Second to fourth row: Outlier-filtered matches and inpainted matches (Deep-
Matching, DiscreteFlow, CPM). Fifth to seventh row: Flow field visualization of the EpicFlow
refinement and proposed refinement (DeepMatching,DiscreteFlow, CPM).Eighth to tenth row:
Error visualization of the EpicFlow refinement and our refinement (DeepMatching, Discrete-
Flow, CPM).
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Figure 5.7: Results for sequence #20 (alley_1) of theMPI Sintel benchmark [44]. First row: Reference frame
and ground truth. Second to fourth row: Outlier-filtered matches and inpainted matches (Deep-
Matching, DiscreteFlow, CPM). Fifth to seventh row: Flow field visualization of the EpicFlow
refinement and proposed refinement (DeepMatching,DiscreteFlow, CPM).Eighth to tenth row:
Error visualization of the EpicFlow refinement and our refinement (DeepMatching, Discrete-
Flow, CPM).
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Figure 5.8: Results for sequence #02 (ambush_5) of the MPI Sintel benchmark [44]. First row: Refer-
ence frame and ground truth. Second to fourth row: Outlier-filtered matches and inpainted
matches (DeepMatching, DiscreteFlow, CPM). Fifth to seventh row: Flow field visualization of
theEpicFlowrefinement andproposed refinement (DeepMatching,DiscreteFlow,CPM).Eighth
to tenth row: Error visualization of the EpicFlow refinement and our refinement (DeepMatching,
DiscreteFlow, CPM).
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5.9 L imitations

Ourapproachnot only enables an accurate refinementof flow fields but also is capable of correcting
errors. Naturally, this error correction capability is limitedwhen it comes to erroneous flow vectors
of small objects that undergo a large displacement. Such errors cannot be corrected if no correct
matches are capturedduring thematching phase. Further,we can observe another limiting scenario
at motion boundaries between foreground objects and homogeneous background regions. In this
case, it can appear that despite the edge enhancing and edge-preserving penalizer functions, the
smoothness term over-smooths the edge. Additional segmentation information may help in this
context.

5.10 Conclusion

In this chapter, we proposed a new variational refinement strategy for pipeline based optical flow
estimation. By combining an illumination-aware data term, that can keep up with many feature
descriptors regarding their robustness under affine changes, with our new order-adaptive regular-
ization strategy from Section 4.2, that locally selects between first and second-order regularization,
we build a new variational model that unifies modern concepts from the field of purely variational
optical estimation. Furthermore, we not only came up with a newmodel but also proposed a re-
duced coarse-to-fine scheme that starts the computation at an intermediate level. This compromise
enabled our new refinement strategy to benefit from a good initialization while still being able to
correct errors. Finally, consistently good results on recent optical flowbenchmarks showed that our
new variational refinement strategy not only allows to improve outcomes compared to traditional
refinement schemes but also that it allows outperforming purely variational methods.
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Estimation

The problem of motion estimation is defined as the computation of the inter-frame displacement
field between consecutive image frames. So far, as many recent methods [84, 87, 8, 163, 198], we
limited ourselves to the use of only two input frames to solve this task. While this choice allows
obtaining excellent results in most cases, it does not allow to exploit any information on temporal
coherence. In particular reasoning in the context of occlusions is solely based on regularization.
However, takingmultiple input frames into account enables us to leverage additional information,
which could help to overcome this limitation. In order to achieve this, motionmodels are required
that relate the sought displacement vector field to motion estimates from the past. While simple
models based on a temporally constant flow can be a valid choice in case of sufficiently small
motion [91], more complex models are required in general scenarios with fast and non-rigidly
moving objects. Unfortunately, as observed in [64, 179], finding such models is a highly non-trivial
task. Thus, recent multi-frame methods assume a scenario of mostly rigid scenes to use temporal
information [6, 196].This assumption, however, requires a sufficient amount of ego-motion and
only allows to exploit temporal information in rigid parts of the scene.

In this chapter we present two newmethods that exploit additional temporal information from
multiple input frames. While our first method builds upon the mentioned rigid motion model,
our second method does not rely on any specific motion model. In contrast, we propose to learn a
motionmodel, what allows us to overcome certain limitations imposed by the rigidmotionmodel.
Main parts of this chapter are based on the work published in [2, 6].

6.1 Rigid Motion Model

To develop our first multi-frame approach that allows extracting additional temporal information
based on the rigid motion assumption, we build upon a pipeline approach as introduced in the
previous Chapter 5. In particular,we extend thematching step of the pipeline to include additional
structure matches obtained by solving a multi-frame structure-from-motion (SfM) problem. To
this end, we create a structure matching algorithm that relies on a PatchMatch-like [25] optimiza-
tion. Hence, we not only detail on pure optical flow approaches but also point out approaches
related to PatchMatch based structure estimation within the related work section.

6.1 . 1 Related Work

Rigid Motion Actually, no multi-frame setting is required to employ the rigid motion
model. Since it allows to reduce the 2D search space of unconstrained motion to a 1D search space
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along epipolar lines, it can already model the estimation more accurate and robust in a two-frame
setting on condition that the present motion fulfills the underlying rigid motion assumption.

Hence, approaches exist that enforce the rigid motion assumption geometrically in terms of an
epipolar constraint in the standard two frame scenario [129, 170, 200, 201].However, if this assump-
tion is forced to hold for the entire scene, as proposed by Oisel et al. [129] and Yamaguchi et al.
[200, 201], the approach is only applicable to entirely rigid scenes, e.g., to those of the KITTI 2012
benchmark [65].Although this problem can be slightly alleviated by soft constraints as proposed
by Valgaerts et al. [169, 170], results for non-rigid scenes are typically not good. Hence, Wedel et al.
[182] suggested to turn off the epipolar constraint for sequences with independent object motion.
This modification, however, does not allow to exploit rigid body priors at all in the standard opti-
cal flow setting, a setting with camera ego motion and independent object motion. Consequently,
Gerlich and Eriksson [67] presented a more advanced approach that segments the scene into dif-
ferent regions with independent rigid body motions and assigns motion hypothesis in terms of
fundamental matrices to them. While this strategy allows handling automotive scenes with other
rigidly moving objects quite well, e.g., sequences similar to the KITTI 2015 benchmark [119], it
cannot model any non-rigid motion, e.g., as required for the different characters in theMPI Sintel
benchmark [44]. In contrast, our proposed approach can handle non rigid motion by combining
information from unconstrained motion estimation and SfM estimation, it is neither restricted
to entirely rigid nor to object-wise rigid scenes.

Mostly Rigid Motion Compared to the previously mentioned approach of Gerlich and
Eriksson [67],Wulff et al. [196]went a step further. Instead of requiring the scene to be object-wise
rigid, they assume the scene to be mostly rigid. To this end, they suggested an iterative model that
segments the scene into foreground and background using semantic information as well as motion
and structure cues, while estimating the backgroundmotion with a dedicated stereo algorithm. In
this context, the use of such a rigid motion model in terms of a stereo algorithm allows them to
use an additional preceding image frame to exploit additional temporal information. In contrast
to their approach, our method follows a completely different strategy. Instead of relying on the
general optical flow method from [120] as initialization and adaptively integrating strong rigidity
priors later on in the estimation, our proposed approach aims at integrating such priors already
in the estimation of feature matches at the beginning of the flow pipeline – and that without the
use of semantic information. Hence, our algorithm is relevant for all methods relying on a suitable
initialization. In particular, this not only includes the work of Wulff et al. [196] but also other
recent methods such as [87] or [156].

Parametrized Rigid Motion An alternative strategy that recently became very popu-
lar is to refrain from using global or object-wise rigidity priors and tomodel motions that are pixel-
or piecewise rigid. Typically this is done through a suitable flow (over-)parametrization [82, 86, 119,
128, 176, 202]. For instance,Hornaček et al. [82] proposed a 9DoF flowparametrization thatmodels
a locally rigid motion of planes. Similar, Yang et al. [202] and Hur and Roth [86, 87] suggested ap-
proaches that use a spatially coherent 8DoFhomography based on superpixels. In contrast to those
methods, our proposed approach does not explicitly rely on an over-parametrization. Vice versa,
it gains robustness by restricting the search space to 1D when calculating the structure matches.
Moreover, it estimates the flow pixel-wise instead of segment-wise. Hence, it is more suitable for
general scenes with non-rigid motion and fine motion details.
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Semantic Information Another way to improve the accuracy and the robustness of
the estimation is to consider semantic information from the scene. For instance, Bai et al. [19]
proposed to use instance-level segmentation to identify independently moving traffic participants
before computing separate rigid motions for both the background and the participants. Similarly,
Hur and Roth [86]make use of a CNN to integrate semantic information into a joint approach
for estimating the flow and a temporally consistent semantic segmentation. Furthermore, Sevilla-
Lara et al. [156] suggested a layered approach that relies on semantic information when switching
between different motion models. Finally, there is also the method of Wulff et al. [196] that uses
semantic information to distinguish independently moving objects from the rigid background.
While semantic information often improves the results, one typically has to adapt the underlying
models to the given domain. As a consequence, such approaches do typically not generalize well
across different applications or benchmarks. To avoid this inevitable application-wise adaptation
and come up with a generally applicable method, we propose an approach that does not rely on
semantic information. To this end,we propose an algorithm that verifies the reliability of structure
matches in terms of a consistency check.

PatchMatch Approaches Finally, let us comment on some related work regarding the
use of PatchMatch approaches for motion estimation and stereo reconstruction. In the context
of unconstrained matching (motion estimation), PatchMatch has been originally proposed by
Barnes et al. [25].Recent developments include the work of Bao et al. [24] that introduces an edge-
preserving weighting scheme in the matching process, as well as the approach of Hu et al. [85] that
improves accuracy and speedwith a hierarchicalmatching strategy.Moreover,Gadot andWolf [61]
and Bailer et al. [22], have recently shown that feature learning can be beneficial. Despite all the
progress, however, none of the above mentioned motion estimation methods includes structure
information. In contrast, our proposed approach exploits such information by explicitly using
feature matches from a specifically tailored three-view stereo/SfM PatchMatch method.
Also in the stereo/SfM context, there exists a vast literature on PatchMatch algorithms. There,

PatchMatch has been first introduced by Bleyer et al. [31]who proposed a plane-fitting variant for
the rectified case. Recent developments include the approaches of Shen [157] and Galliani et al.
[62]who extended PatchMatch to the non-rectified two-view andmulti-view case, respectively; see
also [150, 213]. In contrast to all those methods, our proposed approach not only extracts structure
information from images. Instead, it combines information from optical flow and structure and
is hence also applicable to non-rigid scenes with independently moving objects. Moreover, it relies
on a hierarchical optimization [85]which has not been used in the context of PatchMatch stereo so
far. Finally, the structure part of our algorithm uses a direct depth-parametrization. These choices,
in turn, make both the estimation and the optimization very robust.

6.1 .2 Contributions

In this chapter, we propose and investigate an approach that allows exploiting the multi-frame
information based on a rigid motion assumption. In this context, our contributions are threefold:
(i) First, we introduce a coarse-to-fine multi-frame PatchMatch approach for estimating structure
matches (SfM) that combines a depth based parametrization with different temporal selection
strategies. While the parametrization models the estimation more robust by reducing the search
space, the hierarchical optimization and the temporal selection improve the accuracy. (ii) Second,
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Figure 6.1: Schematic overview over our proposed approach.

we propose a consistency-based selection scheme for combiningmatches from this structure-based
PatchMatch approach and an unconstrained PatchMatch approach. Thereby, the backward flow
allows us to identify reliable structure matches, while a robust voting scheme decides on the re-
maining cases. (iii) Finally, we embed the resulting matches into the optical flow pipeline. By
employing recent approaches for interpolation and refinement, ourmethod provides dense results
with sub-pixel accuracy. Experiments on all major benchmarks demonstrate the benefits of our
novel approach.

6.1 .3 Method Overview

Let us start by giving a brief overview of the proposed method. As many modern optical flow
techniques it relies on amulti-stage approach as described in the previous chapter [84, 87, 8, 156, 196].
However, in contrast to most of these approaches that typically aim at improving an already given
flow field, our method focuses on the generation of an accurate and robust initial flow field itself.
To achieve this goal, we integrate structure information into the feature matching process. This
integration is motivated by the observation that many sequences contain a significant amount of
rigidmotion induced by the ego-motion of the camera [196]. Since the underlying stereo geometry
constrains this motion, structure information can hence significantly improve the estimation.
In our multi-stage method, we realize this integration by combining two hierarchical feature

matching approaches that complement each other: On the one hand, we use a recent two-frame
PatchMatch approach for optical flow estimation [85]. This choice allows our method to estimate
the unconstrained motion in the scene (forward and backward matches). On the other hand, we
rely on a specifically tailored three-frame stereo/SfM PatchMatch approach with preceding pose
estimation [122]. This component, in turn, allows our method to compute the rigid motion of
the scene induced by the moving camera (structure matches). To discard outliers and combine the
remainingmatches,we perform a filtering approach for allmatches followedby a consistency-based
selection scheme. Finally, we inpaint and refine the combined matches using recent methods from
the literature [84, 8]. Figure 6.1 gives an overview of the entire approach.
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Figure 6.2: Left: Illustration of the employed depth parametrization. Right: Illustration of corresponding
points defined by the image location xt and the associated depth value zt(xt). In this case, the
3D point is occluded in one view and could be handled with the idea of temporal selection, i.e.
by the view from the other time step.

6.1 .4 Structure Matching

In this section, we present our structure matching framework which builds upon the PatchMatch
algorithm [25] – a randomized, iterative algorithm for approximate block matching. In this con-
text, we adopt ideas of the recently proposed coarse-to-fine PatchMatch (CPM) approach for op-
tical flow [85] and apply them in the context stereo/SfM estimation. To this end, we rely on a
depth-based parametrization [62, 145] that we already used in our variational approach for 3D re-
construction in Chapter 3. This parametrization not only enables the straightforward integration
of multiple frames but also allows us to consider the concepts of temporal averaging and temporal
selection [98].

6.1 .4 .1 Depth-Based Parametrization

Let us start by introducing the employed depth-based parametrization. To this end, we assume
that all images are captured by a calibrated perspective camera that possibly moves in space, i.e.,
that we know the corresponding projectionmatricesPt = K [Rt|tt]. Here,Rt is a 3× 3 rotation
matrix and tt is a translation 3-vector that together describe the pose of the camera at a particular
time step t. Moreover,K denotes the 3 × 3 intrinsic camera calibration matrix as described in
Subsection 2.2.2. Given the projectionmatrixPt, a 3D pointX ∈ R

3 is projected onto a 2Dpoint
xt ∈ R

2 on the image plane at time t by xt = π(PtX̃), where the tilde denotes homogeneous
coordinates and πmaps a homogeneous coordinate x̃t to its Euclidean counterpart xt. Now, to
define our parametrization, we fix a camera at a certain time step t to be the reference frame. This
choice allows us to specify a 3D point on the surface st in terms of an image location xt and its
corresponding depth zt(xt) along the optical axis of the reference camera (see Figure 6.2 left) via
the back projection

X = st(xt, zt) = zt(xt) ·R−1t K−1x̃t −R−1t tt , (6.1)

For the sake of clarity we drop the subscript t in case we refer to the reference view, i.e., x :=
xt, z := zt, and s := st. This depth parametrization enables us to describe correspondences
throughoutmultiple images with a single unknown, the depth z, by projecting onto the respective
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Figure 6.3: Illustration showing the conversion procedure from a 3Dpoint to the displacement vectors w.r.t.
to the forward frame t+ 1 and backward frame t− 1.

image planes using the corresponding projectionmatrices (see Figure 6.2 right). Finally, given three
frames at time t− 1, t, and t+ 1 as well as the projection matrices Pt+1, Pt, and Pt−1, one can
directly convert the estimated depth values of the reference camera at time t to the corresponding
displacement vectors w.r.t. the forward frame t+ 1 and the backward frame t− 1 (see Figure 6.3)

wst, fw(x, z) = π(Pt+1s̃(x, z))− π(Pts̃(x, z)) , (6.2)

wst, bw(x, z) = π(Pt−1s̃(x, z))− π(Pts̃(x, z)) . (6.3)

6 .1 .4 .2 H ierarchical Matching

With the depthparametrization at hand,we now turn to the actualmatching to determine z.While
applying the classical PatchMatch approach [25] directly to the problem yields noisy results due to
non-existent explicit regularization, we resort to the idea of integrating a hierarchical coarse-to-fine
scheme, which has shown to be less prone to noise in the context of motion estimation [85].

As in [85]wedonot estimate the unknowns for all pixel locations, but formultiple collections of
ns seedsS l = {slm|m ∈ { 1, . . . , ns}} that we define on each resolution level l ∈ {0, 1, . . . , k−
1} of the coarse-to-fine pyramid. While the number of seeds remains the same for each resolution
level, their spatial locations are given by

x(slm) = ⌊η · x(sl−1m )⌉ for l ≥ 1 , (6.4)

where ⌊·⌉ is a function that returns the nearest integer value, and η = 0.5 is the employed down-
sampling factor between two consecutive pyramid levels. Furthermore, the locations for l = 0 (full
image resolution) are located at the cross points of a regular image grid with a spacing of 3 pixels
and come with the default neighborhood system, defined via the spatial adjacency. In addition,
these neighborhood relations remain fixed throughout the coarse-to-fine pyramid, also for seeds
whose locations coincide on lower resolution levels.

We then perform the matching in the traditional coarse-to-fine manner: Starting at the coarsest
resolution, we process each level by iteratively performing a random search and a neighborhood
propagation as in [25].While the coarsest level uses a random initialization of the unknown depth,
the subsequent levels are initialized with the depth values of the corresponding seeds of the next
coarser level. Furthermore, the search radius for the random sampling is reduced exponentially
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throughout the coarse-to-fine pyramid, such that the random search is restricted to values near the
current best depth estimate.

6 .1 .4 .3 Cost Computation and Temporal Averaging / Selection

Since we consider three images, there are several possibilities on how to compute thematching cost
betweenmultiple corresponding patches. One possible choice is to compute all pairwise similarity
measures to the reference patch and average the costs. While this renders the estimation more
robust if the actual 3D point is visible in all views, it may lead to deteriorated results in case of
occlusions. To deal with this, one can apply the idea of temporal selection [98] and compute all
pairwise similarity measures w.r.t. the reference patch, but only consider the lowest pairwise cost
as overall cost. Thereby it can be ensured that, as long as the reference patch is visible in at least
one additional view, the correct correspondence retains a small cost, even in case it is occluded in
the remaining ones (see Figure 6.2 right). In our experiments, we use both approaches, temporal
averaging and temporal selection.
Finally, we utilize SIFT descriptors [85, 112, 114] to compute the similarity between two corre-

sponding locations. This choice also renders the matching more robust than operating directly on
the intensity values. Regarding the cost function, we follow [85] and apply a robustL1-loss. The
resulting forward and backward structure matching costsCt+1 andCt−1 are then given by

Ct+1(x, z(x)) = |fSIFT(π(Pt+1s̃(x, z))− fSIFT(π(Pts̃(x, z))|1 , (6.5)

Ct−1(x, z(x)) = |fSIFT(π(Pt−1s̃(x, z))− fSIFT(π(Pts̃(x, z))|1 , (6.6)

where fSIFT denotes the SIFT-feature and |·|1 is theL1-norm. The corresponding temporal aver-
aging and temporal selection costs read

Caveraging(x, z) =
1

2
(Ct+1(x, z) + Ct−1(x, z)) , (6.7)

Cselection(x, z) = min(Ct+1(x, z), Ct−1(x, z)) . (6.8)

6.1 .4 .4 Outlier Handling

Finally, we extend the standard bi-directional consistency check to our three-view setting. There-
fore, we not only estimate the depth values with frame t as the reference view but also with the
other two frames t+1 and t−1 as the reference views. This yields three depthmap estimates from
the different views, i.e., zt−1, zt, and zt+1. Then we take the estimated depth value zt at frame t,
project it into the frames t + 1 and t − 1, take the estimated depth values zt+1 and zt−1 there,
and project them back to frame t. Finally, we consider the depth values zt(x) to be valid for which
at least one of the two back projections maps to the starting point. This process can be formalized
as follows: first, we compute the discrepancies

∆t+1 :=
∣∣π
(
Pts̃t+1

(
π(Pt+1s̃(x, z))︸ ︷︷ ︸

=:xt+1

, zt+1

))
− x

∣∣ , (6.9)

∆t−1 :=
∣∣π
(
Pts̃t−1

(
π(Pt−1s̃(x, z))︸ ︷︷ ︸

=:xt−1

, zt−1
))

− x
∣∣ , (6.10)
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and second, we check if the discrepancies fall below a certain threshold τ that allows us to account
for minor inaccuracies

zt,valid =

{
valid, min(∆t−1,∆t+1) < τ.

not valid, otherwise.
. (6.11)

Finally, for all the valid depth values, we can compute the forward/backward structure matches
from zt(x) via Equation 6.2 and Equation 6.3.

6.1 .5 Combining Matches

At this point, we have computed filtered forward and backward structure matches from frame
t to frames t + 1 and t − 1. For the sake of clarity let us denote these matches by wst, fw and
wst, bw. Moreover, as indicated in Figure 6.1 we also computed the corresponding forward and
backward optical flowmatches between the same frames with a hierarchical PatchMatch approach
for unconstrained motion [85]. These optical flow matches underwent a classical bi-directional
consistency check to remove outliers (which requires to additionally computematches from frames
t+ 1 and t− 1 to frame t), let us denote them bywof, fw andwof, bw.

The goal of the combination step is now to fuse these fourmatches in a way such that rigid parts
of the scene can benefit from the structure matches. Thereby one has to keep in mind that optical
flowmatches may explain rigid motion, while structure matches are typically wrong in the context
of independent object motion. To avoid using structural matches at inappropriate locations, we
hence propose a conservative approach: We augment the optical flow matches with the matches
obtained from the structure matching. This means that we always keep the match of the forward
flow if it has passed the outlier filtering. Otherwise, however, we consider augmenting the final
matches at this location by the match of the structure matching approach. To decide if we should
consider such a structure match, we propose three different approaches ranging from a permissive
approach to the point of a restrictive approach.

Permissive Approach The first approach is the most permissive approach. It includes
all structure matcheswst, fw that have passed the outlier filtering at locations where no forward
optical flow matchwof, fw is available, see Figure 6.4.

Restrictive Approach The second approach is more restrictive than the previous one.
Instead of including all structure matches, we enforce an additional consistency check. This check
allows reducing the probability of blindly including possibly false matches drastically. To realize it,
we make use of the backward optical flow matchwof, bw. We only consider the forward structure
matchwst, fw, if its backward variantwst, bw is consistent with the backward optical flow match
wof, bw. In case the additional consistency check cannotbeperformed,because the backwardoptical
flowmatch did not pass the outlier filtering, we do not consider the structurematch, see Figure 6.4.

Voting Approach Finally, we propose a voting approach that enforces the additional con-
sistency check as in the restrictive approach but still allows to include structure matches in cases
where we cannot perform the additional consistency check. The decision of whether we should
include such non-checkable structure matches is conducted for each sequence separately. It uses
a voting scheme: All locations, that contain a valid match for the forward, backward and struc-
ture match are eligible to vote. If the structure match is consistent with both the forward and
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Figure 6.4: Illustration showing the different strategies to combine the computedmatches.Top:Color coded
input matches, where white denotes no match. Bottom: Fusion results.

the backward match, we count this as a vote in favor of including non-checkable matches. If the
votes surpass a certain threshold (80% in our experiments), we include all non-checkable structure
matches, see Figure 6.4. This procedure can be seen as a detection scheme that allows identifying
scenes with a large amount of ego-motion. In this case, it might indeed be beneficial to include as
many structure matches as possible.

6.1 .6 Evaluation Part 1

Evaluation Setup To evaluate our new approach, we used the following components
within ourpipeline (cf. Figure 6.1): The pose estimation uses theOpenMVG [123] implementation
of the incremental SfM approach [122], the forward and backward matching employ the coarse-
to-fine PatchMatch (CPM) [85] approach, the structure matching and consistent combination are
performed as described in Subsection 6.1.4 and Subsection 6.1.5, respectively, followed by a robust
interpolation of the combined correspondences (RIC) using [84]. Finally, the inpainted matches
are refined using the order-adaptive illumination-aware refinement method (OIR) as described in
Chapter 5. Except for the refinement, where we optimized [14] the three weighting parameters per
benchmark using the training data (see Section B.4), we used the default parameters.

Benchmarks To evaluate the performance of our approach, we consider the three most pop-
ular benchmarks: the KITTI 2012 [65], the KITTI 2015 [119], and theMPI Sintel [44] benchmark.
These benchmarks exhibit an increasing amountof ego-motion inducedoptical flow.WhileKITTI
2012 consists of pure ego-motion, KITTI 2015 additionally includes the motion of other traffic
participants. Finally, MPI Sintel also contains non-rigid motion from animated characters.

Baseline Tomeasure improvements, we establish a baseline that does not use structure infor-
mation and only relies on forward optical flow matches (CPM). As Table 6.1 shows, our baseline
outperforms most of the related approaches. Only DF+OIR, which we introduced in Chapter 5,
performs slightly better, due to the more advanced matches produced by DiscreteFlow [120].
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Table 6.1: Results for the training datasets of the KITTI 2012 [65] (all pixels), KITTI 2015 [119] (all pixels)
and the MPI Sintel [44] benchmarks (clean render path) in terms of the average endpoint error
(AEE) and the percentage of bad pixels (BP, 3px threshold).

Method KITTI 2012 KITTI 2015 Sintel
name matching inpainting refinement AEE BP AEE BP AEE

related approaches (+ baseline)
CPM-Flow [85] CPM EPIC EPIC 3.00 px 14.58% 7.78 px 22.86% 2.00 px
RIC-Flow [84] CPM RIC OpenCV 2.94 px 10.94% 7.24 px 21.46% 2.16 px
CPM+OIR [8] CPM EPIC OIR 2.78 px 9.68% 7.36 px 19.21% 1.99 px
DF+OIR [8] DF EPIC OIR 2.34 px 9.29% 5.89 px 18.10% 1.91 px
baseline CPM RIC OIR 2.61 px 8.98% 6.82 px 18.70% 1.95 px

only structure matching
two-frame CPMz RIC OIR 2.25 px 9.47% 9.15 px 23.02% 17.09 px
temporal averaging CPMz RIC OIR 1.25 px 6.51% 7.85 px 19.11% 20.68 px
temporal selection CPMz RIC OIR 1.43 px 6.69% 8.06 px 19.52% 15.69 px

only unconstrained matching
backward flow CPM RIC OIR 6.90 px 43.96% 11.57 px 44.12% 4.00 px
forward flow CPM RIC OIR 2.61 px 8.98% 6.82 px 18.70% 1.95 px
combined fw&bw CPM RIC OIR 4.53 px 18.93% 9.54 px 27.42% 2.05 px

combined (temporal selection)
permissive approach CPM/CPMz RIC OIR 1.47px 5.91% 4.95 px 14.12% 2.53 px
restrictive approach CPM/CPMz RIC OIR 1.60 px 6.22% 5.20 px 15.10% 1.88 px
voting approach CPM/CPMz RIC OIR 1.48 px 5.82% 4.91 px 13.95% 1.90 px

combined (temporal averaging)
permissive approach CPM/CPMz RIC OIR 1.30 px 5.71% 4.21 px 13.72% 2.92 px
restrictive approach CPM/CPMz RIC OIR 1.59 px 6.17% 5.04 px 14.97% 1.90 px
voting approach CPM/CPMz RIC OIR 1.30 px 5.67% 4.16 px 13.61% 1.92 px

recent literature
PWC-Net [163] CVPR ’18 4.14 px – 10.35 px 33.67% 2.55 px
FlowNet2 [89] CVPR ’17 4.09 px – 10.06 px 30.37% 2.02 px
UnFlow [118] AAAI ’18 3.29 px – 8.10 px 23.27% –
DCFlow [198] CVPR ’17 – – – 15.09% –
MR-Flow [196] CVPR ’17 – – – 14.09% 1.83 px
Mirror Flow [87] ICCV ’17 – – – 9.98% –

learning approaches (fine tuned)
PWC-Net-ft [163] CVPR ’18 (1.45 px) – (2.16%) (9.80 px) (1.70 px)
FlowNet2-ft [89] CVPR ’17 (1.28 px) – (2.30%) (8.61 px) (1.45 px)
UnFlow-ft [118] AAAI ’18 (1.14 px) – (1.86%) (7.40 px) –

Structure Matching Next,we investigate theperformance ofournovel structurematch-
ing approach on its own. Therefore,we replace thematching approach (CPM) in our baselinewith
three variants of our structurematching approach (CPMz): a two-frame variant, a three-frame vari-
ant with temporal averaging and a three-frame variant with the temporal selection. As the results
in Table 6.1 show, structure matching significantly outperforms the baseline in pure ego-motion
scenes (e.g., KITTI 2012), while it naturally has problems in scenes with independentmotion (e.g.,
MPI Sintel). Moreover, they show that the use of multiple frames pays off. While for the KITTI
benchmarks the robustness of temporal averaging is more beneficial than the occlusion handling
of temporal selection, the opposite holds for the MPI Sintel benchmark. This behavior, in turn,
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6.1 Rigid Motion Model

might be attributed to the fact thatMPI Sintel contains a more considerable amount of occlusions.
Since both strategies have their advantages, we consider both variants for our further evaluation.

Unconstrained Matching Apart from the baseline we also evaluated two additional
variants solely based on unconstrained matching: a variant only using backward matches and a
variant that augments the forward matches with backward matches. In both cases we assume a
constant motion model, i.e.,wof, fw = −wof, bw. The results for the backward flow in Table 6.1
show that such a simplemodel does not allow to leverage useful information to predict the forward
flow. Even the augmented variant does not improve compared to the baseline. Visual exemplary
results for the three benchmarks are given in Figure 6.5 and Figure 6.6.

Combined Approach Let us now turn towards the evaluation of our combined approach.
In this context, we compare the impact of the different combination strategies. As one can see
in Table 6.1, the permissive approach is not an option. While it works well for dominating ego-
motion, it includes toomany false structurematches in case of independent objectmotion, see also
Figure 6.6. In contrast, the restrictive approach prevents the inclusion of false structure matches,
but cannotmake use of the full potential of such structure matches in scenes with dominating ego-
motion. Nevertheless, it already outperforms the baseline significantly and gives the best results for
MPI Sintel. Finally, the voting approach combines the advantages ofboth schemes. It yields the best
results forKITTI2012 and2015with improvements up to 50%compared to thebaseline,while still
offering an improvement w.r.t. MPI Sintel. The examples in Figure 6.5 and Figure 6.6 also confirm
this observation, where we compare the three combination strategies visually. They not only show
the usefulness of including structurematches in occluded areas, but also the importance of filtering
false structurematches in general.Moreover, they show that in contrast to using backwardmatches
in occluded areas, structure matches offer an appropriate motion model to leverage additional
temporal information for the rigid background parts of the scene.

Comparison to the Literature Next, we compare our method to other approaches
from the literature. To this end, we consider both the training and the test data; see Table 6.1,
Table 6.2 and Table 6.3, respectively. Regarding the training data, our method generally yields
better results than recent learning approaches without fine-tuning (PWC-Net [163], FlowNet2
[89], UnFlow [118]). Moreover, it also outperforms DCFlow [198] and MR-Flow [196] on the
KITTI 2015 benchmark.OnlyMirrorFlow [87] (KITTI 2015) andMR-Flow (MPI Sintel) provide
better results than our approach. This excellent performance is also confirmed by the results of
our method for the test data as well, for which we evaluated the approaches that had performed
best on the training data. Here, on KITTI 2012, our method performs favorably (all pixels) even
compared to methods based on pure ego-motion (SPS-Fl, PCBP-Flow, and MotionSLIC) and
semantic information (SDF). Moreover, it also outperforms recent approaches with an explicit
SfM background estimation (MR-Flow) on KITTI 2015. Finally, ranking second and sixth at the
time of submission (Mar. 2018) our method also yields an excellent performance on the clean and
the final render path of the MPI Sintel benchmark, respectively. These results demonstrate that
ourmethod not onlyworks well in the context of pure ego-motion but can also handle a significant
amount of independent object motion.
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Figure 6.5: Example for the KITTI 2012 [65] and KITTI 2015 benchmark [119] (seq. #0 and seq. #186).
First row: Reference frame, subsequent frame, ground truth. Second row: Forward, backward,
and structure matches (depth visualization). Third to seventh row. From left to right: Used
matches (color-coding see Figure 6.4), final result, error visualization. From top to bottom: Base-
line, combined forward and backward matches (constant motion model), permissive approach
(rigid motionmodel), restrictive approach (rigid motionmodel), voting approach (rigid motion
model). Remaining rows: Same as for the previous rows.

124
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Figure 6.6: Example for the MPI Sintel benchmark [44] (ambush5 #44). First row:Reference frame, sub-
sequent frame, ground truth. Second row: Forward, backward, and structure matches (forward
match visualization). Following rows. From left to right: Used matches (color-coding see Fig-
ure 6.4), final result, bad pixel visualization. From top to bottom: Baseline, combined forward
and backward matches (constant motion model), permissive approach (rigid motion model),
restrictive approach (rigid motion model), voting approach (rigid motion model).

6.1 .7 Evaluation Part 2

In addition to the experiments in the previous section, we next conduct several experiments re-
garding individual benefits of parameter settings, design choices, and components.

Fixed Parameter Set In the following experiment, we investigate how the results change
when not optimizing the refinement parameters individually for each benchmark. To this end,
we considered the voting approach with temporal averaging and conducted an experiment on the
training data with all parameters fixed. As Table 6.4 shows the results hardly deteriorate when
using a single parameter set for all benchmarks.

Pose Estimation So far we used all available frames of the image sequence for the pose
estimation jointly in our experiments. To investigate the impact of this choice on the final result,
we consider an additional variant: A minimal three-frame variant that uses only the three frames
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Table 6.2: Top 10 non-anonymous optical flow methods and methods presented in this thesis on the test
data of the KITTI 2012/2015 [65, 119] at the time of submission (Mar. 2018), excluding scene
flowmethods. The presented approach is highlighted in red. Themethods presented inChapter 5
(DF+OIR), Section 4.1 (SODA-Flow) and Section 4.2 (OAR-Flow) are highlighted in blue.

KITTI 2012 Out-Noc Out-All Avg-Noc Avg-All

SPS-Fl1 [200] 3.38% 10.06% 0.9 px 2.9 px
PCBP-Flow1 [201] 3.64% 8.28% 0.9 px 2.2 px
SDF2 [19] 3.80% 7.69% 1.0 px 2.3 px
MotionSLIC1 [201] 3.91% 10.56% 0.9 px 2.7 px
our approach 4.02% 6.15% 1.0 px 1.5 px
PWC-Net [163] 4.22% 8.10% 0.9 px 1.7 px
UnFlow [118] 4.28% 8.42% 0.9 px 1.7 px
MirrorFlow [87] 4.38% 8.20% 1.2 px 2.6 px
ImpPB+SPCI [154] 4.65% 13.47% 1.1 px 2.9 px
CNNF+PMBP [212] 4.70% 14.87% 1.1 px 3.3 px

DF+OIR [8] 5.17% 10.43% 1.1 px 2.9 px
SODA-Flow [10] 5.57% 10.71% 1.3 px 2.8 px
OAR-Flow [9] 5.69% 10.72% 1.4 px 2.8 px

KITTI 2015 Fl-bg Fl-fg Fl-all

PWC-Net [163] 9.66% 9.31% 9.60%
MirrorFlow [87] 8.93% 17.07% 10.29%
SDF2 [19] 8.61% 23.01% 11.01%
UnFlow [118] 10.15% 15.93% 11.11%
CNNF+PMBP [212] 10.08% 18.56% 11.49%
our approach 9.66% 22.73% 11.83%
MR-Flow2 [196] 10.13% 22.51% 12.19%
DCFlow [198] 13.10% 23.70% 14.86%
SOF2 [156] 14.63% 22.83% 15.99%
JFS2 [86] 15.90% 19.31% 16.47%

DF+OIR [8] 15.11% 23.45% 16.50%
SODA-Flow [10] 20.01% 29.14% 21.53%
OAR-Flow [9] 20.62% 27.67% 21.79%

1 uses epipolar geometry as a hard constraint, only applicable to pure ego-motion
2 exploits semantic information

Table 6.3: Top 10 non-anonymous optical flow methods and methods presented in this thesis on the test
data of the MPI Sintel benchmark [44] at the time of submission (Mar. 2018) in terms of the
average endpoint error. The presented approach is highlighted in red. The methods presented in
Chapter 5 (DF+OIR) and Section 4.2 (OAR-Flow) are highlighted in blue.MPI Sintel clean all matched unmatched

MR-Flow2 [196] 2.527 px 0.954 px 15.365 px
our approach 2.910 px 1.016 px 18.357 px
FlowFields+ [21] 3.102 px 0.820 px 21.718 px
CPM2 [111] 3.253 px 0.980 px 21.812 px
MirrorFlow [87] 3.316 px 1.338 px 19.470 px
DF+OIR [8] 3.331 px 0.942 px 22.817 px
S2F-IF [203] 3.500 px 0.988 px 23.986 px
SPM-BPv2 [110] 3.515 px 1.020 px 23.865 px
DCFlow [198] 3.537 px 1.103 px 23.394 px
RicFlow [84] 3.550 px 1.264 px 22.220 px

– – – –
OAR-Flow [9] 6.227 px 2.760 px 34.455 px

MPI Sintel final all matched unmatched

PWC-Net [163] 5.042 px 2.445 px 26.221 px
DCFlow [198] 5.119 px 2.283 px 28.228 px
FlowFieldsCNN [22] 5.363 px 2.303 px 30.313 px
MR-Flow2 [196] 5.376 px 2.818 px 26.235 px
S2F-IF [203] 5.417 px 2.549 px 28.795 px
our approach 5.466 px 2.683 px 28.147 px
InterpoNet_ff [219] 5.535 px 2.372 px 31.296 px
RicFlow [84] 5.620 px 2.765 px 28.907 px
InterpoNet_cpm [219] 5.627 px 2.594 px 30.344 px
ProbFlowFields [181] 5.696 px 2.545 px 31.371 px

DF+OIR [8] 5.862 px 2.864 px 30.303 px
OAR-Flow [9] 8.179 px 4.578 px 37.525 px

1 uses epipolar geometry as a hard constraint, only applicable to pure ego-motion
2 exploits semantic information

Table 6.4: Impact of refinement parameter optimization (temporal averaging setting).

method KITTI 2012 KITTI 2015 Sintel
name parameters AEE BP AEE BP AEE
voting approach individually optimized 1.30 px 5.67% 4.16 px 13.61% 1.92 px
voting approach single parameter set 1.31 px 5.70% 4.16 px 13.70% 1.93 px
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of the structure matching step and computes the three relative poses independently from all the
other frames in a sliding window fashion. Please note in this context that the advantages and
drawbacks of the two choices are quite complimentary. While the full-sequence approach may
offer benefits for smooth sequences with small motion, the three-frame approach is less likely to
propagate problems with estimating single poses to all frames. As one can see from Table 6.5, the
performance even slightly improves in case of the permissive and the restrictive approach when
considering only three frames. In case of the voting approach, such a gain is only observed for the
KITTI benchmarks.

Variational Refinement Finally, we investigate the impact of the variational refine-
ment on the results of the baseline and of our SfM-aware PatchMatch approach. As one can see
from Table 6.6, the variational refinement yields a consistent improvement of the results for all
benchmarks and all methods.

Runtime On average, the runtime of our pipeline excluding the pose estimation is 32s for
one frame of size 1024×436 (MPI Sintel) using three cores on an Intel®Core™ i7-7820X CPU@
3.6GHz,which splits into 5.5smatching (incl. outlier filtering),<0.1s combination, 1.5s inpainting,
and 25s refinement. The pose estimation run on the entire image sequence takes 83s for a sequence
with 50 frames. The three-frame-variant needs 6s per frame which sums up to 300s for the entire
sequence. This demonstrates that a three-frame approach is a valid option regarding the estimation
quality when a sequential computation of the frames is required. However, it also shows that from
a computational viewpoint, the full-sequence approach is the better alternative.

Table 6.5: Impact of using a different numberof frames for the pose estimation on the results for the training
datasets of the KITTI 2012 [65] (all pixels), KITTI 2015 [119] (all pixels) and theMPI Sintel [44]
benchmarks (clean render path) in terms of the average endpoint error (AEE) and the percentage
of bad pixels (BP, 3px threshold).

method KITTI 2012 KITTI 2015 Sintel
name # frames used for pose estimation AEE BP AEE BP AEE

baseline – 2.61 px 8.98 6.82 18.70 1.95

our approach (temporal selection)
permissive approach 3 frames 1.42 px 5.58% 4.81 px 13.79% 2.24 px
permissive approach complete sequence 1.47 px 5.91% 4.95 px 14.12% 2.53 px
restrictive approach 3 frames 1.59 px 6.04% 5.10 px 15.00% 1.87 px
restrictive approach complete sequence 1.60 px 6.22% 5.20 px 15.10% 1.88 px
voting approach 3 frames 1.42 px 5.60% 4.78 px 13.78% 1.92 px
voting approach complete sequence 1.48 px 5.82% 4.91 px 13.95% 1.90 px

our approach (temporal averaging)
permissive approach 3 frames 1.28 px 5.47% 4.09 px 13.45% 2.43 px
permissive approach complete sequence 1.30 px 5.71% 4.21 px 13.72% 2.92 px
restrictive approach 3 frames 1.57 px 6.00% 5.05 px 14.86% 1.88 px
restrictive approach complete sequence 1.59 px 6.17% 5.04 px 14.97% 1.90 px
voting approach 3 frames 1.30 px 5.52% 4.07 px 13.41% 1.98 px
voting approach complete sequence 1.30 px 5.67% 4.16 px 13.61% 1.92 px
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Table 6.6: Impact of the variational refinement [8] on the results for the training datasets of the KITTI
2012 [65] (all pixels), KITTI 2015 [119] (all pixels) and the MPI Sintel [44] benchmarks (clean
render path) in terms of the average endpoint error (AEE) and the percentage of bad pixels (BP,
3px threshold).

method KITTI 2012 KITTI 2015 Sintel
name matching inpainting refinement AEE BP AEE BP AEE

baseline CPM RIC – 2.89 px 9.73% 7.20 px 19.96% 2.25 px
baseline CPM RIC OIR 2.61 px 8.98% 6.82 px 18.70% 1.95 px

combined (temporal selection)
permissive approach CPM/CPMz RIC – 1.71 px 6.20% 5.29 px 14.76% 2.82 px
permissive approach CPM/CPMz RIC OIR 1.47 px 5.91% 4.95 px 14.12% 2.53 px
restrictive approach CPM/CPMz RIC – 1.84 px 6.56% 5.53 px 15.91% 2.11 px
restrictive approach CPM/CPMz RIC OIR 1.60 px 6.22% 5.20 px 15.10% 1.88 px
voting approach CPM/CPMz RIC – 1.72 px 6.13% 5.25 px 14.64% 2.13 px
voting approach CPM/CPMz RIC OIR 1.48 px 5.82% 4.91 px 13.95% 1.90 px

combined (temporal averaging)
permissive approach CPM/CPMz RIC – 1.55 px 6.06% 4.58 px 14.58% 3.25 px
permissive approach CPM/CPMz RIC OIR 1.30 px 5.71% 4.21 px 13.72% 2.92 px
restrictive approach CPM/CPMz RIC – 1.84 px 6.53% 5.39 px 15.82% 2.13 px
restrictive approach CPM/CPMz RIC OIR 1.59 px 6.17% 5.04 px 14.97% 1.90 px
voting approach CPM/CPMz RIC – 1.55 px 5.99% 4.53 px 14.46% 2.14 px
voting approach CPM/CPMz RIC OIR 1.30 px 5.67% 4.16 px 13.61% 1.92 px

Figure 6.7: Example sequences of the KITTI 2012/2015 [65, 119] andMPI Sintel benchmarks [44] that do
not allow to estimate a pose using the applied pose estimation [122, 123].

6.1 .8 L imitations

The main limitation of our method is its dependency on a reliable pose estimation. Hereby, one
can distinguish two scenarios. In case of a (partially) non-valid pose, the integration of structure
information typically does not pose a problem, since possibly false matches are mostly eliminated
by the additional consistency check that forms the basis of the restrictive approach and the voting
approach; see Figure 6.6. Only if the pose estimation fails completely, i.e., the underlying algorithm
does not provide any pose, we cannot obtain any structure matches. In this case, however, we can
still rely on the forward matches which, in turn, comes down to using the baseline approach. In
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Figure 6.7 we depict example sequences where the pose estimation fails, i.e., a sequence without
ego-motion (camera is stationary), a scene with purely rotational motion (no camera translation)
and a scene with a large-dominant non-rigid foreground object. While it might be possible to
recover the pose in those scenarios using specifically tailored algorithms, we refrained from this
option, since the focus of our method lies on the integration of structure information rather than
on estimating the pose itself.

6.1 .9 Conclusion

In this section, we proposed a multi-frame method by integrating structure information into fea-
ture matching approaches for computing the optical flow. To this end, we developed a hierarchical
depth-parametrized three-frame SfM/stereo PatchMatch approach with a temporal selection and
preceding pose estimation. By adaptively combining the resulting matches with those of a recent
PatchMatch approach for general motion estimation, we obtained a novel SfM-aware method
that benefits from a global rigidity prior, while still being able to estimate independently moving
objects. Experiments not only showed excellent results on all major benchmarks (KITTI 2012,
KITTI 2015, and MPI Sintel), they also demonstrated consistent improvements over a baseline
without structure information. Since our approach addresses the first step of common pipeline
based approaches, it also offers another advantage: incorporating ourmatches as initialization into
other pipeline approaches allows them to easily benefit from them.

6.2 Learned Motion Model

After introducing an approach based on a rigid motion model, we also propose an approach that
allows to adapt the underlying motion model by learning an appropriate model during the esti-
mation. This new strategy allows us to overcome several limitations of the rigid motionmodel and
thus exploit multi-frame information even for independently moving objects, non-ego motion
scenes, and non-rigid motion scenarios. To realize our novel idea we, once more, built upon the
pipeline approach as introduced in the previous chapter (Chapter 5). But before we dive into the
explanation of our novel method, we first take a look at related work.

6.2 .1 Related Work

Multi-Frame Approaches To improve the quality and the robustness of the estimation,
multi-frame strategies typically build upon somemotionmodel that describes how the movement
is expected to change over time. In this context, recent approaches go far beyond a simple constant
velocity model [91, 92, 99, 193] by using constraints based on constant acceleration [28, 160, 179],
parametrized trajectories [64, 144] or a moving camera [6, 196]. Moreover, to avoid a significant
deterioration of the results in case the model turns out to be inappropriate, they typically allow
deviations from the model either by formulating it as a soft constraint [28, 64, 160, 179] or by re-
stricting the estimation to locations where the assumed model is most likely to hold [179, 196].
Compared to most of the methods mentioned above, our method differs in two ways: On the one
hand, our approach does not use hand-crafted or geometric/rigid motion models but learns spa-
tially varying mappings from the backward to the forward flow. On the other hand, our approach
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uses the learned motion models as a hard constraint, i.e., without any filtering and at all locations
where the backward flow provides additional information, e.g., at occlusions.

Regarding the learning ofmotionmodels, two other interesting approaches have been proposed
by Ricco and Tomasi [144] and Garg et al. [64] that learn temporal basis functions for long term
trajectories via PCA frompre-computed tracks and flow fields, respectively.However, in contrast to
these approaches that focus on a robust long termmotion representation toperformdense tracking
and non-rigid video registration, respectively, our new method aims at a short-term optical flow
setting and provides state-of-the-art results for standard optical flow benchmarks.

Since the time of publication [2], others have followed our idea and considered such a multi-
frame setting in the contextof end-to-end learningbasedoptical flowapproaches.However, instead
of modeling explicit motion models these approaches typically simply feed an additional preced-
ing flow field estimate to the network and leave it to the network how to relate and include the
additional information. For example, Ren et al. [142] train a convolutional neural network (CNN)
based fusion network that allows combining two temporal correlated flow fields into a fused flow
field. Similarly, Neoral et al. [126] feed a preceding flow field estimate directly into intermediate
layers of the network as well as additionally estimated occlusion maps.

Learning Approaches Regarding learning approaches for optical flow estimation, one
can distinguish two types ofmethods: entirely learning-basedmethods andpartially learning-based
methods. Entire learning-basedmethods aim at deriving an end-to-end relation between the input
images and the corresponding flow field, typically via one or multiple stacked CNNs [57, 89, 139,
142, 163].While the overall learning process is quite time-consuming and typically requires a large
amount of training data, the learned models allow computing high-quality flow estimates in real-
time [89, 163].Recently, also unsupervised learning approaches have been considered to tackle the
lack of realistic training data; see e.g., [17, 118, 141, 206, 215].They either replace the ground truth
by a proxy ground truth computed withmodern optical flowmethods [215] or they propose a loss
function that does not depend on the ground truth, i.e., by using an image-based registration error
[17, 92, 118, 141, 206, 215] or some smoothness constraint on the solution [92, 118, 141, 206]. Partially
learning-based approaches, on the other hand, are hybrid methods: They seek to combine the
advantages of two worlds. While relying on a transparent global energy minimization framework,
theymake use ofmachine learning techniques to replace some difficult task during themodeling or
the estimation. Such tasks include descriptor learning [22, 61, 162, 198], instance level segmentation
[19], rigidity estimation [196], and semantic scene segmentation [156].Although our approach is
partially-learning-based, since it embeds a CNN into a traditional optical flow pipeline [143], it is
entirely different from all aforementioned learning-based approaches. Not only that the learning
step solves a differentproblem, i.e., it predicts a forward flow fromabackward flow; also the training
itself is completely different. It uses an unsupervised/self-supervised online approach that relies on
initial flow estimates to train the network individually for each frame of the sequence at runtime
instead of training the network once for an entire task based on previously collected set of training
data. In this respect, our approach is also intrinsically different from the unsupervised methods
listed above. Also those methods do not consider the actual frames when training the underlying
network prior to the estimation.
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6.2 .2 Contributions

As mentioned before, the second multi-frame approach we propose in this chapter relies on a
learning-based strategy. Instead of assuming a moving camera with certain rigidity constraints, the
proposed method learns suitable motion models based on a CNN. In this context, our contribu-
tions are fourfold: (i) In contrast to other approaches that train a network before the estimation,
our approach learns themodels online, i.e., during the estimation. (ii)Moreover, instead of relying
on potentially unsuitable data sets with ground truth, our models are trained using initial flow
estimates of the actual sequence. Such an unsupervised/self-supervised training offers the advan-
tage that we can learn appropriate models for each sequence. (iii) Thirdly, our approach not only
learns one model per sequence but one model for each frame of every sequence. This per-frame
learning results in a high degree of adaptability when it comes to a change of the scene content. (iv)
Finally, the learned models are spatially variant, i.e., location dependent. This, in turn, addresses
the problem of independently moving objects.

Having learned such dedicatedmotionmodels eventually enables us to predict the forward flow
from the backward flow. Thus it becomes possible to improve the estimation at locationswhere the
forward flow is not available, e.g., in occluded regions. Experiments make the benefits of our novel
method explicit. They show not only consistent improvements compared to a baseline approach
without prediction but also excellent results for all major benchmarks in general.

6.2 .3 Our Approach

Let us start by giving a brief overview of the proposed method, which we illustrate in Figure 6.8.
Please note that, as in case of the previous rigidmotionmodel approach, ourmethod considers im-
age triplets, i.e., the frames at times t−1, t, and t+1. Compared to classical two-frame approaches,
this additional frame allows to compute the optical flow from the reference frame t not only to the
subsequent frame t+ 1 (forward flow) but also to the previous frame t− 1 (backward flow), see
Figure 6.9. After we have estimated both flow fields with a conventional optical flow approach, we
perform outlier filtering via a bi-directional consistency check. While this requires the additional
computation of flow fields using the reversed frame order, it allows us to identify possibly occluded
image regions. Based on locations where both the forward and the backward flow are available

CNN

initial forward flow
(t → t+ 1)

initial backward flow
(t → t− 1)

outlier filtering

outlier filtering model learning prediction

combination

inpainting & refinement

Figure 6.8: Schematic overview over our proposed approach.
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time t

backward flow

t → t-1

forward flow

t → t+1

Figure 6.9: Sketch illustrating the meaning of forward and backward flow.

after filtering, we then learn a model that allows predicting the forward flow from the backward
flow. To this end, we train a CNN such that it performs a regression from small backward flow
patches to forward flow vectors. Using the trained network, we then predict a new forward flow
field from the filtered backward flow. This prediction provides additional information at those
locations where only the backward flow is given, e.g., at occlusions. Finally, the predicted and the
initial forward flow field are combined such that predictions are used if no initial forward flow is
available. As the last step, we inpaint the combined flow field to obtain dense results and refine it
to improve its accuracy further. Let us now detail on the different steps of the pipeline.

6 .2 .3 .1 Initial Flow Estimation / Baseline

In a first step, we compute the initial forward and backward flow fields, i.e., the flow fields from the
reference frame t to subsequent frame t+ 1 and from reference frame t to previous frame t− 1,
respectively. To this end, we consider once more the baseline approach introduced in the previous
Section 6.1, which builds upon the optical flow pipeline as described in Chapter 5. In particular,
we employ the Coarse-to-fine PatchMatch approach (CPM) of Hu et al. [85] for the matching,
the robust interpolation technique (RIC) of Hu et al. [84] for the inpainting of the matches and
our order-adaptive illumination-aware refinement (OIR) scheme introduced in Chapter 5 for the
final refinement step. Thereby the outlier filtering applied to the initial matches is realized in terms
of a bi-directional consistency check. Please note that this check requires to compute matches in
the reverse direction as well, i.e., from frame t + 1 to frame t and from frame t − 1 to frame t,
respectively. Moreover, note that the described pipeline is only used to compute the initial flow
fields and hence constitutes only one step of the entire optical flow approach, see Figure 6.8.

6.2 .3 .2 Outlier Filtering

After we have computed the initial forward and backward flow fields with our baseline approach,
we apply another outlier filtering step. Analogously to the baseline itself, we again apply the bi-
directional consistency check for the outlier filtering. This time, however, not based on the initial
matches, but rather based on the dense initial flow fields. Therefore, we also need to compute flow
fields in the reverse direction, i.e., from frame t+ 1 to frame t and from frame t− 1 to frame t,
respectively. To this end, we just run our baseline approach on the reverse image sequence. Finally,
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6.2 Learned Motion Model

only those flow vectors are considered valid in the forward and backward flow field which are
consistent with the corresponding vectors in the reverse direction. This check allows eliminating
many outliers, in particular in occluded regions.

6 .2 .3 .3 Learning a Motion Model

Having the filtered forward andbackward flow fields athand, let us nowdiscuss how theunderlying
motion model is learned. The goal of this step is to derive the relation between the backward flow
and the forward flow which enables us to use the backward flow for predicting the forward flow
at locations where the forward flow is not available. Since motion patterns typically vary across
different scenes and frames, we do not use a network that we must train in advance on a vast data
set with ground truth data [22, 89, 163, 198], but we apply an unsupervised/self-supervised learning
approach that trains a CNN during the optical flow estimation – and that individually for each
frame of the sequence. As shown in the work of Galliani et al. [63] in the context of predicting
surface normals for multi-view stereo, such unsupervised/self-supervised learning techniques can
be highly beneficial to densify initially sparse results.

Training Data Extraction The training data required for the learning process is ex-
tracted from the initially computed flow fields after outlier filtering. Thereby, all locations where
both the forward and the backward flow surpassed the outlier filtering serve as potential training
samples. To obtain a reasonably sized and reasonably diverse training set,we sample these potential
samples equidistantly using a grid spacing of 10 pixels. Thereby, the input of each training sample
consists of stacked 7× 7 patches composed of (i) the backward flow components ubw and vbw, (ii)
a validity flag {0, 1} indicating if the location surpassed the outlier filtering step and (iii) thex- and
y-component of the pixel location within the image domain (normalized to [−1, 1] × [−1, 1]).
The stacked forward flow components ufw and vfw give the corresponding output. We illustrate
the whole process in Figure 6.10 (left). Please note that the training data is extracted automatically
per image triplet during the estimation and does not rely on any ground truth information nor
manually labeled training data.

CNN-Based Regression With the extracted training samples we now train a motion
model in terms of a CNNwhich allows us to predict the forward flow solely based on the backward
flow. The input of the network consists of stacked 7 × 7 patches including information on the
backward flow, the validity and the location as described in the previous paragraph. The output of
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Figure 6.10: Left:Training sample extraction. Right:Regression network architecture.
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predicted forward flowinitial forward flow combined

Figure 6.11: Illustration showing the combination step.

the network is the predicted forward flow for the center location of the input patch. By considering
not only the backward flows in the input patch but also the corresponding image coordinates, the
network is enabled to learn a location-dependentmodel. This aspect is particularly important, since
motion patterns may locally vary due to independently moving objects, non-rigid deformations
as well as perspective effects.
Let us now detail on to the architecture and the training process of our regression network.

As loss function, we minimize the absolute difference of the predicted flow vector and the actual
forward flow vector. Thereby, we keep the network architecture simple, since it has to be trained
online for each frame of the sequence: it consists of 2 convolutional layers each with 16 kernels of
window size 3× 3 and a fully connected layer with a 2-vector output, which represents the desired
predicted forward flow vector, as illustrated in Figure 6.10 (right). As non-linearities we employed
ReLUs [125].The network is implemented in the TensorFlow framework [15] and trained using
the ADAM optimizer [100]with an exponential learning rate decay. The initial learning rate is set
to 0.01 and decays every 200 steps with a base of 0.8. Using the described network and learning
scheme 4000 steps were sufficient to train the network.

6 .2 .3 .4 Combination and Final Estimation

After learning the motion model in terms of a CNN, we can use it to predict a new forward flow
based on the filtered backward flow. The predicted flow vectors can then be employed to augment
the filtered initial forward flow at those locations where no flow vectors are present, as illustrated
in Figure 6.11. Since the combined flow field is not dense – at some locations neither forward nor
backward flow vectors are available – we finally perform inpainting and refinement with the same
techniques as in our baseline; i.e, we use RIC [84] and OIR (Chapter 5, [8]).

6.2 .4 Evaluation

To investigate the benefit of our new optical flow approach, which we named ProFlow (predict
optical flow), we consider as before the training data sets as well as the test data sets of the threemost
popular optical flow benchmarks: the KITTI 2012 benchmark [65], the KITTI 2015 benchmark
[119] and the MPI Sintel benchmark [44].

Parameter Setting Regarding the parameters of the used approaches (CPM,RIC,OIR),
we used the default parameters as provided by the authors [84, 85, 8]. Consequently, the same set
of parameter is used for all benchmarks in case of the matching (CPM) and inpainting (RIC), only
in case of the variational refinement (OIR) a different set of parameters is used per benchmark.
An exception is given for the results of the Robust Vision Challenge. Here, also a single set of
parameters is used for the variational refinement (OIR), see Section B.4.
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6.2 Learned Motion Model

Figure 6.12: Example for the KITTI 2015 benchmark [119] (seq. #149). First row: Previous, reference and
subsequent frame. Second and third row: Estimated flow field, bad pixel visualization. From left
to right: Baseline, constant motion model and our approach.

Learned vs. Constant Model In our first experiment,we compare our learnedmotion
model with the constant motion model that is frequently used in the literature; see e.g., [91, 92,
99, 193].This model assumes the forward flowwfw and the backward flowwbw relate viawfw =
−wbw. As already mentioned, this model can be a reasonable approximation in case of slowly
moving objects [91], but it typically does not hold for fast or complex motion scenarios [179, 193].
Furthermore, please note that due to the projection involved in the optical flow, such a constant
motion model does not represent an actual constant 3D motion unless the motion is parallel to
the image plane. For our comparison, we computed the results for the training data sets of all
three benchmarks using our approach as well as a modified version, where we omitted the model
learning part and directly applied the constant motion model for the prediction. In Table 6.7 (full
model) we listed the outcome of both approaches. As one can see, using the constant model for
predicting the optical flow does not work well for the challenging benchmarks and even leads to a
strong deterioration of the results compared to the baseline. Our approach, in contrast, learns an
appropriate motion model and consistently achieves improvements ranging from 8 to 27 percent.
The visual comparison in Figure 6.12, Figure 6.13, and Figure 6.14 confirms this observation. All
these figures show the three input frames, the computed flow field and an error visualization for
one sequence of the KITTI 2015 benchmark and two sequences of the MPI Sintel benchmark,
respectively. While Figure 6.12 makes the quantitative gains for the KITTI benchmark explicit,
Figure 6.13 and Figure 6.14 show that our approach also allows obtaining improvements in case
of non-rigid motion (fingers) and illumination changes (head of the dragon).

Only Prediction To further investigate the quality of the predicted flow fields, we per-
formed a second experiment, where we skipped the combination step and only used the predicted
flow to compute the final flow estimate. Thereby we computed the final estimate in two ways:
once by solely inpainting the predicted flow field, i.e., without refinement, and oncewith the entire
pipeline, i.e., with inpainting and refinement.We listed the outcome in Table 6.7 (only prediction).
As one can see, in case of the KITTI 2012 and the KITTI 2015 benchmark, the pure prediction
variant even outperforms our baseline. This observation not only confirms the high quality and re-
liability of our learnedmotionmodels but also reveals that due to the dominating forwardmotion
in the benchmark many occlusions appear at the image boundaries and hence can be resolved by
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Table 6.7: Results for the training data sets of the KITTI 2012 benchmark [65], the KITTI 2015 benchmark
[119] and the MPI Sintel benchmark [44] (clean render path) in terms of the average endpoint
error (AEE) and the percentage of bad pixels (BP) with a 3px threshold.

method KITTI 2012 KITTI 2015 Sintel
model AEE BP AEE BP AEE

baseline – 2.61 px 8.98% 6.82 px 18.70% 1.95 px

only prediction
without refinement constant 7.99 px 57.13% 12.81 px 52.19% 5.32 px
with refinement constant 7.07 px 45.07% 12.23 px 46.15% 4.97 px
without refinement learned 2.27 px 7.79% 5.87 px 17.42% 2.93 px
with refinement learned 1.83 px 7.44% 5.37 px 16.98% 2.29 px

full model
our approach constant 4.07 px 16.33 % 8.53 px 23.23 % 2.82 px
our approach learned 1.89 px 7.26% 5.22 px 16.25% 1.78 px

recent literature
PWC-Net [163] CVPR ’18 4.14 px – 10.35 px 33.67% 2.55 px
FlowNet2 [89] CVPR ’17 4.09 px – 10.06 px 30.37% 2.02 px
UnFlow [118] AAAI ’18 3.29 px – 8.10 px 23.27% –
DCFlow [198] CVPR ’17 – – – 15.09% –
MR-Flow [196] CVPR ’17 – – – 14.09% 1.83 px
Mirror Flow [87] ICCV ’17 – – – 9.98% –

learning approaches (fine tuned)
PWC-Net-ft[163] CVPR ’18 (1.45 px) – (2.16 px) (9.80%) (1.70 px)
FlowNet2-ft [89] CVPR ’17 (1.28 px) – (2.30 px) (8.61%) (1.45 px)
UnFlow-ft [118] AAAI ’18 (1.14 px) – (1.86 px) (7.40 px) –

considering information from the preceding frame. The more challengingMPI Sintel benchmark,
in contrast, does not contain such a high regularity of the presentmotion. Nevertheless, also, in this
case, the learned prediction is still able to achieve reasonable results. For the sake of completeness,
we also computed predictions based on the constant motion model. However, as one can see, the
constant model does not allow to achieve nearly as good results as the learned approach.

Comparison to the Literature In our second to last experiment, we compare the
performance of our novel optical flow approach to other methods from the literature. To this end,
we consider both the training and the test data sets. In case of the training data we added results of
recent methods to Table 6.7 (recent literature). While, our method generally yields better results
than recent learning approaches without fine-tuning (PWC-Net [163], FlowNet2 [89],UnFlow
[118]) and even outperforms all other approaches on the MPI Sintel benchmark, it scores slightly
worse compared to the non-learning based methods on the KITTI 2015 benchmark. Regarding
the test data sets, we submitted results to all three benchmarks. The results are shown in Table 6.8
andTable 6.9, where we have listed the ten best performing non-anonymous optical flowmethods
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6.2 Learned Motion Model

Figure 6.13: Improvements for non-rigid motion (MPI Sintel benchmark [44], ambush7 #9). First row:
Previous, reference and subsequent frame. Second and third row: Estimated flow field, bad pixel
visualization. From left to right: Baseline, constant motion model and our approach.

Figure 6.14: Improvements in case of illumination changes (MPI Sintel benchmark [44] market5 #8). First
row: Previous, reference and subsequent frame. Second and third row: Estimated flow field, bad
pixel visualization. From left to right: Baseline, constant motion model and our approach.

at the time of submission (Apr. 2018) for each benchmark. In case of KITTI 2012 our approach
ranks the eighth w.r.t. the bad pixel error accounting only for pixels in non-occluded areas (Out-
Noc). Since ourmethod aims at improving the estimation in occluded areas, however, the bad pixel
measure considering all pixels (Out-All) is more informative. Here, our approach ranks second. In
case of the more challenging KITTI 2015 benchmark, we also rank eighth. However, on the most
challenging anddiverse benchmark, theMPI Sintel benchmark,we rank first in the final and second
in the clean render path. In particular, in the significantly more challenging final render path, we
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Table 6.8: Top 10non-anonymous optical flowmethods andmethods presented in this thesis on the test data
of the KITTI 2012 benchmark [65] and the KITTI 2015 benchmark [119] at time of submission
(Apr. 2018), excluding scene flow methods. The presented method is highlighted in red. The
methods presented in Section 6.1 (rigidmotionmodel),Chapter 5 (DF+OIR),Section4.1 (SODA-
Flow) and Section 4.2 (OAR-Flow) are highlighted in blue.

KITTI 2012 Out-Noc Out-All Avg-Noc Avg-All

SPS-Fl1 [200] 3.38% 10.06% 0.9 px 2.9 px
PCBP-Flow1 [201] 3.64% 8.28% 0.9 px 2.2 px
SDF2 [19] 3.80% 7.69% 1.0 px 2.3 px
MotionSLIC1 [201] 3.91% 10.56% 0.9 px 2.7 px
PWC-Net [163] 4.22% 8.10% 0.9 px 1.7 px
UnFlow [118] 4.28% 8.42% 0.9 px 1.7 px
MirrorFlow [87] 4.38% 8.20% 1.2 px 2.6 px
our approach 4.49% 7.88% 1.1 px 2.1 px
ImpPB+SPCI [154] 4.65% 13.47% 1.1 px 2.9 px
CNNF+PMBP [212] 4.70% 14.87% 1.1 px 3.3 px

rigid motion model 4.02% 6.15% 1.0 px 1.5 px
DF+OIR [8] 5.17% 10.43% 1.1 px 2.9 px
SODA-Flow [10] 5.57% 10.71% 1.3 px 2.8 px
OAR-Flow [9] 5.69% 10.72% 1.4 px 2.8 px

KITTI 2015 Fl-bg Fl-fg Fl-all

PWC-Net [163] 9.66% 9.31% 9.60%
MirrorFlow [87] 8.93% 17.07% 10.29%
SDF2 [19] 8.61% 23.01% 11.01%
UnFlow [118] 10.15% 15.93% 11.11%
CNNF+PMBP [212] 10.08% 18.56% 11.49%
MR-Flow2 [196] 10.13% 22.51% 12.19%
DCFlow [198] 13.10% 23.70% 14.86%
our approach 13.86% 20.91% 15.04%
SOF2 [156] 14.63% 22.83% 15.99%
JFS2 [86] 15.90% 19.31% 16.47%

rigid motion model 9.66% 22.73% 11.83%
DF+OIR [8] 15.11% 23.45% 16.50%
SODA-Flow [10] 20.01% 29.14% 21.53%
OAR-Flow [9] 20.62% 27.67% 21.79%

1 uses epipolar geometry as a hard constraint, only applicable to pure ego-motion
2 exploits semantic information

Table 6.9: Top 10non-anonymous optical flowmethods andmethods presented in this thesis on the test data
of the MPI Sintel benchmark [44] at time of submission (Apr. 2018). The presented method
is highlighted in red. The methods presented in Section 6.1 (rigid motion model), Chapter 5
(DF+OIR), and Section 4.2 (OAR-Flow) are highlighted in blue.

MPI Sintel final all matched unmatched

our approach 5.017 px 2.596 px 24.736 px
PWC-Net [163] 5.042 px 2.445 px 26.221 px
DCFlow [198] 5.119 px 2.283 px 28.228 px
FlowFieldsCNN [22] 5.363 px 2.303 px 30.313 px
MR-Flow2 [196] 5.376 px 2.818 px 26.235 px
S2F-IF [203] 5.417 px 2.549 px 28.795 px
InterpoNet_ff [219] 5.535 px 2.372 px 31.296 px
RicFlow [84] 5.620 px 2.765 px 28.907 px
InterpoNet_cpm [219] 5.627 px 2.594 px 30.344 px
ProbFlowFields [181] 5.696 px 2.545 px 31.371 px

rigid motion model 5.466 px 2.683 px 28.147 px
DF+OIR [8] 5.862 px 2.864 px 30.303 px
OAR-Flow [9] 8.179 px 4.578 px 37.525 px

MPI Sintel clean all matched unmatched

MR-Flow2 [196] 2.527 px 0.954 px 15.365 px
our approach 2.818 px 1.027 px 17.428 px
FlowFields+ [21] 3.102 px 0.820 px 21.718 px
CPM2 [111] 3.253 px 0.980 px 21.812 px
MirrorFlow [87] 3.316 px 1.338 px 19.470 px
DF+OIR [8] 3.331 px 0.942 px 22.817 px
S2F-IF [203] 3.500 px 0.988 px 23.986 px
SPM-BPv2 [110] 3.515 px 1.020 px 23.865 px
DCFlow [84] 3.537 px 1.103 px 23.394 px
RicFlow [84] 3.550 px 1.264 px 22.220 px

rigid motion model 2.910 px 1.016 px 18.357 px
– – – –
OAR-Flow [9] 6.227 px 2.760 px 34.455 px

1 uses epipolar geometry as a hard constraint, only applicable to pure ego-motion
2 exploits semantic information

not only obtain the best result but also obtain the lowest error in occluded areas (unmatched) –
even outperformingmodernmulti-framemethods such asMR-Flow [196] that combine geometric
constraints with a semantic rigidity segmentation. These results show that in particular in difficult
scenes with partially non-rigid motion, learned temporal models might be a worthwhile strategy.
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Table 6.10: Optical flow leaderboard of the Robust Vision Challenge (Jun. 2018). Numbers in parentheses
denote the rank on the respective benchmark w.r.t. all published methods based on the default
error measures.

method overall rank Middlebury [23] KITTI [119] Sintel [44] HD1K [103]

PWC-Net_ROB [163, 165] 1 2 ( 35) 2 (11) 2 ( 2/ 32) 1
our approach 2 1 ( 14) 5 (18) 1 ( 3/ 2) 3

LFNet_ROB 3 6 (106) 1 ( 8) 5 ( 34/ 54) 4
AugFNG_ROB 4 8 (109) 3 (27) 3 ( 17/ 21) 2
FF++_ROB [153] 4 3 ( 64) 4 (19) 4 ( 49/ 35) 5
DMF_ROB [191] 6 4 ( 79) 7 (66) 6 ( 68/ 63) 7
ResPWCR_ROB 6 5 ( 88) 6 (24) 7 ( 50/ 69) 6
WOLF_ROB 8 7 (105) 8 (76) 8 ( 97/102) 8
TVL1_ROB 9 9 (116) 9 (80) 9 (125/121) 9
H+S_ROB 10 10 (134) 10 (83) 10 (137/135) 10

# methods – 10 (151) 10 (87) 10 (144/144) 10

Robust Vision Challenge The increasing availability of benchmarks has not only lead
to tremendous progress in computer vision but has also enabledus to compare the results of dozens
of methods easily. However, often this steady progress is made on each individual benchmark,
i.e., it is limited to a specific domain/benchmark, and the state-of-the-art methods often do not
perform well on different datasets without a substantial adaption of the model parameters. To
tackle this issue and foster the development of algorithms that are robust and perform well on
a variety of diverse datasets the Robust Vision Challenge1 was held in June 2018. The task of
the optical flow category was to apply a method using the same parameter setting/model to four
different benchmarks: the MPI Sintel benchmark [44], the KITTI 2015 benchmark [119], the
HD1K benchmark [103], and the Middlebury benchmark [23].

Toparticipate in the challenge,we only had to choose a fixed set of parameters for the refinement,
since the other parameters already had been fixed across all benchmarks. Hence, we computed a
parameter set by minimizing the BP error on a subset of the provided training data. Table 6.10
shows the final leaderboard of the Robust Vision Challenge. As one can see, we ranked second
place with the best performance on theMPI Sintel andMiddlebury benchmark. Solely in the two
automotive benchmarks, i.e., KITTI 2015 andHD1K benchmark, which exhibit a high regularity,
we trail the end-to-end learning approaches. Furthermore, we also listed the rank of the methods
on the respective benchmarks w.r.t. all published methods (based on the default error measures)
in parentheses. These results demonstrate nicely that our presented approach yields an excellent
performance across different domains without the need for a specific parameter adaptation.

Runtime Running our approach on a desktop PC equipped with an Intel Core i7-7820X
CPU@ 3.60GHz and an Nvidia GeForce GTX 1070 the runtime is approximately 112s for a flow
field of size 1226×370. The overall runtime splits up into: 36s for the initial flow field estimation,
50s for the motion model learning (CNN training) and prediction, and another 26s for the final
inpainting and refinement.

1http://www.robustvision.net
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Figure 6.15: Limitations example (KITTI 2015 benchmark [119], seq. #0). First row:Overlayed reference
and subsequent input frame, final flow estimate, bad pixel visualization. Second row: Filtered
forward flow, filtered backward flow, possible training candidates (white).

6.2 .5 L imitations

Finally, we also want to comment on the limitations of our approach. In the case of large image
regions that only contain poor or possibly no training samples, the validity of the learned motion
model may not be able to generalize to the entire image domain. In Figure 6.15 such a scenario is
depicted. Due to the missing training samples at the bottom corners of the image, the prediction
cannot achieve a noticeable improvement in these areas. This problem, however, could be resolved
by additionally using geometric constraints in terms of a rigid motion model. Hence, we believe
that combining our learning based approach with such a model could even allow for further im-
provements – at least in case of rigid scenes with a vast amount of ego-motion, such as the KITTI
2012 and the KITTI 2015 benchmark.

6.2 .6 Conclusions

In this section, we presented a novel multi-frame optical flow approach that integrates flow pre-
dictions based on a CNN. To this end, we made use of an unsupervised/self-supervised learning
approach that learns a motionmodel by estimating a spatially variantmapping from the backward
to the forward flow. In contrast to existing approaches from the literature that train their network
only once before the estimation based on a vast data set, our method exploits flow estimates from
the current image sequence to learn the model online, i.e., during the estimation. In this way, it
becomes possible to learn motion models that are specifically tailored to the actual motion occur-
ring in each frame. Experiments made a good performance of our method explicit. They not only
show significant improvements compared to a baseline without prediction, but they also show
consistently good results in all major benchmarks – including top results on the Sintel benchmark.

6.3 Summary

In this chapter, we introduced two new approaches for motion estimation that go beyond the
classical two-frame setting. To this end,weproposed theuse of twodifferentmotionmodels: a rigid-
motion model and a learned motion model. While both motion models allowed to significantly
improve the estimation accuracy compared to the two-frame setting, they both have individual
advantages and disadvantages. Hence, we briefly summarize our findings. Not surprisingly, the
rigid-motion model proves to be the ideal model in case of ego-motion scenes, which contain a
high share of pixels depicting the background (e.g., KITTI 2012). However, no benefits can be
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achieved in case of non-rigid motion and in scenes with a large amount of independent moving
objects. In contrast, the learned-motion model allows to obtain improvements for a great variety
of different scenes, including scenes that contain non-rigid motion and independently moving
objects (e.g., MPI Sintel). However, regarding ego-motion scenes the benefits are, in fact, slightly
lower compared to the ego-motion model.
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7.1 Conclusions

In this thesis, we have considered two fundamental problems of computer vision: 3D reconstruc-
tion andmotion estimation. In particular we have investigated and contributed several novel ideas
that advanced the field, which we will summarize in the following paragraphs.

In Chapter 3, we developed a variational method that simultaneously leverages shading and par-
allax information to reconstruct a static object or scene. In contrast to other methods, we demon-
strated that it is possible to integrate both sources of information into a joint minimization frame-
work that does not require any kind of pre-estimation. Furthermore, we designed the underlying
model in such a way that it not only estimates the depth but also the surface albedo as well as the
present illumination. This design choice enables our approach to deal with a broad variety of differ-
ent scenarios involving Lambertian objects with non-uniform albedo and unknown illumination
settings. To implement the proposed model we derived a coarse-to-fine minimization framework
based on a linearization of all data terms. This linearization not only enabled the application of
standard optimization techniques such as nested fixed point iterations, but it also allowed the joint
estimation of all unknowns. Finally, our experiments considering synthetic as well as real-world
images demonstrate that our new combined approach allows for accurate and detailed reconstruc-
tions. Moreover, they show that shading cues are indeed useful to improve upon pure parallax
based methods, in particular when it comes to the reconstruction of small-scale details.

In Chapter 4 we turned to the topic of motion estimation. In the first part of this chapter, we
focused on second-order regularization techniques for variational motion estimation. Besides ex-
ploring several different modeling strategies to realize second-order regularization, we also demon-
strated how to include a directional-depended (anisotropic) smoothing behavior within the reg-
ularization process. In this context, we showed that modeling a higher degree of anisotropy in
terms of a double anisotropic model can further improve the result in terms of quality. To this
end, we ran several experiments on the KITTI 2012 and KITTI 2015 benchmark to quantitatively
compare all the different regularization techniques with each other. Further comparisons with
variational approaches from the literature revealed that our new double anisotropic second-order
coupling model achieves state-of-the-art results in the context of variational motion estimation.

In the second part of this chapter, we addressed a common drawback of second-order regulariz-
ers, i.e., the fact that they are less suited to estimate fronto-parallel motion compared to first-order
regularizer, since they are likely to misinterpret local fluctuations as affine motion. In this context,
we proposed an order-adaptive regularization strategy that automatically adapts the utilized regu-
larization order. To steer the underlying adaption process we designed four different adaptation
schemes: a global (per-frame considering all locations), a local (per-location considering a single
location), a non-local (per-location considering a small-neighborhood), and a region-based scheme
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(per-location considering a single location and smoothness). While the global adaptation strategy
turned out to be highly robust at the expense of being less adaptive, the local approach allowed
a flexible point-wise selection at the cost of producing noisy decisions. By imposing some form
of spatial regularity, i.e., neighborhood information or a spatial smoothness term, we succeeded
to combine the advantages of both strategies. Finally, we confirmed these considerations in our
experiments. They showed that adaptively combining different regularization orders not only al-
lows outperforming the non-adaptive strategy but also that a location-wise adaptivity may turn
out useful if we regularize the decision process.

In Chapter 5, we moved from entirely variational methods to pipeline-based approaches. Typi-
cally, such pipeline-based methods employ a fairly simplistic variational refinement that is only ca-
pable to achieve minor improvements. To tackle this shortcoming we proposed a novel variational
refinement scheme that combines an illumination-aware data term with our new order-adaptive
regularization scheme. While the choice of data term allows the new model to keep up with many
feature descriptors, our order-adaptive regularization term allows the newmodel to deal withmore
complex motion patterns. Besides the novel refinement model, we also proposed a hierarchical
refinement scheme that starts the computation at an intermediate resolution level. This choice
allows the variational refinement to benefit from a good initialization while still being able to cor-
rect errors. Finally, consistently good results on popular optical flow benchmarks showed that our
novel variational refinement strategy not only allows to improve outcomes compared to traditional
refinement schemes but also that it allows outperforming pure variational methods.

In the last chapter (Chapter 6) we developed strategies to exploit information on temporal co-
herence by utilizing information from additional preceding input frames. These strategies not only
allowed us to increase the robustness, but also remarkably improve the estimationwithin occluded
areas. To realize them we employed motion models that allow to relate the sought displacement
vector field to motion estimates from the past. In particular, we made use of two different models:
a rigid-motion model and a learned motion model.
In the first part of this chapter, we proposed a multi-frame approach that builds upon the

rigid-motionmodel. Themethod incorporates information from additional frames by integrating
structure information. To this end, we developed a hierarchical depth-parametrized three-frame
SfM/stereo PatchMatch approachwith temporal selection and preceding pose estimation. Further,
we introduced a consistency based combination scheme that allows to combine the resulting struc-
ture matches with those of a recent PatchMatch approach for general motion estimation without
the need of any semantic information. Experiments not only showed excellent results on all major
benchmarks, i.e., theKITTI 2012,KITTI 2012 andMPI Sintel benchmark, they also demonstrated
consistent improvements over a baseline without structure information.

In the second part of this chapter, we presented a novel multi-frame method that builds upon a
learned motion-model. To this end, we proposed a self-supervised convolutional neural network
that learns a motion model in terms of a spatially variant mapping from the backward to the
forward flow. Furthermore, we pursued an online training approach, i.e., the training process is
performed during the estimation, and solely relies on flow estimates from the current image se-
quence for training. This choice enabled us to learn motion models that are specifically tailored to
the actual motion occurring in each frame. Experiments on all major benchmarks made the great
performance of our method explicit, most notably achieving the top ranking on the MPI Sintel
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benchmark at time of submission. Further we were able to score the runner-up award within the
CVPR 2018 Robust Vision Challenge with the best performance on the MPI Sintel andMiddle-
bury benchmark, thereby demonstrating the generalization capability of our new approach.

In summary, we can say that we advanced the field of computer vision by providing valuable
contributions to the topics of 3D reconstruction and motion estimation. In particular, regard-
ing the adaptivity of models to the underlying data and thereby improving in terms of general
applicability to a broad variety of possible input data.

7.2 Future Work

Although we were able to provide useful insights and develop highly accurate techniques for 3D
reconstruction and motion estimation, plenty of challenges remain unsolved. Hence, in the fol-
lowing, we discuss some promising possibilities concerning future work.

3D Reconstruction Our new approach presented in Chapter 3 already copes with com-
plex lighting scenarios and recovers fine surface details. However, it reaches its limits in case of shiny
objects. Consequently, it would be desirable to extend the model assumptions to non-Lambertian
surfaces to deal with more complex object materials [95, 117, 178]. This extension would allow the
method to be applicable to a greater variety of objects. Another aspect that could be generalized is
the need of a pre-calibrated camera setup. While our approach does not require any lighting cali-
bration, it assumes the camera poses to be known,which are typically estimated in a pre-processing
step. Hence, it would be worthwhile to investigate the possibility to further jointly estimate the
extrinsic camera calibration [169, 214]. This extension would render our method to be even easier
applicable, i.e., no re-calibration is would be needed if the capturing viewpoints are altered.

Motion Estimation In Chapter 6 we proposed two different approaches to realize multi-
frame motion estimation. While the first strategy based on the rigid-motion model excelled in
case of ego-motion dominant sequences with a rigid background, the second strategy based on the
learned motion model achieved great improvements even in case of non-rigid motion sequences.
Therefore, it could be rewarding to combine both strategies within a joint approach andmaximize
the improvements for a variety of different sequences. Furthermore, the employed components
do not use the available information to full capacity, i.e., areas that have been identified as possibly
occluded are not treated as such in the subsequent refinement steps. Hence, by using all informa-
tion gathered in the pipeline in the final steps, in particular in the refinement step, could lead to
even further benefits.

Unsupervised Learning A recent trend in the context end-to-end learning methods
for motion estimation is to resort to an unsupervised training procedure [92, 118], i.e., training
without the need of labeled training data. This not only enables the approaches to eliminate the
costly part of acquiring labels for real-world training data but typically also enables the use of a
virtually indefinite amount of training data. To realize this unsupervised training, such approaches
typically employ an unsupervised loss-function during training. These loss functions can basically
be equatedwith the energy functionals employed in this thesis.However, in contrast tominimizing
the loss during estimation, end-to-end learning methods minimize the loss during training to
fix the large amount of parameters of the underlying CNN. Consequently, our new models in
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Chapter 4 and Chapter 5 can be directly applied as unsupervised loss-functions. Therefore, it
could be worthwhile analyzing the benefits of using our advanced models compared to the so
far employed loss functions. In this context one could also incorporate our ideas for multi-frame
motion estimation and replace simple constant motion models [92]with more advanced motions
models, e.g., the rigid-motion model or a learned motion model as proposed in Chapter 6.

3D Reconstruction and 3D Motion Estimation Another interesting path
of future research would be to combine our ideas from both topics, i.e., 3D reconstruction and
motion estimation, in order to realize an approach that not only estimates the 3D geometry of the
scene but also computes the 3Dmotion of dynamic objects within this scene – the so-called scene
flow problem [26, 172, 173]. To this end, one could leverage multi-frame information in terms of
varying viewpoints and varying points in time. Furthermore, reasoning about the 3D geometry,
the 3Dmotion, the reflectance properties, and the present illumination could allow us to employ
more sophisticated priors and tackle various challenges, e.g., illumination changes. While many
research in this area addresses an automotive context [119, 183], this type of additional information,
i.e., reflectance properties and illumination information, might be of particular interest in non-
automotive contexts such as augmented and virtual reality.

Runtime Performance Finally, another important aspect is the runtime performance.
While we have not focused our attention on this topic, it becomes a crucial point when dealing
with time-critical or even real-time applications. In order to tackle this challenge, one can consider
using more sophisticated numerical schemes for variational methods, e.g., multigrid techniques
[39, 41, 42], or employing other numerical solvers that allow to use the highly parallel structure
of nowadays hardware such as GPUs, e.g. advanced explicit schemes [70, 74, 76, 190], primal-dual
methods [46, 104, 210] or domain decomposition methods [101, 102]. In this context, one can also
highlight that such highly parallel hardware enable other recent approaches to achieve good run-
time performances, i.e., randomized approaches [62] and CNN based learning approaches [88, 139,
163].This in turn opens up the possibility of replacing individual components from the presented
pipeline approaches by CNNs to achieve an improvement in runtime performance.
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A.1 Linearization Stereo Data Term

In this section,we provide additional information regarding the implementation of the differential
stereo data term. For the sake of claritywe focus on the brightness constancy assumption of a single
color channel and drop the iteration index k, this gives us

ϕi(x) := I0(x)− Ii(xi) . (A.1)

For which the corresponding linearized expression reads

ϕ̄i(x) := ϕi(x) + ∂zϕi(x) · dz(x) . (A.2)

On the onehand, this linearized expression includes Ii(xi),whichone can realizewith the principle
of warping, similar to the optical flow example model in Section 2.4.2. On the other hand, it
requires to compute the derivative of ϕi(x)w.r.t. the depth ∂z , which we have not addressed so
far. Below, we detail on the implementation of both expressions.

A.1 .1 Stereo Warping

In order to compute expressions like Ii(xi), we warp the i-th image towards the reference view
captured byC0. We can interpret this step as a depth compensation by the intermediate depth
estimate z. In contrast to our optical flow example, we cannot directly obtain the corresponding
location by adding the estimated displacement. We first have to compute the corresponding 3D
surface point s(x, z) and project it via πi(s(x, z)) to obtain the desired location xi. The warped
image Iwi writes the brightness values of the corresponding locations to the current locations
Iwi (x) = Ii(xi). In case of a discrete implementation, xi will lie, in most cases, between the
sampled locations and the actual value must be approximated, e.g., using bilinear interpolation.

C0

C1

s(x, z)
Iw1

I2

x1

x

Figure A.1: Sketch showing the basic implementation of warping (stereo case).
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A.1 .2 Depth Derivatives

Next, we take a look at how to compute the derivatives w.r.t. the depth, i.e., the derivative ofϕi(x)
w.r.t. ∂z . Applying the chain rules results in

∂zϕi(x) = ∂zϕi(x) (A.3)

= ∂zI0(x)︸ ︷︷ ︸
=0

−∂zIi(xi) (A.4)

= −∇iIi(xi)
⊤∂zxi (A.5)

where the∇i operator is defined as∇i = (∂xi , ∂yi)
⊤. Furthermore, we recall that xi is given by

xi = π(Ki (Ri (z ·K−10 x̃) + ti)) , (A.6)

hence applying the chain rule to ∂zxi results in

∂zxi = J (π)︸ ︷︷ ︸
Jacobian of π

KiRiK
−1
0 x̃︸ ︷︷ ︸

inner derivative

. (A.7)

By introducing the following abbreviations for a and b

Ki (Ri (z ·K−10 x̃) + ti) = KiRiK
−1
0 x̃︸ ︷︷ ︸

a

·z +Ki ti︸ ︷︷ ︸
b

= x · z + b =



a0 · z + b0
a1 · z + b1
a2 · z + b2


 , (A.8)

the derivative can be written more explicit as

∂zxi =

(
1

a2·z+b2
0 − a0·z+b0

(a2·z+b2)2

0 1
a2·z+b2

− a1·z+b1
(a2·z+b2)2

)

a0
a1
a2


 =

(
a0b2−b0a2
(a2·z+b2)2

a1b2−b1a2
(a2·z+b2)2

)
. (A.9)

Finally, the last missing part of Equation A.3 is the computation of∇iIi(xi). We can either follow
[116] and compute the spatial gradients on the second image

∇iI
w

i (x) = ∇iIi(xi) (A.10)

or follow [26] and compute the gradients of the warped image and relate them via the Jacobian

(∇Iwi (x, y))⊤ = (∇Ii(xi))
⊤ = ∇iIi(xi)

⊤J (xi) = ∇iIi(xi)
⊤
(

∂xi
∂x

∂xi
∂y

∂yi
∂x

∂yi
∂y

)
, (A.11)

where the entries of the JacobianJ (xi) are given by

∂xxi =

(
∂xxi
∂xyi

)
= J (π)KiRiK

−1
0 (zxx̃+ z e1) , (A.12)

∂yxi =

(
∂yxi
∂yyi

)
= J (π)KiRiK

−1
0 (zyx̃+ z e2) . (A.13)
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A.2 Fourth Order Diffusion Tensor

The direct second-order regularization leads to a fourth order diffusion process. This diffusion pro-
cess contains a 4×4 tensor that is considered the equivalent to the diffusion tensor from ordinary
second order diffusion. Therefore, we refer to it as the fourth order diffusion tensor. Introducing
the following abbreviation

Ψ′l,m := Ψ′l,m

((
r⊤mHu rl

)2
+
(
r⊤mHv rl

)2)
, (A.14)

where we dropped the argument of the penalizer functions, the tensor can be written as

T2-aniso-d =
2∑

l=1

2∑

m=1

Ψ′l,m ·
(
rmr⊤m ⊗ rlr

⊤
l

)
(A.15)

Derivation To derive the fourth order diffusion tensor, we take a look at the Euler-Lagrange
equations of the direct second-order regularizer. For u this is given by

0 = Ru−
∂

∂x
Rux−

∂

∂y
Ruy+

∂2

∂x∂x
Ruxx+

∂2

∂x∂y
Ruxy+

∂2

∂y∂x
Ruyx+

∂2

∂y∂y
Ruyy , (A.16)

whereR denotes the double anisotropic second order regularizer as in Equation 4.13

R(w) =
2∑

l=1

2∑

m=1

Ψl,m

((
r⊤mHu rl

)2
+
(
r⊤mHv rl

)2)
. (A.17)

While the contributionsRu,Rux , andRuy are zero, the remaining contributions are given by

Ruxx =

2∑

l=1

2∑

m=1

Ψ′l,m ·
(
r⊤mHu rl

)
· rm1rl1 , (A.18)

Ruxy =
2∑

l=1

2∑

m=1

Ψ′l,m ·
(
r⊤mHu rl

)
· rm1rl2 , (A.19)

Ruyx =

2∑

l=1

2∑

m=1

Ψ′l,m ·
(
r⊤mHu rl

)
· rm2rl1 , (A.20)

Ruyy =

2∑

l=1

2∑

m=1

Ψ′l,m ·
(
r⊤mHu rl

)
· rm2rl2 , (A.21)

where we dropped the arguments of theΨ′∗ functions to enhance the readability. By writing x =
(x, y) as x = (x1, x2), we can parametrize the derivative directions by indexing and generalize
the expressions above:

Ruxixj
=

2∑

l=1

2∑

m=1

Ψ′l,m ·
(
r⊤mHurl

)
· rmirlj ∀i, j ∈ {1, 2} . (A.22)
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The second factor r⊤mHu rl evaluates as

r⊤mHu rl =
(
rm1, rm2

)(ux1x1 ux1x2

ux2x1 ux2x2

)(
rl1
rl2

)
(A.23)

=
(
rm1, rm2

)(ux1x1rl1 + ux1x2rl2
ux2x1rl1 + ux2x2rl2

)
(A.24)

= rm1ux1x1rl1 + rm1ux1x2rl2 + rm2ux2x1rl1 + rm2ux2x2rl2 (A.25)

=
(
rm1rl1, rm1rl2, rm2rl1, rm2rl2

)



ux1x1

ux1x2

ux2x1

ux2x2


 (A.26)

= (rm ⊗ rl)
⊤((∇⊗∇)u) , (A.27)

which allows us to re-write Equation A.22 as

Ruxixj
=

2∑

l=1

2∑

m=1

Ψ′l,m ·
(
(rm ⊗ rl)

⊤((∇⊗∇)u)
)
· rmirlj (A.28)

=

2∑

l=1

2∑

m=1

Ψ′l,m · rmirlj · (rm ⊗ rl)
⊤((∇⊗∇)u) . (A.29)

By defining ∇2 = ∇ ⊗ ∇ = (∂x1x1 , ∂x1x2 , ∂x2x1 , ∂x2x2)
⊤ as a kind of second order nabla

operator and using a corresponding second order divergence equivalent operator∇2 · leads to

∂2

∂x1∂x1
Rux1x1

+
∂2

∂x1∂x2
Rux1x2

+
∂2

∂x2∂x1
Rux2x1

+
∂2

∂x2∂x2
Rux2x2

= ∇2 ·
(
Rux1x1

, Rux1x2
, Rux2x1

, Rux2x2

)⊤
, (A.30)

we can re-write the right side of the Euler-Lagrange equation as

∇2 ·
(
T2-aniso-d∇2u

)
. (A.31)

Now, we want to derive the fourth order diffusion tensor T2-aniso-d.

T2-aniso-d∇2u =
(
Rux1x1

, Rux1x2
, Rux2x1

, Rux2x2

)⊤
(A.32)
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=




2∑
l=1

2∑
m=1

Ψ′l,m · rm1rl1(rm ⊗ rl)
⊤(∇2u)

2∑
l=1

2∑
m=1

Ψ′l,m · rm1rl2(rm ⊗ rl)
⊤(∇2u)

2∑
l=1

2∑
m=1

Ψ′l,m · rm2rl1(rm ⊗ rl)
⊤(∇2u)

2∑
l=1

2∑
m=1

Ψ′l,m · rm2rl2(rm ⊗ rl)
⊤(∇2u)




(A.33)

=

2∑

l=1

2∑

m=1

Ψ′l,m ·




rm1rl1
rm1rl2
rm2rl1
rm2rl2


(rm ⊗ rl)

⊤(∇2u) (A.34)

=
2∑

l=1

2∑

m=1

Ψ′l,m · (rm ⊗ rl)(rm ⊗ rl)
⊤(∇2u) . (A.35)

Hence, the fourth order diffusion tensor is given as

T2-aniso-d =
2∑

l=1

2∑

m=1

Ψ′l,m · (rm ⊗ rl)(rm ⊗ rl)
⊤ (A.36)

=

2∑

l=1

2∑

m=1

Ψ′l,m · (rm ⊗ rl)(r
⊤
m ⊗ r⊤l ) (A.37)

=
2∑

l=1

2∑

m=1

Ψ′l,m · (rmr⊤m ⊗ rlr
⊤
l ) . (A.38)

Block Structure Further, the tensor can be partitioned into four 2×2 blocks andwritten
as the following block matrix

T2-aniso-d =

(
A B
B C

)
. (A.39)

First of all, let us write the tensor using four different blocks

T2-aniso-d =

(
A B
D C

)
. (A.40)

In order to clarify why we can partition T2-aniso-d this way, we rewrite Equation A.38 as

T2-aniso-d =

2∑

l=1

2∑

m=1

Ψ′l,m ·
(
rmr⊤m ⊗ rlr

⊤
l

)
(A.41)

=

2∑

l=1

2∑

m=1

Ψ′l,m ·
((

rm1rm1 rm1rm2

rm2rm1 rm2rm2

)
⊗ rlr

⊤
l

)
. (A.42)
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By considering the construction properties of the Kronecker product, each of the four blocks is
given as the sum of the 2× 2matrices rlr⊤l weighted byΨ′l,m and one of the entries of rmr⊤m:

A =
2∑

l=1

2∑

m=1

Ψ′l,m · rm1rm1 · rlr⊤l , (A.43)

B =

2∑

l=1

2∑

m=1

Ψ′l,m · rm1rm2 · rlr⊤l , (A.44)

D =

2∑

l=1

2∑

m=1

Ψ′l,m · rm2rm1 · rlr⊤l , (A.45)

C =

2∑

l=1

2∑

m=1

Ψ′l,m · rm2rm2 · rlr⊤l . (A.46)

Considering the commutativity of the scalarmultiplication, it is now easy to see thatB = D holds.
In the single anisotropic case, the diffusion tensor exhibits a block diagonal structure

T2-aniso-s =
2∑

l=1

2∑

m=1

Ψ′l ·
(
eme⊤m ⊗ rlr

⊤
l

)
(A.47)

=

2∑

l=1

(
Ψ′l ·

2∑

m=1

(
eme⊤m ⊗ rlr

⊤
l

))
(A.48)

=

2∑

l=1

(
Ψ′l ·

((
2∑

m=1

eme⊤m

)
⊗ rlr

⊤
l

))
(A.49)

=
2∑

l=1

(
Ψ′l ·

(
I2×2 ⊗ rlr

⊤
l

))
(A.50)

= I2×2 ⊗
(

2∑

l=1

Ψ′l · rlr⊤l

)

︸ ︷︷ ︸
=:A∈R2×2

(A.51)

=

(
A 0
0 A

)
. (A.52)
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B.1 Variational 3D Reconstruction

In case of our 3D reconstruction method the solver related parameters mainly effect the trade
off between the reconstruction quality and the runtime performance and thus have been fixed
in advance, see Table B.1. In contrast, the model parameters have a direct impact on the quality
and thus must be selected more carefully. Moreover, from our experience good model parameters
may vary depending on the intrinsic camera parameters as well as the distance of the scene to the
camera. Nevertheless, even some of the model parameters turned out to be suitable for a wider
range of images and thus have also been set fixed in advance, seeTable B.1. The remainingweighting
parameters of the different terms of the differential energy have been set as specified in Table B.2.

Table B.1: Parameters for the 3D reconstruction method that have been set fixed.

solver parameters iterations per resolution level 1
non-linear fixed-point iterations 2
SOR solver iterations 20

η downsampling factor (coarse-to-fine scheme) 0.8
over-relaxation parameter 1.8

model parameters ζ stereo term normalization 0.01
ǫ parameter of the regularized linear penalizerΨr 0.001
ǫ parameter of the Charbonnier penalizerΨc 0.01
ǫ parameter of the Perona-Malik penalizerΨp 0.01

Table B.2: Parameters for the 3D reconstruction methods that have been altered for the different data sets.
(⋆: The parameter ǫ only refers to the penalizerΨ1 of the depth regularizer.)

model data set ν αz αu αl αρ αdz αdl αdρ ǫ⋆

combined approach Blunderbuss Pete 0.1 100 0.1 50 300 0 0.5 0.5 0.001
Angel 3.0 200 0.1 10 40 0 3.0 3.0 0.005
Fountain 1.0 290 0.1 10 390 0 0.5 0.5 0.001
Herz-Jesu 1.0 400 0.1 11 395 0 0.5 0.5 0.001

pure stereo approach Blunderbuss Pete – 100 0.1 – – 0 – – 0.005
Angel – 400 0.1 – – 0 – – 0.005
Fountain – 300 0.1 – – 0 – – 0.001
Herz-Jesu – 400 0.1 – – 0 – – 0.001
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B.2 Variational Motion Estimation

B.2.1 Comparison of Second-Order Regularizers

In case of the differentmotion estimationmethods presented in Section 4.1 we also setmost param-
eters fixed, see Table B.5. The remaining weighting parametersα, β, γ and λwere optimized w.r.t.
the average endpoint error on a small subset of the training data sets of the respective benchmarks
[14] and are specified in Table B.3.

Table B.3: Parameters for the motion estimation methods of Section 4.1 that have been adjusted.

benchmark model γ α λ β

KITTI 2012 direct first-order isotropic 5.76 8.78 – 0.81
direct first-order anisotropic 5.37 5.58 – 1.08

direct second-order isotropic 5.22 21.61 – 1.33
direct second-order single anisotropic 6.00 2.90 – 1.49
direct second-order double anisotropic 6.06 3.01 – 1.45

inf-conv. second-order isotropic 7.62 8.93 1.35 1.06
inf-conv. second-order single anisotropic 8.10 9.18 1.17 0.55
inf-conv. second-order double anisotropic 8.83 9.47 0.61 0.43

coupling second-order isotropic 4.19 5.30 29.62 0.53
coupling second-order single anisotropic 5.43 5.29 32.66 0.65
coupling second-order double anisotropic 5.43 5.24 32.65 0.65

KITTI 2015 direct first-order isotropic 6.10 7.56 – 0.83
direct first-order anisotropic 5.85 4.83 – 0.58

direct second-order isotropic 6.11 5.99 – 0.72
direct second-order single anisotropic 6.15 2.10 – 0.62
direct second-order double anisotropic 6.20 2.07 – 0.77

inf-conv. second-order isotropic 13.09 13.09 0.62 0.52
inf-conv. second-order single anisotropic 12.68 12.27 0.29 0.81
inf-conv. second-order double anisotropic 14.24 12.99 0.31 0.56

coupling second-order isotropic 3.90 3.64 24.89 0.61
coupling second-order single anisotropic 6.90 5.03 16.14 0.64
coupling second-order double anisotropic 6.80 5.67 12.15 0.76

B.2.2 An Order-Adaptive Regularization Strategy

Regarding the order-adaptive regularization presented in Section 4.2 we again used a fixed set of
parameters for the minimization scheme as well as for some model parameters, see Table B.6. The
remaining parameters γ, α, λ, θ, τ and κ were set individually for each benchmark as listed in
Table B.4.
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Table B.4: Parameters for the motion estimation methods of Section 4.2 that have been optimized.

data set/model γ α λ θ τ κ

classroom sequences
first-order 20.74 61.28 – – – –
second-order 17.66 82.39 58.80 – – –
adaptive order global 17.79 80.02 54.16 1.0 · 10−5 2.0 · 10−1 –
adaptive order local 7.13 17.51 49.87 1.1 · 10−4 7.2 · 10−4 –
adaptive order non-local 4.03 16.65 39.33 1.0 · 10−5 2.5 · 10−4 –
adaptive order region 12.13 57.13 54.61 8.2 · 10−4 7.6 · 10−5 1.2 · 10−3

Middlebury benchmark
first-order 5.00 18.50 – – – –
second-order 6.00 21.67 203.24 – – –
adaptive order global 4.30 10.27 19.55 5.5 · 10−3 1.3 · 10−5 –
adaptive order local 4.16 9.95 19.12 1.4 · 10−2 7.6 · 10−3 –
adaptive order non-local 4.29 10.22 19.07 9.3 · 10−3 6.5 · 10−3 –
adaptive order region 8.53 15.52 26.71 1.0 · 10−4 1.0 · 10−3 3.9 · 10−3

KITTI 2012 benchmark
first-order 60.00 145.00 – – – –
second-order 54.94 166.85 17.00 – – –
adaptive order global 42.16 118.59 17.59 1.7 · 10−4 7.4 · 10−4 –
adaptive order local 44.24 111.10 26.53 1.8 · 10−4 2.6 · 10−6 –
adaptive order non-local 46.80 135.33 13.86 6.7 · 10−6 6.9 · 10−6 –
adaptive order region 56.78 150.47 19.27 1.0 · 10−4 4.0 · 10−5 1.7 · 10−3

KITTI 2015 benchmark
first-order – 72.50 128.75 – – – –
second-order – 69.35 186.21 9.84 – – –
adaptive order global 50.72 117.21 9.09 1.0 · 10−4 3.5 · 10−4 –
adaptive order local 64.61 120.97 8.61 2.7 · 10−4 1.5 · 10−4 –
adaptive order non-local 55.58 152.42 4.66 1.1 · 10−4 2.8 · 10−4 –
adaptive order region 41.46 110.86 6.98 5.0 · 10−4 2.4 · 10−4 9.4 · 10−3

MPI Sintel benchmark
first order 45.00 152.50 – – – –
second order 4.61 39.35 97.25 – – –
adaptive order global 16.49 38.85 176.93 1.0 · 10−6 5.0 · 10−5 –
adaptive order local 12.84 29.25 8.77 2.8 · 10−2 5.1 · 10−2 –
adaptive order non-local 12.70 29.12 44.41 2.1 · 10−2 3.3 · 10−3 –
adaptive order region 36.39 63.82 40.08 3.5 · 10−5 1.5 · 10−2 8.0 · 10−3
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Table B.5: Parameters for the motion estimation methods of Section 4.1 that have been set fixed.

solver parameters iterations per resolution level 1
number of cascades max. 10
non-linear fixed-point iterations 3
SOR solver iterations 20

η downsampling factor coarse-to-fine scheme 0.95
over relaxation parameter 1.85

model parameters ζ data term normalization parameter 0.01
ǫ parameter of the penalizer functionsΨ 0.01

Table B.6: Parameters for the motion estimation methods of Section 4.2 that have been set fixed.

solver parameters iterations per resolution level 1
number of cascades max. 10
non-linear fixed-point iterations 5
SOR solver iterations 20

η downsampling factor coarse-to-fine scheme 0.95
over relaxation parameter 1.85

(explicit scheme) iterations 100
step-size 100

model parameters ζ data term normalization parameter 0.01
ǫ parameter of the penalizer functionsΨ 0.01
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B.3 Beyond Variational Motion Estimation

In case of the order-adaptive illumination-aware refinement model we also used a fixed set of
parameters for the minimization scheme as well as for some model parameters, see Table B.7. The
remaining parameters α, λ, β were set individually for each benchmark as listed in Table B.8.

Table B.7: Parameters for the motion estimation methods of Chapter 5 that have been set fixed.

solver parameters number of resolution levels 10
iterations per resolution level 1
number of cascades max. 10
non-linear fixed-point iterations 5
SOR solver iterations 20

η downsampling factor coarse-to-fine scheme 0.95
over relaxation parameter 1.85

model parameters ζ data term normalization parameter 0.01
ǫ parameter of the penalizer functionsΨ 0.01
γ gradient constancy weight 5
τ minimum average benefit 10−5

θ weight/slope factor selection term 10−5

Table B.8: Parameters for the motion estimation methods of Chapter 5 that have been optimized.

KITTI 2012 KITTI 2015 Sintel
α λ β α λ β α λ β

our refinement (η = 1.00)
DeepMatches 17.92 7.85 0.68 16.78 13.23 0.43 14.86 22.33 0.30
DiscreteFlow 15.11 11.30 0.40 15.00 10.00 0.40 13.50 20.50 0.25
CPM 8.26 8.01 0.44 14.85 7.38 0.53 13.50 20.50 0.25

our refinement (η = 0.95)
DeepMatches 13.61 9.67 0.60 18.27 9.75 0.52 12.94 23.45 0.28
DiscreteFlow 12.04 10.19 0.55 15.12 7.92 0.53 13.50 20.50 0.25
CPM 9.98 9.86 0.45 11.73 7.17 0.14 13.50 20.50 0.25

our refinement (η = 0.90)
DeepMatches 10.97 5.83 0.46 11.71 6.20 0.47 4.56 181.13 0.24
DiscreteFlow 8.80 7.32 0.28 11.87 6.67 0.32 13.86 21.65 0.20
CPM 8.12 6.64 0.41 10.51 5.35 0.11 13.03 21.43 0.26
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B.4 Multi-Frame Motion Estimation

As in all previous cases the variational refinement employed in Section 6.1 and Section 6.2 uses a
fixed set of parameters regarding the minimization scheme, see Table B.9. The remaining weight-
ing parameters either have been set fixed per benchmark, see Table B.10 (individual setting), or
have been set fixed across all benchmarks, see Table B.10 (single setting). While the individual pa-
rameter setting was chosen by optimizing [14] the baseline, as specified in Section 6.1.6, w.r.t. the
respective benchmarks, the single parameter setting was chosen by optimizing the baseline w.r.t. a
mixed subset of the training data of all the benchmarks considered in the robust vision challenge
(Middlebury, KITTI 2015, MPI Sintel, HD1k).

Table B.9: Parameters for the motion estimation methods of Chapter 6 that have been set fixed.

solver parameters number of resolution levels 5
iterations per resolution level 2
non-linear fixed-point iterations 3
SOR solver iterations 10

η downsampling factor coarse-to-fine scheme 0.95
over relaxation parameter 1.9

model parameters ζ data term normalization parameter 0.01
ǫ parameter of the penalizer functionsΨ 0.01
γ gradient constancy weight 5
τ minimum average benefit 10−3

θ weight/slope factor selection term 10−5

Table B.10: Parameters for the motion estimation methods of Chapter 6 that have been optimized.

KITTI 2012 KITTI 2015 Sintel
α λ β α λ β α λ β

individual setting 13.03 26.12 0.1 15.00 15.00 0.05 25 60 0.5

single setting 17.5 26.25 0.5 17.5 26.25 0.5 17.5 26.25 0.5
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