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Abstract

The estimation of the motion between consecutive images of a scene – the so-called
optical flow – is a key problem in computer vision. Unfortunately, such consecutive
images can expose severe data challenges for this estimation including large displace-
ments due to temporal undersampling of the image sequence or illumination changes
that are the outcome of changing lighting conditions.

In this thesis, we address these challenges by improving variational methods which
have a successful history and allow for a transparent modeling: (i) We propose a
robust integration of external feature matches into variational methods. While feature
matching is inherently able to estimate large displacements, it is at the same time
sensitive to false correspondences due to lacking regularization. (ii) As an alternative,
we develop an extended variational method that is able to estimate large displacements
with inherent regularization. This allows to handle many large displacement scenarios
while not being sensitive to unconstrained false matches. The potential of such methods
to handle these cases is widely underestimated in the literature. (iii) In the context of
illumination changes, we learn parametrizations to capture the types of these changes
and introduce a variational method that can jointly estimate their magnitudes alongwith
the optical flow. This joint estimation provides robustness against such changes without
discarding essential image information. (iv) We combine the most promising concepts of
each of the prior methods, i.e. determining illumination changes, estimating regularized
motion candidates for large displacements and integrating them robustly into the final
optical flow estimation. This leads to a pipeline of variational methods that allows us to
robustly handle large displacements even in the presence of illumination changes. (v)We
embed all the involved data terms, which are responsible for handling any data within
the process of variational motion estimation, into a common notational framework
based on the well-known motion tensor notation. This notation not only allows for
an easy integration of all of the presented concepts into variational frameworks, it
also forms the basis for the integration of further recent concepts such as trajectorial
regularization terms.

The results of all these improved variational methods demonstrate the benefits of the
aforementioned strategies and show clear advances over prior works.
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Kurzzusammenfassung

Die Schätzung der Bewegung innerhalb aufeinanderfolgender Bilder einer Szene –
des sogenannten optischen Flusses – gehört zu den Kernproblemen im Bereich des
maschinellen Sehens. Unglücklicherweise können derartige aufeinanderfolgende Bilder
im Hinblick auf diese Schätzung bedeutende Herausforderungen aufweisen, wie etwa
große Verschiebungen auf Grund einer zeitlichen Unterabtastung der Bildfolge oder
auch Beleuchtungsänderungen, welche das Resultat sich verändernder Rahmenbedin-
gungen hinsichtlich der Beleuchtung sind.

In dieser Arbeit nehmen wir diese Herausforderungen mit Variationsansätzen, welche
eine erfolgreiche Historie vorweisen können und eine Modellierung in transparenter
Weise erlauben, in Angriff und verbessern diese entsprechend: (i) Wir stellen eine
robuste Integration extern gelieferter Verschiebungen zwischen übereinstimmenden
Merkmalen in Variationsansätze vor. Während ein solcher Abgleich von Merkmalen
inhärent fähig ist, große Verschiebungen zu schätzen, zeigt er auf Grund fehlender Reg-
ularisierung gleichermaßen die Tendenz, falsche Übereinstimmungen zu liefern. (ii) Als
eine Alternative entwickeln wir einen erweiterten Variationsansatz, der in der Lage ist,
große Verschiebungen unter Beibehaltung einer Regularisierung zu schätzen. Dies er-
laubt es uns, viele Szenarien mit großen Verschiebungen abzudecken, ohne dabei unter
den Einfluss unbeschränkter Falschverschiebungen zu geraten. Die Fähigkeit solcher
Methoden, diese Szenarien abzudecken, wird in der Literatur stark unterschätzt. (iii)
Im Umgang mit Beleuchtungsänderungen lernen wir Parametrisierungen, welche die
Charakteristika solcher Änderungen erfassen, und bringen einen Variationsansatz ein,
der unter Verwendung solcher Parametrisierungen die Ausprägungen dieser Änderun-
gen gemeinsam mit dem optischen Fluss schätzen kann. Diese gemeinsame Schätzung
liefert die nötige Robustheit gegen solche Änderungen ohne dabei essentielle Bildin-
formation zu verwerfen. (iv) Wir kombinieren die vielversprechendsten Konzepte der
bislang vorgestellten Ansätze, d.h. die Bestimmung der Beleuchtungsänderungen, die
Schätzung von Kandidaten für große Verschiebungen mit inhärenter Regularisierung
und die robuste Integration solcher Kandidaten in die finale Schätzung des optischen
Flusses. Dies führt zu einer Pipeline von Variationsansätzen, die es uns ermöglicht,
großen Verschiebungen selbst in der Gegenwart von Beleuchtungsänderungen Herr
zu werden. (v) Schlussendlich betten wir alle involvierten Datenterme, die dafür ve-
rantwortlich sind, innerhalb von Variationsansätzen Daten zu verarbeiten, in einen
gemeinsamen Notationsrahmen ein, welcher auf der wohlbekannten Bewegungstensor-
Notation aufbaut. Diese Notation ermöglicht uns nicht nur eine einfach zu hand-
habende Integration aller vorgestellten Konzepte in variationelle Rahmenwerke, sie
bildet darüberhinaus eine Basis für die Integration weiterer moderner Konzepte wie
etwa trajektorialer Regularisierungsterme.
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Die Ergebnisse für alle diese verbesserten Variationsansätze demonstrieren die Vorzüge
der vorgenannten Strategien und legen klare Fortschritte gegenüber vorherigen Ar-
beiten dar.



Resumen

La estimación del movimiento entre imágenes consecutivas de una escena, llamado el
flujo óptico, es un problema clave en la visión artificial. Desafortunadamente, dichas
imágenes consecutivas presuponen importantes desafíos con respecto a los datos para
esta estimación. Entre estos desafíos se incluyen grandes desplazamientos debido a un
submuestreo temporal de la secuencia de imágenes o cambios de iluminación que son
el resultado de condiciones de iluminación variables.

En esta tesis, abordamos estos desafíos mejorando los métodos variacionales que tienen
una historia exitosa y permiten un modelado transparente: (i) Proponemos una inte-
gración robusta de los partidos de características externos en los métodos variacionales.
Si bien la comparación de características es inherentemente capaz de estimar grandes
desplazamientos, al mismo tiempo es sensible a las falsas correspondencias debido a
la falta de regularización. (ii) Como alternativa, desarrollamos un método variacional
extendido que es capaz de estimar grandes desplazamientos con la regularización in-
herente. Esto permite manejar muchos escenarios de grande desplazamiento sin ser
sensible a los falsos partidos ilimitados. El potencial de estos métodos para manejar
estos casos está ampliamente subestimado en la literatura. (iii) En el contexto de los
cambios de iluminación, aprendemos parametrizaciones para capturar los tipos de estos
cambios e introducir un método variacional que pueda estimar conjuntamente sus mag-
nitudes junto con el flujo óptico. Esta estimación conjunta proporciona robustez contra
tales cambios sin descartar información esencial de la imagen. (iv) Combinamos los
conceptos más prometedores de cada uno de los métodos anteriores, es decir, determi-
nando los cambios de iluminación, estimando candidatos de movimiento regularizados
para grandes desplazamientos e integrándolos sólidamente en la estimación del flujo
óptico final. Esto nos lleva a una serie de métodos variacionales que nos permite mane-
jar de manera robusta grandes desplazamientos incluso en presencia de cambios de
iluminación. (v) Finalmente, incorporamos todos los términos de ligadura involucrados,
los cuales son responsables de manejar cualquier dato dentro del proceso de estimación
de movimiento variacional, en un marco de notación común además de la conocida
notación del tensor de movimiento. Esta notación no solo permite una fácil integración
de todos los conceptos presentados en marcos variacionales, sino que que también
forma la base para la integración de otros conceptos recientes, como los términos de
regularización trajectorial.

Los resultados de todos estos métodos variacionales mejorados demuestran los ben-
eficios de las estrategias antes mencionadas y muestran claros avances sobre trabajos
anteriores.
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Chapter

1

Introduction

In the first chapter, we will introduce the optical flow as a crucial research task in the
field of computer vision. This includes its definition, desirable properties that influence
the design of corresponding estimation algorithms as well as many data challenges
that make its estimation difficult. After these important aspects, we will review basic
categories of estimation algorithms and discuss how their performance can be assessed.
Finally, we state the contributions of this thesis and give an overview of its organization.

1.1 Optical Flow

The research field of computer vision aims at allowing machines to understand their
environment by means of visual data. In this context, the human visual system with its
way of processing signals and its abilities to solve tasks such as motion estimation, depth
retrieval, scene segmentation and object recognition serves as the role model. In this
system, the majority of information origins from the perceptions of the human eyes that
each receive 2-D projections of the 3-D world at subsequent time steps. Consequently,
most research in computer vision also focuses on the processing of 2-D image data
from one or more views of a 3-D scene at one or more time steps. This research is based
on methods from the domain of digital image processing but exceeds it in the level of
abstraction w.r.t. the information that is extracted from the images, since it recovers
scene information like depth or motion in contrast to low level information like e.g.
colors or regions.

Among the variety of computer vision problems, motion estimation belongs to the very
active research areas with tremendous advances in the past years. When we try to
capture the motion that is present within a sequence of images, we estimate the so-
called optical flow. It is given by a dense two dimensional vector field of displacements
that establishes the correspondences of all pixels in the reference frame, i.e. the frame
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Figure 1.1: Exemplary illustration of the optical flow. Top and Bottom: Two adjacent
frames of Sequence 15 of the KITTI 2012 training data set [52]. Center: Vector plot of
the 2-D displacement field.

where we want to capture the motion, to locations in the successive frame. These
frames are usually acquired with a monocular camera at subsequent time steps. Please
note that the optical flow is a 2-D projection of the 3-D displacements of the scene onto
the image plane. However, in this thesis we are only interested in the 2-D motion and
do not estimate or rely on any kind of 3-D information.

1.1.1 Mathematical Definition

Given two consecutive input images It and It+1 at time steps t and t+1, the optical flow
w(x) = (u(x), v(x),1)⊤ is the displacement field that connects a location x= (x, y, t )⊤ in
the first frame to a location x+w(x) = (x +u(x), y + v(x), t +1)⊤ in the second frame.
Hereby, u and v are the horizontal and vertical components, respectively, and the last,
temporal component indicates the temporal distance between the time steps t and t +1.
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1.2 Desirable Properties of the Optical Flow

In order to formulate desirable properties of the optical flow which we want to estimate
for a scene, we take a look at the properties that the actual optical flow of the same
scene must have. The source of each optical flow is the motion within the 3-D scene,
which can be caused both by moving objects that are visible in the image plane and by
the motion of the camera itself. For the sake of simplicity, we will refer to the latter
case as if the camera stood still and all objects of the scene moved in a way that leads
to the same apparent motion in the image plane. Hence, we only focus on changes in
the appearance of objects in the scene between image frames. In the prevalent case of
rigid objects, i.e. that objects can only undergo translational and rotational motion, we
can deduce the following properties of the actual optical flow:

Continuity of the Motion. All continuously connected visible parts of a moving
object O undergo an intrinsically continuous optical flow.

Independence of Motions. Objects that move independently from their background
introduce edges in the optical flow, so-calledmotion discontinuities. These coincide with
structural edges of the respective object. Textural edges do not affect the optical flow.

Fronto-Parallel Translations. Objects that do neither change their apparent size nor
their orientation between frames undergo pure translational motion in the image plane,
i.e. the optical flow is constant within the object.

Fronto-Parallel Rotations. Objects that change their orientation but keep their
apparent size undergo rotational motion within the image plane, i.e. the optical flow
changes its direction but not its magnitude along the direction of motion within the
object.

Rotations in z-direction. Objects with parts becoming larger and other parts be-
coming smaller undergo rotational motion with a share of rotation in z-direction, i.e.
the optical flow changes its magnitude but may keep its direction (in case of a pure
out-of-plane rotation).

Translations in z-direction. Objects that change their size but keep their orientation
undergo translational motion with a share of motion in z-direction, which is orthogonal
to the image plane, i.e. motion towards the camera or away from it. Their optical flow
is divergent (in case of motion towards the camera) or convergent (in case of motion
away from the camera) w.r.t. the point at infinity of the 2-D projections of the respective
beam of the 3-D parallel motion lines. Along these projected lines, the optical flow
keeps its direction but may change its magnitude. Orthogonal to these projected lines,
it changes its direction.

As we will see later on, the given image data is qualitatively not perfect and, moreover,
it is locally not always expressive enough to estimate the correct optical flow. The
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identification of desirable properties of the optical hence can help both designing
appropriate algorithms for optical flow estimation and judging the quality of their
respective results.

1.3 Data Challenges

The source of any optical flow estimation is the image data that is acquired by cameras.
Besides knowing important properties of the structure of a flow field, it is hence also
important to know difficulties that come along with the data in order to implement a
proper handling for them. Such image data is restricted w.r.t. both quality and quantity
where both aspects influence the quality of the optical flow that we can estimate. Due
to its discrete nature, the visual information of the captured scene is sampled in both
the spatial and the time domain, restricting the quantity of image data. The sensors,
that transform intensities into pixel values, are of varying manufacturing quality which
directly influences the quality of the pixel values that are acquired. In the following,
we describe the five most important data challenges.

Noise. During the physical process of image acquisition a sensor is exposed to the light
that is reflected by the scene in front of the camera and the captured information is
transformed into digital image data. However, the information that is digitalized is not
a clean 2-D representation of the scene. External factors like e.g. dust on the sensor or
cosmic rays traversing the camera as well as internal processes like dark current affect
the acquisition process. The introduced degradations influence the pixel values, where
the difference between the actual and the ideal (non-degraded) pixel values is referred
to as noise. Moreover, digital image processing, like e.g. lossy compression, can also
lead to artifacts that degrade the quality of the image data.

Blur. There are often some objects in a scene that are not represented sharply in the
acquired image. This is due to different reasons that can lead to blurry depictions: First
of all, the camera lens is focused such that a certain level of depth from the camera’s
view is depicted sharply. All (parts of) objects that have the appropriate distance to
be in this level of depth show sharp edges and textures. The remaining parts of the
scene that are closer or farther away undergo the so-called defocus blur. Second, the
exposure time of the sensor plays a role. If an object undergoes significant motion,
i.e. motions larger than one pixel, within the exposure time, the reflected light that is
captured by a pixel of the sensor origins from different parts of the object. Hence, the
object’s depiction is a mixture of different parts of that object or a mixture of the object
and its background at the object’s boundaries in motion direction. This type of blur is
called motion blur.
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Illumination Changes. The light intensities that are transformed into pixel values
depend on different factors, including the incoming light, the reflectance properties of
the objects within a scene and the camera settings, in particular its aperture settings
and the exposure time. While the reflectance properties of the objects in a scene usually
do not change over time, the properties of the incoming light as well as the settings
of the camera can do so. While the incoming light changes e.g. due to moving hard
shadows of objects, soft shadows of clouds, sunrise/sunset or a changing position of the
camera, also the settings of the camera are adapted (either automatically or manually).
Since they have a limited dynamic range of light intensities that can be captured, it is
useful to automatically adapt the camera settings such that the present intensities are
shifted into the dynamic range of the camera. Popular adaptations include a narrowing
of the aperture to decrease the incoming light intensities in bright environments and a
prolongation of exposure times in dark environments in order to collect more photons
over time if the rate of incoming photons is rather low. Moreover, the adaptations of
the camera settings usually do not perfectly compensate for the changed properties
of the incoming light. Hence, all of these extrinsic illumination changes and intrinsic
adaptations likely lead to a variation of the pixel values of an object over time, including
both local and global variations. In the remainder of this thesis, we will summarize
these intensity-induced variations of pixel values under the term illumination changes.

LargeDisplacements. The actual displacement of an object depends on two quantities:
its speed and the time between two depictions of its location, i.e. the acquisition of
two image frames, which we refer to as frame rate. While the object’s speed is an
external property of the scene that we capture, the frame rate is a property of the
recording system. It generally makes sense to categorize different displacement sizes:
small displacements and large displacements. Small displacements are achieved if the
frame rate is sufficient for the present velocities within the captured scene. In the sense
of human perception, they are visually smooth and the respective moving objects are
not considered to be jumping. In the sense of algorithmic motion estimation, small
displacements in general constitute the better solvable problem as they are a local
problem. Depending on the estimation algorithm, simple assumptions are possible: e.g.
in discrete methods an exhaustive search for correspondences can be restricted to a
local window both reducing runtime and the probability of ambiguous matches (due to
a less amount of potential match partners), while in continuous methods with complex
terms locally valid linearizations are possible.

Nevertheless, even large displacements of large objects can be treated this way as they
coincide with small displacements on a coarser resolution. Downsampling the image
decreases both, the size of the objects and the size of the displacement. As long as
the object is still visible on a coarser resolution, the displacement size that is to be
estimated can be appropriately decreased. Having this in mind, one can solve the
problem hierarchically starting on a coarse resolution, estimate displacements there,
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upsample the estimated motion, compensate the data for it and iteratively go on in
a coarse-to-fine manner up to the original resolution. Hence, different displacement
scales are estimated on different resolution levels.

However, if a small object undergoes a large displacement, the following problem
arises: We cannot treat this problem on the appropriate coarser resolution since the
corresponding object is not visible there. Instead, the estimation becomes more complex
and the ability of estimating larger displacements comes along with more potential
match candidates, thus leading to a higher probability of mismatches. Nevertheless, if
the motion of a small object can be explained as the sum of a large displacement of a
large background and a small incremental displacement, only the easy to handle small
increment remains after the image data has been compensated for the background
motion on a coarser level. Thus, the problematic case is a relative large displacement,
i.e. both relative to the scale of the object and relative to the background motion.

Although absolute large displacements – which arise due to an insufficient frame rate of
the collected data – may be visually unpleasant for any object size, the real algorithmic
challenge is given by relative large displacements.

Occlusions. As all image data only covers 2-D projections of 3-D scenes, only those
(solid) objects are recorded that are closest to the image plane. Objects in the background
may be occluded by those in the foreground. Whenever an object moves within a scene
in a different way than its background, there will be parts of the background that are
not visible in all frames. Thus, a correspondence for those parts cannot be established.
Parts of the background that become hidden over time are called occlusions whereas
parts that become visible over time are called disocclusions. Since the optical flow by
definition is only dense in the reference frame, disocclusions are not a problem. These
regions appear at later time steps and there is no intrinsic requirement to establish a
correspondence for them. Occlusions, however, affect pixels in the reference frame
where we want to compute a displacement without having a visual correspondence
in the successive frame. The more an object’s motion coincides with the background
motion, the less it creates an occlusion. After a potential background motion has been
compensated for, the amount of occlusion, which an object creates, depends on the
overlap of its old and its new position. The overlap depends on both the scale of its rela-
tive displacement and the object size: it increases with the scale of the displacement but
can never exceed the size of the moving object. As the occlusion is maximal for a zero
overlap, we have a natural relation between occlusions and relative large displacements.

In this thesis, we will concentrate on the handling of relative large displacements and
illumination changes.
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Figure 1.2: Illustration of the aperture problem. Top row: Real motion of the black
rectangle. Bottom row: Visible motion of the black rectangle within the image plane
(white). Only the horizontal part of the motion is visible.

1.4 Optical Flow Algorithms

After we have discussed desirable properties of the optical flow as well as important
challenges that origin from the image data that is the basis of the optical flow, let us
now discuss how these aspects come into play in the design of optical flow algorithms.

The estimation of the optical flow between two or more frames of an image sequence
belongs to the class of inverse problems. They are defined as problems where we have
observations and want to estimate those factors that are the cause of these observations.
In the context of optical flow, these observations are given by at least two images and
we want to find out which displacement field moves the pixels from the locations in
the reference frame to those of the successive frame.

Not only is optical flow estimation an inverse problem, it also highly ill-posed. This can
be seen at hand of the aperture problem [16]: (i) For pixels in a homogeneous area, it is
not clear which of the equal appearing pixels belong to each other. (ii) For pixels on a
line, only the motion perpendicular to the line can be estimated, but not the motion
along it (see Figure 1.2). Hence, the solution is not unique. Moreover, in occluded areas,
a solution does not even exist as there are no visual correspondences. For transparent
objects, there may even be multiple valid displacements for a pixel. Please note, that
although the optical flow problem itself is ill-posed, this does not necessarily hold for
optical flow algorithms using specific modeling assumptions as we will see later on.

All these inherent difficulties in the problem of optical flow estimation as well as the
challenges that origin from the data make the usage of appropriate assumptions on
both the data (like temporal constancies of certain image features) and on the solution
(like smoothness constraints) inevitable. The formulation of these assumptions is the
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important degree of freedom in designing optical flow algorithms, which has led to a
broad variety of algorithms within the past decades. Such algorithms are formulated in
different mathematical calculi like the calculus of variations or the calculus of probabil-
ity; amongst other differences they contain different data constancy assumptions, they
have different priors on the solution or they are solved in a different manner.

The set of optical flow algorithms can be categorized w.r.t. different aspects. As this the-
sis focuses on data and information, we separate the following two classes of algorithms:
local ones and global ones.

1.4.1 Local Approaches

Local approaches for optical flow estimation compute flow vectors for all pixels separately.
There, the sought flow vector minimizes some matching cost that is usually based on a
constancy assumption between corresponding features in successive image frames.

Block Matching

One of the simplest local methods is called block matching; see e.g. [96]. In this discrete
method, a local neighborhood of a certain size around a pixel in the reference frame
is compared to local neighborhoods of the same size in the successive frame. When
comparing these local neighborhoods, there are different possibilities w.r.t. the chosen
distance metric like the sum of squared distances (SSD) or the more robust sum of
absolute distances (SAD). The optical flow is then calculated by an exhaustive search
that finds the local neighborhood in the successive frame that has the smallest distance,
i.e. that is most similar. Although this method alleviates the aperture problem by using
neighborhood information, it does not completely solve it. Particularly for pixels whose
neighborhood does not cover corners, the solution is still ambigue. Moreover, this
method leads to noisy results due to these ambiguities as well as due to noise in the data
and it produces block-artifacts in the solution, since discriminative pixels, that dominate
the computation of the distance, are present in the neighborhoods of several pixels and
thus can lead to the same displacement vectors at these locations. An alternative that
does not build on exhaustive but on randomized search is given by patch matching [10].

Feature Matching

If we treat a block as a kind of feature of a pixel that includes neighborhood information,
we can embed block matching into the more general concept of feature matching. In
contrast to conventional block matching, however, feature matching is usually applied
only to discriminative points like corners, so-called key points in the reference frame,
with no restriction in the search space. The result is further sparsified by forward-
backward consistency checks in order to remove inconsistent matches. There are a lot of
requirements on features for the usage in featurematching, including discriminativeness
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in order to avoid ambigue matches, illumination invariance to be appropriate under
illumination changes or geometric invariances like scale or rotation invariance to allow
for feature matching even in the presence of complex motion patterns that change the
way a 3-D object is projected on the image plane. There is a whole research area on
features, popular examples are given by Histogram of Oriented Gradients (HOG) [36],
Geometric Blur (GB) [14], Scale-Invariant Feature Transform (SIFT) [80] or Speeded
Up Robust Features (SURF) [12]. Besides these hand-crafted features there are also
methods that learn such features for matching [48, 50, 119, 141, 102]. Since the search
space is not restricted in feature matching, this type of matching is often used in the
context of relative large displacements where other methods with restricted search
spaces fail. As there is only a small number of key points that are supposed to be
highly discriminative, we achieve sparse results. There are also methods like SIFT Flow
[79] or other feature-based methods [40, 109, 145] that do not restrict to these key
points. However, they require additional smoothness constraints and can hence not be
considered local methods any longer.

Local Differential Methods

Two major drawbacks of the techniques mentioned above are caused by the matching
via an exhaustive search: (i) it is time-consuming, since the computational cost per pixel
depends on the image size and (ii) without further post-processing, it only provides
integer-precise results. An alternative was proposed by Lucas and Kanade [81]. Their
method is based on the assumptions that corresponding pixels share a similar brightness
value and that the flow is constant within a local neighborhood. Both assumptions can
be expressed in terms of a local energy that quadratically penalizes deviations from the
brightness constancy assumption in the local neighborhood. The basic assumptions
are similar to those in block matching approaches. Nevertheless, in contrast to the
block matching, the local energy uses a linearized version of the brightness constancy
assumption which makes an explicit computation of the solution (u, v)⊤ possible and
avoids exhaustive search. This explicit computation only requires amore or less constant
amount of time per pixel which comes down to linear complexity in the number of
pixels. Moreover, local differential methods intrinsically provide sub-pixel accurate
results. Their performance improves over pure block matching, but also suffers from
the problem of non-dense flow fields as there is not always a unique solution. The
used neighborhoods introduce the same inaccuracies as for block matching, i.e. they
are not invariant under non-translational motion and motion discontinuities are not
preserved. More robustness can be achieved e.g. by assuming an affine flow instead of
a constant flow within the local neighborhood as proposed by Shi and Tomasi [121] or
by a spatio-temporal extension as proposed by Bigün et al. [17] where additionally a
temporal component of the flow is estimated. A method that combines these concepts
was proposed by Farnebäck [46].
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1.4.2 Global Approaches

All of the aforementioned local approaches share the drawback of typically providing
sparse results since they cannot overcome the problem of non-discriminative loca-
tions. Thus, a separate flow estimation for each pixel is not the appropriate way to
achieve dense, high-accuracy results. A contrary approach is hence given by global

methods which – in complete contrast to local methods – estimate the flow vectors
for all pixels in the image jointly. With appropriate assumptions on the solution, i.e.
relations between the flow vectors of neighboring pixels, a global information flow from
discriminative pixels to non-discriminative pixels is possible in order to disambiguate
their solutions and thus, to overcome the aperture problem. In contrast to local methods,
this information flow is not restricted to a certain distance, i.e. to a fixed neighborhood.

Variational Methods

Usually, these global approaches comprise a data term and a smoothness term. The
purpose of the data term is to enforce that source and target pixels of flow vectors share
common image properties which are encoded in image features, i.e. to enforce feature
constancies. This starts with the simple brightness constancy assumption [68], includes
simple illumination-invariant features like the gradient constancy assumption [26],
constancy assumptions on more illumination-robust features like the Census transform
[124] or the Complete Rank Transform [40] and ranges up to constancy assumptions
based on complex features like Histogram of Oriented Gradients (HOG) [36, 109] or
Geometric Blur (GB) [14] that are also used in feature matching approaches. The
smoothness term, in contrast, imposes regularity assumptions on the solution within
the neighborhood. This can be a piecewise constant flow [103, 163], a piecewise affine
flow [24] or constraints enforcing other preferred motion patterns. Moreover, modern
smoothness terms respect motion discontinuities by not enforcing these patterns across
object boundaries [164, 105, 61, 89]. The design of such terms highly reflects the
importances of the desired properties of the optical flow as discussed in Sect. 1.2.

Global methods can be categorized w.r.t. the continuity of their domain and co-domain.
Methods that are continuous in both domain and co-domain often are given in terms
of variational methods [68] whereas discrete methods can be sub-divided into two
categories: (i) the domain of the energy is discrete (i.e. defined in terms of pixel
coordinates) [126, 79] and (ii) the co-domain is discrete which constitutes a labeling
problem [22, 78]. All categories of methods have had their impact in the past where
especially in the last decade pure continuous approaches were favorable [26, 29, 150,
149] while today’s top-performing methods often are based on discrete approaches
[93, 58, 158, 118] or at least include these as a step in a pipeline [111, 112]. Nonetheless,
many of the recent top-performing methods also comprise steps using continuous
approaches which, in particular, are applied in order to refine flow fields obtained from
prior discrete steps [158, 84, 118, 85].
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Convolutional Neural Networks

Recently, also learning-based approaches that make use of convolutional neural net-
works (CNN) have become popular. The global communication within these methods is
enforced by the convolutions in these networks. Simple networks like the FlowNetSimple

in [43] are generic and learn to estimate the optical flow via end-to-end learning using
only the input images and the available real solution (also called ground truth). More ad-
vanced networks even contain a layer that learns and matches features [43, 158, 73, 134].
However, there are also many networks that share similar cost functions as conven-
tional global methods but are parametrized in terms of hierarchical convolutions within
different layers [90, 72]. Others integrate individual concepts from conventional global
methods into CNNs such as coarse-to-fine warping [134, 107] or the integration of more
than two frames [110]. Moreover, there are methods that use CNNs to implement an
individual part of a pipeline approach. This includes a CNN-based inpainting step [166]
or the prediction of forward displacements with a CNN that uses a backward flow to
augment the matching stage [84].

Focus of this Thesis

Among all these methods, variational approaches have a long and successful history
and they are still part of many top-performing methods. Their accuracy in combination
with their transparent modeling make them a very interesting research target that
leaves a lot of room for improvements particularly w.r.t. relative large displacements
and illumination changes. Hence, in this thesis we will focus on variational methods
although in the meantime other types of approaches also provide very good results.

1.5 Performance Evaluation

The performance of optical flow algorithms can be judged in different ways: qualitatively
by using an appropriate visualization technique and judging visually if flow directions,
magnitudes and structures fit the subjective expectation which the viewer develops
from the image sequence, or quantitatively by assigning numbers to the estimated flow
fields and comparing these numbers to flow estimations using other methods and/or
settings for the same set of image sequences.

For the qualitative judgment, different visualization techniques have been developed
including sparse arrow plots for a coarse impression and dense color representations,
whereby the latter accounts for the abilities of the human visual system to precisely
distinguish even slight variations among colors.

In order to judge the quality of optical flow algorithms quantitatively, performance
measures are necessary. Such a measure can be of different type, but in the optimal
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Figure 1.3: This color code [28] will be used for flow visualization where brighter
colors indicate longer flow vectors. The color type indicates the direction, e.g. red
represents a flow in right-direction, blue represents a flow in down-direction.

case it is (based on) a distance w.r.t. the true optical flow, the so-called ground truth. As
they formulate deviations from the ground truth, we call these performance measures
error measures and their resulting values error values. The ground truth, however, is
not available in most cases, since we usually only have image data in the real world.
Performance evaluation thus is performed on so-called benchmarks where both image
data and ground truth are available. The ground truth is obtained in different ways,
e.g. by creating synthetic scenes where both the flow and the images are created
simultaneously (and the frames are given as projections of a scene with given 3-D
motion, i.e. by solving a forward problem) or by using information from external
sensors like RADAR or LIDAR that have been developed for the detection of distances.

1.5.1 Flow Visualization

As mentioned above, different visualization techniques for the optical flow are available.
Since the focus of this thesis lies in high accuracy methods, we are interested in details
of the estimated optical flow. In addition to the individual properties of the different
flow vectors, i.e. the direction and the magnitude, this includes also structural properties
of the flow field, which covers the discontinuities at object boundaries or the presence
or absence of staircasing artifacts or other oversegmentation artifacts (due to image
textures). Such details can hardly be taken into account by using sparse plots. Hence,
we will only use color visualizations of the optical flow in this thesis. Moreover, we will
restrict to a specific color code as given in Fig. 1.3 for consistency reasons, although
some more variants can be found in the literature.

In order to use the wide color spectrum in a meaningful way, we assign specific proper-
ties of flow vectors, i.e. the direction and the magnitude, to specific properties of colors,
i.e. the type of the color and the brightness. This can be achieved by having appropriate



1.5 • Performance Evaluation 13

representations of both, the flow vectors and the colors. Direction and magnitude of
a flow vector can be obtained by transforming it into polar coordinates, i.e. given a
flow vector w = (u, v,1)⊤ we compute the angle Φ = atan2(u, v) and the magnitude
r =

p
u2+ v2. The type of a color and its brightness can then be explicitly stated in the

HSV color space. To this end, we assign the angle Φ to the hue component and the
magnitude r to the value component of the corresponding HSV color vector. In order
to change and/or widen the range of visualizable flow magnitudes, we further rescale r

and/or apply a logarithmic transform to it. The backtransformation of the HSV color
vectors into the RGB space finally gives us the color visualization of a flow field.

1.5.2 Error Measures

In current important benchmarks [9, 52, 31, 92], three different error measures have
become popular: the average angular error (AAE), the average endpoint error (AEE) and
the bad pixel measure (BPT ) where T is a threshold. In the following wgt = (ugt, vgt,1)⊤

denotes the ground truth and w= (u, v,1)⊤ denotes the estimated flow.

Let us start by defining the local quantities that give us the distances between flow
vectors. There are two different ones. First, we provide the angular error which focuses
on the directions of the flow vectors rather than on their magnitude, as it measures
the angular deviation between both vectors in the spatio-temporal domain where flow
vectors are considered to be velocities. It is given by

AE(w,wgt
) = arccos

(

wgt⊤w

||wgt||2 · ||w||2

)

= arccos

(

ugtu + vgtv +1
√

ugt2+ vgt2+1
2
√

u2+ v 2+1
2

)

. (1.1)

Second, there is the endpoint error that measures the spatial Euclidean distance between
both flow vectors. It takes into account both the direction and the magnitude of the
flow vectors and is given by

EE(w,wgt
) = ||wgt−w||2 =

√
(

ugt−u
)2+

(

vgt− v
)2

. (1.2)

Using these two local distance measures, we create different error measures for the
whole flow field. To this end, we consider a discrete image domain with N pixels in
horizontal direction and M pixels in vertical direction, respectively.

Average Angular Error

The average angular error is given by the average over all angular errors in the image
domain. This error measure has been introduced by Barron et al. [11] in the context of
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optical flow performance measurement. It reads

AAE(w,wgt
) =

1

N M

N ,M∑

i , j=1

AE(wi , j ,w
gt
i , j

) . (1.3)

Due to the limited range of the AE, this measure can not arbitrarily deteriorate in the
presence of occasional faulty flow vectors.

Average Endpoint Error

A quite natural distance measure between vectors is the Euclidean distance. Averaging
it over the image domain provides the average endpoint error which reads

AEE(w,wgt
) =

1

N M

N ,M∑

i , j=1

EE(wi , j ,w
gt
i , j

) . (1.4)

However, even a single faulty flow vector can lead to arbitrarily large results which
obscures the overall quality of the flow field.

Bad Pixel Measure

Another approach that depends on the endpoint error (EE) is the bad pixel measure. It
counts the appearances of flow vectors whose endpoint deviates by at least T pixels
from the corresponding ground truth vector. Originally coming from the stereo vision
[115] it reads

BPT (w,wgt
) = 100 ·

1

N M

N ,M∑

i , j=1

χ[EE(wi , j ,w
gt
i , j

) < T ] , (1.5)

where χ[condition] is 1 if the given condition is fulfilled and 0 else.

As this error measure does not continuously depend on the EE, it is robust in the
presence of small imprecisions in the ground truth data. Due to the same reason,
however, small variations in the flow field (due to small variations in the corresponding
optical flow algorithm) may lead to big variations in the resulting error value if the
endpoint errors of a significant amount of flow vectors lie around the threshold T .

Visualization. A visualization of this bad pixel measure is given in Fig. 1.4. This type
of visualization has been co-developed by us for the Special Session on Robust Optical

Flow1,2 within the German Conference on Pattern Recognition 2013. Particularly since
2015, when the KITTI 2015 benchmark [92] was published, it has become increasingly
popular and has been used in many recent works such as [146, 58, 158, 86, 89, 13].

1https://www.dagm.de/symposien/special-sessions/
2https://resources.mpi-inf.mpg.de/conference/dagm/2013/SpecialSession.html
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Figure 1.4: Exemplary illustration of the bad pixel visualization. Top: Estimated
flow for Sequence 15 of the KITTI 2012 training data set. Center: Ground truth
flow. Bottom: Bad pixel visualization for a threshold T = 3. Blue regions indicate an
endpoint error below the threshold T . In white regions it is close to but still smaller
than T and in brown regions it is above T .

1.5.3 Benchmarks

In the early days of quantitative performance evaluation, many works tested their
methods on a single artificial image sequence, the Yosemite sequence [11], and provided
the respective average angular error w.r.t. its ground truth. Fortunately, a lot of bench-
marks have been presented since then. The ones which are still important today are
the following four.

Middlebury Benchmark

In 2007, the Middlebury benchmark was published providing not only 8 training se-
quences with given ground truth, but also 8 testing data sets where the ground truth
was retained [8, 9]. This allowed for a more systematic and restrictive evaluation: In
a first step, method parameters can be trained on the training sequences and in the
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second step, results on the testing sequences are estimated using the learned settings.
The final evaluation is done after these results have been uploaded to the corresponding
website of the benchmark. Using the non-public ground truth, rankings are created
among all methods for which results have been uploaded. The two most popular ones
are based on the average angular error (AAE) and on the average endpoint error (AEE),
respectively. Compared to the single Yosemite sequence, this procedure allows more
general conclusions on the methods as it reduces an overfitting in method design and
parameters to too few data in many ways: (i) overall it provides more data for eval-
uation, (ii) it splits the evaluation in a training and a testing stage, which avoids an
overfitting of method settings to the testing data, and (iii) it ranks w.r.t. more than one
error measure which can shed light on different aspects of the presented methods.

Nevertheless, the low amount of data and their mostly artificial nature cannot provide
all the challenges that optical flow methods can face within the wide range of poten-
tial applications. In 2012, two more benchmarks were published, the KITTI Vision
Benchmark (KITTI 2012) [52] and the MPI Sintel benchmark [31].

KITTI Vision Benchmark (2012)

The KITTI Vision Benchmark (KITTI 2012) [52] provides an increased amount of data
with 194 training and 195 testing image sequences of static scenes which have been
created in a mostly urban environment from a camera setup that has been mounted on
a driving car. The ground truth data have been obtained by LIDAR measurements and
hence are sparse in contrast to prior benchmarks. Due to the imprecisions in ground
truth data generation, the BP3 error measure is used for the ranking of the published
optical flow methods. It advances the Middlebury benchmark w.r.t. the amount of
data; and due to their real-world nature new challenges are provided, particularly
comprising illumination changes, disturbances in data such as lens flares, under- and
oversaturations, and noise, as well as considerable out-of-plane motions.

MPI Sintel Benchmark

The MPI Sintel Benchmark [31] obtains image sequences and ground truths from
artificial data, but provides tough challenges by creating specular reflections, motion
blur, defocus blur and atmospheric effects. It contains a huge amount of data created
out of different scenes from an adapted version of the animated short film Sintel by
Roosendaal and the Blender Foundation3,4. The training data comprise 23 multi-frame
scenes in three different rendering settings (called albedo, clean and final) providing
a total of 1064 images per setting and 1041 ground truths. The testing data comprise
12 multi-frame scenes in two different rendering settings (clean and final) providing

3https://www.blender.org/foundation/
4https://durian.blender.org/about/
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Table 1.1: Definition of our MPI Sintel data subset called Sintel (sub.).

Scene Reference frames

ambush_2 5, 10, 15
ambush_4 11, 16, 21
ambush_6 5, 10, 15
market_6 15, 20, 25
all others 20, 25, 30

a total of 564 images per setting, from which 552 flow fields shall be computed per
setting for evaluation. The different settings contain different complexities regarding
the rendering of surfaces, shadows, camera and motion blur, atmospheric effects etc.,
increasing from albedo over clean to final. For both rendering settings of the testing
data, i.e. clean and final, a ranking w.r.t. the average endpoint error (AEE) is created
out of the uploaded methods’ results.

Subset of the TrainingData. Since even the training data of theMPI Sintel benchmark
contain more than 1000 separate image sequences per pass (clean, final, albedo) which
come from 13 different scenes, processes like optimizing parameters – that involve
many evaluations on a data set – can become really cumbersome. Hence, we decided
to define an additional, reduced data set which consists of the following three image
pairs of the clean pass of each scene: the pair in the middle, the pair five frames before
and the pair five frames after it, respectively. An overview of the respective reference
frames is given in Tab. 1.1. Usually any component analysis using MPI Sintel training
data will be conducted on the defined subset. Whenever we need to distinguish between
results from different benchmarks, the respective results will be labeled as Sintel (sub.).

KITTI Vision Benchmark (2015)

In 2015, another edition of the KITTI Vision Benchmark Suite, KITTI 2015 [92], has been
published. It advances over the KITTI 2012 benchmark by relying on color images and
providing dynamic scenes with individually moving objects like cars in the scene. The
ground truth of the static parts of the scenes is generated from LIDAR scans as in KITTI
2012 whereas the ground truth of dynamically moving cars is generated by masking
the cars, fitting 3-D CAD models of cars to these cars in all frames of the sequence
and estimating densely their 3-D scale, pose and rigid body motion within the scene.
Although this procedure also introduces a source of inaccuracy, visual inspections with
manual exclusion of critical parts let the producers conclude that the ground truth is at
least 3 pixels accurate at most parts. Hence, they provide a mixed sparse-dense ground
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truth where again the BP3 error measure, which is robust to small imprecisions, can be
used to evaluate the performances of the optical flow methods.

Impact on Optical Flow Research

Due to the different characteristics that the different benchmarks have w.r.t. data
challenges or apparent motion patterns, methods that have been published in two or
more of the respective rankings can have a substantially different order. A method that
is accurate in a specific setting may be less accurate in another. Hence, this variety of
benchmarks helps finding appropriate models depending on the application scenario.

1.6 Contributions

Among the presented data challenges, particularly two of them are addressed within
the scope of this thesis: large displacements and illumination changes. Within a general
framework for variational motion estimation, we will provide advanced concepts for the
treatment of these challenges. First of all, for both of them we will compare extrinsic
concepts for addressing them with an intrinsic variational estimation. In the case
of large displacements, the extrinsic concept is the inclusion of separately estimated
feature matches that are supposed to contain the large displacements while the intrinsic
concept is the adaptation of a variational baseline method such that it can estimate the
large displacements itself. In the case of illumination changes, the extrinsic concept
is the usage of illumination-invariant features in the data term that simply ignore
the type of information that contains certain types of illumination changes while the
intrinsic approach is the modification of a variational baseline method such that it can
estimate and respect the illumination changes instead of discarding them. And on top
of this, we will show, how all the concepts can be combined for the estimation of large
displacements in the presence of illumination changes in a purely variational setting.
In the following, let us comment on the contributions of this thesis in detail.

1.6.1 Large Displacement Optical Flow

The successful era of variational methods started with the seminal approach of Horn
and Schunck [68] in the early 80s of the last century. Its linearized data term, however,
is a limiting factor w.r.t. the displacement sizes as the linearization is usually only valid
for small displacements. A concept to postpone the linearization to the numerical step
has been proposed by Brox et al. [26]. This allows for the estimation of absolute large
displacements. Relative large displacements, however, are still a considerable challenge
in optical flow. In order to overcome this limitation, Brox et al. integrated the local
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feature matching approach into the variational framework [25, 27]. Nevertheless, their
straightforward integration lead to deteriorations in the small displacement setting.

Before we will discuss our contributions to improve the handling of relative large
displacements, we will start by further sub-categorizing these displacements into mod-
erately and arbitrarily large displacements. These are the result of a deeper analysis of
the deficiencies of the conventional coarse-to-fine warping scheme which also gives
hints on how to handle both cases. While the literature does not follow this sub-
categorization and directly targets arbitrarily large displacements, moderately large
displacements offer a broader spectrum of approaches for their estimation.

In this thesis, we provide two major contributions in the context of moderately large
displacements and of arbitrarily large displacements. Both of them have been published
at conference venues [129, 127].

Ï Our first approach follows the ideas of Brox et al. [25, 27] targeting the estimation of
arbitrarily large displacements but addresses this problem by restricting the integration
of feature matches to only those locations where additional guidance is considered to be
helpful [129]. At locations where the optical flow that is computed with the variational
baseline method is already appropriate, we avoid the integration of feature matches.
The optical flow at these locations could hardly be improved by good feature matches
but it could be severely deteriorated by false matches. We will present a scheme to
determine such locations and, moreover, we will also present an additional confidence
measure that rates the improvement of a feature match over the baseline flow vector.
Both concepts are based on the evaluation of the data term which serves as an indicator
for the quality of feature matches and optical flow vectors. Overall, the restricted
integration of feature matches and the improved confidence measure lead to strongly
improved results compared to prior works in the context of relative large displacements.

Although this strategy does reduce the number of false matches at locations where con-
ventional optical flow already is appropriate, it cannot prevent prevailing false matches
from deteriorating the result at locations where additional guidance is necessary. In this
case, different strategies are possible that address the problem from different viewpoints
and may complement each other: the integration of more discriminative features as
e.g. proposed by Weinzaepfel et al. [154], or a post-regularization step of a given set of
features as proposed by Drayer and Brox [44].

Ï Our second approach focuses on a different strategy which is targeted at handling
moderately large displacements: We integrate matches with inherent regularization
[127] where we apply a de-regularization strategy within a variational approach. To this
end, we follow our analysis of the deficiencies of conventional coarse-to-fine warping
schemes which reveals a balancing problem between the data term and the smoothness
term on coarse levels in case of moderately large displacements. The key idea of our
approach is to maintain different smoothness weights at the same time in order to
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obtain results for different balances between both terms. Within appropriate balances,
the resilient brightness constancy assumption (BCA) is in many cases able to establish
a large displacement correspondence even for small objects. The estimation of these
results is done jointly in a combined variational framework which, moreover, also
includes a fusion term that adaptively combines the differently smooth results into a
final flow field.

1.6.2 Illumination Changes

The basic brightness constancy assumption that has been used in the early works
[68, 81] of optical flow estimation is a very intuitive assumption to use. In the presence
of illumination changes, however, it becomes invalid as the brightness values of corre-
sponding pixels do not coincide anymore. As a consequence, constancy assumptions
on features with advanced illumination invariance have been developed. This includes
gradient-based features of different orders to cope with additive illumination changes
as used in [26, 94, 155, 79, 109] or relative-order based features to cope with any type
of monotonic illumination changes as used in [162, 124, 106, 23, 40]. Nevertheless, this
invariance is bought by a loss of information. Especially in homogeneous regions,
constancy assumptions based on these invariant features cannot help steering the
estimation of the optical flow.

Ï In this thesis, we address this problem by proposing a very general variational
framework that is parametrized in terms of exchangeable basis functions and thus is
able to estimate different types of illumination changes jointly with the optical flow. The
corresponding approach has been published at a conference [41]. Our joint approach
has two advantages compared to approaches based on invariances: (i) It does not discard
important illumination information, and (ii) It allows to learn these basis functions
from training data.

The coefficients that determine the influence of each type of illumination change (where
the type is parametrized by a basis function) enter the variational approach as additional
functions that have to be estimated. In order to distinguish motion-induced changes
of pixel values from illumination-induced changes, a well-balanced regularization
strategy is necessary. Our research focuses on the embedding of these strategies into
the variational framework, particularly by extending the motion tensor notation by
entries for the illumination coefficients and balancing appropriate regularizers for the
optical flow and for the illumination coefficients. In contrast to the PhD thesis of
Demetz [39], who is co-author of the corresponding paper [41], we rather focus on the
modeling than on the learning part.
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1.6.3 Large Displacement Optical Flow in the Context of

Illumination Changes

Finally, it would be desirable to extend our approach that handles moderately large
displacements such that it can handle these large displacements in the presence of
illumination changes. The pure de-regularization (as realized in [127]) has deficiencies
in the context of illumination changes, since the brightness constancy assumption
(BCA) does not hold. Simply replacing it by invariant constancy assumptions such
as the gradient constancy assumption (GCA) to handle these illumination changes,
however, does not work, since this constancy assumption provides sparse information
and hence is not resilient enough to find a balance with the smoothness term that
allows for the estimation of large displacements. Unfortunately, the de-regularization
strategy strongly depends on resilient data terms, such as the BCA.

Ï Hence, as a further contribution, we combine our approach from [127] with the
approach from [41], that estimates illumination changes, in order to be able to keep the
BCA in the data term. The corresponding approach has been published at a conference
[128]. Unfortunately, a straightforward combination is not possible, since the joint
estimation of optical flow and illumination changes from [41] requires a significant and
well-balanced regularization strategy for all involved unknowns which, however, is not
possible with all the low smoothness weights that appear during the de-regularization
in [127]. Hence, we disassemble the joint variational model into a pipeline approach
including a distinguished step for the estimation of illumination changes.

Similar to our first work on large displacements [129], we start by computing the base-
line flow – where the variational model includes invariant data constancy assumptions
such as the GCA. This flow field serves both as a basis to subsequently estimate the
illumination changes and as a basis to determine locations where additional matches can
be helpful. In contrast to [129], however, these matches are flow candidates obtained
from de-regularized variational approaches instead of feature matches. The illumina-
tion changes are determined similar to [41], this time, however, with an initial flow
field provided by the baseline. Using the estimated illumination changes, we can then
compensate the first frame for these changes, which allows us to apply the BCA as a
resilient data term within a de-regularization similar to [127]. This way, we obtain flow
candidates that consist of relative large displacements in the context of illumination
changes. A fusion based on data reliability and candidate reliability measures similar
to [127] provides the final field of flow candidates. Finally, we integrate these candi-
dates only at promising locations where further guidance by additional candidates is
necessary, similar to [129].
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1.6.4 Tensors for Point Constraints

The handling of data challenges requires appropriate data terms that are able to integrate
corresponding data into a variational optical flow estimation. In this context, linear
data terms or linearized versions of data terms play an important role, since typical
modern variational optimization frameworks eventually end up in solving series of
linear equation systems. Such linear(ized) data terms allow for a formulation in terms
of a motion tensor notation [28, 47, 30] which allows to embed different linear data
terms into a variational framework by only providing the corresponding motion tensor.

Ï Hence, on the one hand, we provide motion tensor notations for all data terms that
are used within this thesis. On the other hand, we derive motion tensors for important
concepts from the literature and, inspired by these concepts, develop novel directional
similarity and directional regularization [88] constraints that allow for a corresponding
tensor formulation.

1.7 Organization

The organization of this thesis roughly breaks down into three main parts: prelimi-
naries on variational optical flow methods, our research on data challenges and the
presentation of a suitable notation in terms of motion tensors for point constraints.

Preliminaries. In Chapter 2, we present the foundations on variational motion estima-
tion. This includes a definition as well as the minimization of such models. Moreover,
we present several methods from the literature that constitute a golden thread from the
very beginning of this type of approaches up to the immediate baseline methods and
techniques which are the starting point of our research.

Research on Data Challenges. The next block of chapters, which comprises the
Chapters 3 to 6 presents our research on relative large displacements introducing two
novel methods (Chapter 3 and Chapter 4), our research on the handling of illumination
changes (Chapter 5) and as a comprising culmination our research on estimating relative
large displacements in the context of illumination changes (Chapter 6).

Chapter 3. The presentation of our method on arbitrarily large displacements in Chap-
ter 3 introduces a novel variational method with a similarity term, demonstrates the
adaptive integration of feature matches and completes with a thorough evaluation.

Chapter 4. We go on with our method on moderately large displacements in Chapter 4
where we begin with an introduction into the notion of moderately large displacements.
In the following, we present a novel variational model for their estimation, which is
complemented by an adaptive weighting scheme, and demonstrate its performance in
terms of an extensive evaluation.
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Chapter 5. The part on handling illumination changes in Chapter 5 starts by introducing
the concept of estimating illumination changes in terms of brightness transfer func-
tions (BTFs) followed by the presentation of a very flexible parametrization framework
to express them in terms of basis functions and coefficients . The core of the joint
estimation of illumination changes and optical flow is given by our novel variational
model which estimates these illumination coefficients along with the optical flow. We
go on further by demonstrating how the basis functions for the parametrization of BTFs
can be learned from training data. Finally, we present several experiments in order to
evaluate our method.

Chapter 6. Our final method on estimating relative large displacements in the context
of illumination changes is presented in Chapter 6 and combines concepts from the
previous chapters. Since the joint estimation requires a well-balanced regularization
strategy for all unknowns, which would be perturbed by a de-regularization scheme
on the flow, a completely joint model for estimating illumination changes and relative
large displacements is out of scope. We thus start with the presentation of a partially
decoupled method where a sequence of optical flow estimation and illumination change
estimation is followed by a step that compensates the image data for the illumination
changes. Thus, the variational approach that incorporates a de-regularization strategy
can be applied on photometrically-compensated image data to account for the illu-
mination changes. Afterwards, we present the results of the evaluation. In order to
obtain improving results, we further decouple the method where we present different
confidence measures as indicators of the flow quality, select candidate regions to restrict
the integration of flow candidates to promising locations, introduce variational models
which generate candidate flows and present a novel scheme to select the most promising
flow candidates at each location of the candidate regions. Finally, we present several
experiments that examine the different components of our method and the overall
performance.

Tensor Notation. The last main part in Chapter 7 gives an overview on important
tensors for point constraints (including the well-known family of motion tensors), both
embedding tensors for the data constraints of the previous chapters into a general
framework and deriving novel tensors for concepts from the literature within the same
framework.

Finally, Chapter 8 concludes this thesis. The appendix consists of three parts: In Ap-
pendix A, we state the final parameters that we have obtained through the experiments
on our different methods for the different benchmarks. As a supplement to Chapter 5,
Appendix B provides the results of an extensive experiment on handling color chan-
nels when estimating illumination changes. Appendix C provides an overview of all
peer-reviewed publications of the author of this thesis.





Chapter

2

Preliminaries on

Variational Optical Flow

Variational approaches have a long and successful tradition in the context of optical
flow estimation. Over the last four decades, many of the leading methods of their
time have belonged to the class of variational methods, such as [68, 26, 165, 155, 159,
164, 148, 129, 154, 108, 41, 105, 87, 89], or use variational methods as an important
refinement step within a pipeline approach, such as [111, 6, 58, 7, 157, 69, 86]. These
allow for a transparent modeling where different minimization methods such as the
Euler-Lagrange framework, used e.g. in [68, 97, 117, 5, 26, 148, 41, 89], or primal-dual
approaches, used e.g. in [163, 150, 156, 159, 105], can be used to find a solution.

In the calculus of variations [45], mathematical problems are formulated in terms
of a global energy which is to be minimized. This global energy itself usually is
composed as a weighted sum of energy expressions that encode assumptions on the
minimizing solution, the so-called variational model. Typically, these assumptions favor
constancies in some aspects and thus measure deviations, s.t. any kind of deviation
from the assumption will contribute to the global energy with a positive value. The
weights that are associated with the assumptions express their importance within the
model. Typically not all assumptions can be fulfilled at the same time, such that this
balancing steers the characteristics of the solution w.r.t. the different assumptions in
the variational model. Hence, the solution is the optimal compromise between such
assumptions.

2.1 Variational Optical Flow Estimation

A typical variational model for computing the optical flow contains at least two different
terms, a data term and a smoothness term (accompanied by some balancing weight).
For the optical flow w(x) = (u(x), v(x),1)⊤ over the rectangular image domain Ω⊂R

2



26 Chapter 2 • Preliminaries on Variational Optical Flow

as a minimizer of such a model, the structure of such a global energy is given by

E(w) =
∫

Ω

D(w)
︸ ︷︷ ︸

Data Term

+ α
︸︷︷︸

Weight

· S(w)
︸ ︷︷ ︸

Smoothness Term

d x̃ , (2.1)

where x= (x, y, t )⊤ is a coordinate in the spatio-temporal domain Ω×R with the spatial
counterpart x̃= (x, y)⊤ ∈Ω. For the sake of readability, we will omit the coordinate x
in the estimated functions as long as it can be derived from the context.

Data Term. The data term D(w) connects the given (image) data and the solution w.
The literature has proposed a variety of constancy assumptions on these data that can
be used within the data term. However, most of them rely on data from a given set of
images (at least two). Such an image sequence I is given by

I : Ω×R→R
Nc

where R ⊂R is the range for each of the Nc image channels. The original image input
usually is given either by a grey value image sequence (Nc = 1) or by an RGB color image
sequence (Nc = 3). Nevertheless, images can additionally undergo some kind of image
transformation (like e.g. the Census Transform [124] or the Complete Rank Transform
[40]) which results in an image sequence of higher dimensionality, i.e. Nc > 3.

Smoothness Term. The smoothness term S(w), in contrast, formulates assumptions
on the structure of the solution, i.e. how the solution may vary within its neighborhood.
Although such a smoothness term can be guided by image data, it only encodes relations
between neighboring displacements. Small (higher-order) derivatives of u and v prevent
arbitrary fluctuations in the neighborhood of the flow which in general is a desirable
assumption. Moreover, it guides the estimation to a solution at those locations where the
motion cannot be uniquely determined by the data term – which has been introduced
as the aperture problem in Chapter 1, Sect. 1.4 (filling-in effect).

2.2 The Euler-Lagrange Framework

For variational models of this and other types, we want to find a minimizer that fulfills
the underlying assumptions as effectively as possible. There are different types of
approaches to calculate them. On the one hand, this includes primal-dual approaches
[163] which can cope with non-differentiable expressions in the model. On the other
hand, if all expressions are differentiable, solving the Euler-Lagrange equations is the
widely-used and straightforward approach [68].

Given a general variationalmodel of N functionsu= (u1, . . . ,uN )⊤ on a two-dimensional
domain Ω containing derivatives of order two or less which reads

E(u) =
∫

Ω

F (x;u1, . . . ,uN ;∇u1, . . . ,∇uN ;H u1, . . . ,H uN ) d x̃ , (2.2)
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where the integrand F is the Lagrange-Function, ∇=∇2 := (∂x ,∂y )⊤ is the standard
gradient operator and H is the Hessian matrix, a minimizing vector-valued function
u(x̃) = (u1(x̃), ...,uN (x̃))⊤ must fulfill the Euler-Lagrange equations

Fu1
−

∂

∂x
Fu1x

−
∂

∂y
Fu1 y

+
∂2

∂x∂x
Fu1xx

+
∂2

∂x∂y
Fu1x y

+
∂2

∂y∂x
Fu1 y x

+
∂2

∂y∂y
Fu1 y y

= 0 ,

Fu2
−

∂

∂x
Fu2x

−
∂

∂y
Fu2 y

+
∂2

∂x∂x
Fu2xx

+
∂2

∂x∂y
Fu2x y

+
∂2

∂y∂x
Fu2 y x

+
∂2

∂y∂y
Fu2 y y

= 0 ,

...
...

...
...

FuN
−

∂

∂x
FuN x

−
∂

∂y
FuN y

+
∂2

∂x∂x
FuN xx

+
∂2

∂x∂y
FuN x y

+
∂2

∂y∂x
FuN y x

+
∂2

∂y∂y
FuN y y

= 0 ,

with boundary conditions

n⊤
(

Fuix
−∂xFuixx

−∂yFuix y

Fui y
−∂xFui y x

−∂yFui y y

)

= 0, n⊤
(
Fuixx

Fuix y

)

= 0, n⊤
(

Fui y x

Fui y y

)

= 0,

for all equations for the sought functions ui (i = {1, ..., N }), where n is an outer normal
vector pointing across the image boundary. A derivation of these boundary conditions
can be found in [83]. In case that E(u) is strictly convex, there is a unique solution of
the equation system and thus a unique minimizer of the functional.

Variational Optical Flow Model. For the general variational model for optical flow
in Eq. 2.1 that depends on two functions u and v contained in w, we obtain

Fu −
∂

∂x
Fux

−
∂

∂y
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+
∂2

∂x∂x
Fuxx

+
∂2
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Fux y
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+
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Fuy y
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+
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∂x∂y
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+
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∂y∂x
Fvy x

+
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Fvy y

= 0

with boundary conditions
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Fux −∂xFuxx −∂yFux y

Fuy −∂xFuy x −∂yFuy y
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Fux y
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and

n⊤
(
Fvx −∂xFvxx −∂yFvx y

Fvy −∂xFvy x −∂yFvy y

)

= 0, n⊤
(
Fvxx

Fvx y

)

= 0, n⊤
(
Fvy x

Fvy y

)

= 0.
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2.3 Minimization

Although the modeling is elegant in the continuous domain, we first have to discretize
the Euler-Lagrange equations in order to have conditions for each pixel of the minimizer
when using discrete data.

Discretizations. Based on a grid of N pixels in x-direction and M pixels in y-direction
with pixel sizes hx and hy , we sample all zeroth order expressions v of data and solution
vector entries as

vi , j = v(i ·hx , j ·hy ) .

Derivatives are approximated with finite differences. Hereby, spatial derivatives are
discretized using central differences and temporal derivatives are discretized using
forward differences. The stencils are as follows: spatial derivatives of the images are
approximated using the stencil 1

12hx,y
(1,−8,0,8,−1) (consistency order 4) while tempo-

ral differences of the images are approximated using the stencil (−1,1) (consistency
order 1), spatial first-order derivatives of the unknown flow are discretized using the
stencil 1

2hx,y
(−1,0,1) (consistency order 2) and second-order derivatives of the flow are

discretized using the stencil 1
h2

x,y
(1,−2,1) (consistency order 1).

Discrete Equation System. After all quantities have been discretized appropriately,
we obtain an equation system with conditions for each pixel of each component of the
solution vector u. This indeed means, that we have dim(u) · (N ·M) equations. Even
in the case of a linear equation system, a direct solution using e.g. Gauss-Elimination
is intractable. These problem sizes usually require iterative solvers such as the Jacobi-
method or the Gauss-Seidel-method, potentially embedded in over- or underrelaxation
strategies like the successive overrelaxation method (SOR) [161] or like the Fast-Jacobi
method (FJ) [151].

2.3.1 Lagged Nonlinearity Method

In the prevalent case of nonlinear equation systems, there are nonlinear functions of
the unknowns. This makes the direct application of iterative linear solvers impossible.
Nonlinearities usually appear in two variants: (i) the equations are not explicit in the
unknowns and (ii) the unknowns are explicit but weighted by functions that depend on
the unknowns themselves.

We will later detail on the first case. For the second case, we can apply the so-called
lagged nonlinearity method, also known as the Kačanov-Galerkin method [49]. That
means, we introduce a fixed-point iteration that transforms a non-linear equation
system into a series of linear equation systems.
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Introducing Different Time Steps. For all expressions of an unknown u of the type
0= . . .+ g (u) ·u, where g is a non-constant function, we compute u at a new time step
k +1 while evaluating g on an old time step k and keeping g (u) fixed. In this case, we
obtain 0= . . .+ g (uk ) ·uk+1 which is linear in uk+1. After we have solved the equation
system for uk+1, we move on to the next time steps k +2, k +3, . . . and obtain a new
linear equation system in each time step where all appearances g are treated as fixed
weights. This can be related to an iterative reweighted least squares (IRLS) approach
[67, 71], where the reweighting is identified with the evaluations of the function g .

2.4 A Golden Thread of

Variational Motion Estimation

After we have discussed the mathematical foundations of variational motion estimation,
we are now in the position to build a golden thread in variational motion estimation
that lead to the development of the immediate baselines of our research. To this end, let
us give an overview of these methods and which of their basic concepts influenced our
work (see Fig. 2.1). Please note that this is not intended to be a complete review of the
history of variational motion estimation but an excerpt that guided the development
of our baseline methods. We start with the method of Horn and Schunck [68] as
the pioneering variational method that is the basis for most successive works in this
field. It combined the brightness constancy assumption (BCA) (in a linearized version)
with a global smoothness assumption to obtain dense optical flow fields. On top of
this, the method of Brox et al. [26] combined several concepts that include a sub-
quadratic penalization [18] for both terms to make the estimation more robust against
outliers, the consideration of the gradient constancy assumption (GCA) [142] to gain
invariance under illumination changes and the use of a coarse-to-fine warping strategy
[15] to overcome the drawbacks of the so far linearized data term and to allow for the
estimation of large displacements. A slight variation of the penalization strategy has
been introduced by Bruhn and Weickert [29], who proposed a separate penalization
of the BCA and GCA within the data term, since outliers of one of these assumptions
are not necessarily outliers of the other. Two further works improved over the latter
method in different aspects: the method of Zimmer et al. [165, 164] and the method of
Brox et al. [25, 27]. On the one hand, the method of Zimmer et al. reduces an implicit
weighting in the data constancy assumptions – that provides more influence to these
constraints in regions of high contrast compared to low contrast regions – in terms of
a constraint normalization [77], it employs a data term that handles color images [101]
and it proposes an anisotropic smoothness term that works complementary to the data
term. On the other hand, Brox et al. [25] supplement the variational motion estimation
with a feature matching step to allow for an estimation of relative large displacements.
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an excerpt of inspiring methods and their underlying concepts

Horn & Schunck (1981)

• global variational method

• brightness constancy assumption (BCA)

Brox et al. (2004)

• subquadratic penalization

• gradient constancy assumption (GCA)

• coarse-to-fine warping

Bruhn & Weickert (2005)

• separate penalization of BCA and GCA

Zimmer et al. (2009/2011)

• use of color images

• constraint normalization

• complementary anisotropic regularization

Brox, Bregler and Malik (2009/2011)

• integration of external feature matches

Figure 2.1: An overview of the variational methods that are important in this thesis.
For each method, we state the underlying concepts that are important for our research.

2.5 The Method of Horn and Schunck

Let us now discuss the starting point of our golden thread: the method of Horn and
Schunck [68]. Its data term formulates the most intuitive and basic constancy assump-
tion for corresponding pixels of the reference frame and the successive frame: the
brightness constancy assumption (BCA). Given two successive (grey value) image frames
of an image sequence I at the time steps t and t+1, the grey values of pixel x= (x, y, t )⊤

and its corresponding pixel x+w= (x +u, y + v, t +1)⊤ shall coincide, i.e.

I (x) = I (x+w) . (2.3)

In order to formulate this assumption in terms of an energy expression, we put all terms
on one side of the equation in order to derive an expression that is zero in the ideal
case:

0 = I (x+w)− I (x) . (2.4)

The smoothness term expresses the very intuitive assumption that neighboring pixels
shall undergo the same motion, which can e.g. be seen at the surfaces of objects where



2.5 • The Method of Horn and Schunck 31

all pixels move consistently. In that ideal case, the gradient of the optical flow vanishes
and we obtain

∇u = 0 , (2.5)

∇v = 0 . (2.6)

Basic Energy Functional. In order to plug all this into a global variational energy,
we have to formulate the derived expressions in a way such that deviations in both
directions symmetrically lead to positive energies. Due to the derivatives that come into
play when deriving the Euler-Lagrange equations, this formulation must furthermore
be differentiable. A suitable formulation is to square the expressions for the brightness
constancy assumption and the smoothness assumption. This way, all expressions are
positive, differentiable and on top of this, the derived Euler-Lagrange equations do not
contain any additional nonlinear expressions. By summing up both terms, we ensure
that both assumptions influence the final solution weighted by a parameter α. The
integration over the image domain Ω ensures a dense result while the smoothness
term enforces communication between pixels making this method global. Hence, the
simplest global variational model for estimating a dense optical flow w reads

E(w) =
∫

Ω

(I (x+w)− I (x))
2+α

(

|∇u|2+|∇v |2
)

d x̃ . (2.7)

Linearization. When we now determine the Euler-Lagrange equations of this model,
there is a problem: the flow vectorw is only implicit in the data term. This is an obstacle
to solving the equation system. However, if I is sufficiently smooth, we can linearize
this constancy assumption around x which reads

0 = I + Ixu + Iy v + It ·1
︸ ︷︷ ︸

Linearization of I (x+w)

−I

⇔ 0 = Ixu + Iy v + It = ∇3I⊤w . (2.8)

This constraint is also known as the optical flow constraint (OFC).

2.5.1 Final Model

If we now plug the expression in Eq. 2.8 into the model in Eq. 2.7, we obtain the final
variational model of Horn and Schunck which reads

EHS(w) =
∫

Ω

(

Ixu + Iy v + It

)2+α
(

|∇u|2+|∇v |2
)

d x̃ . (2.9)

This leads to linear Euler-Lagrange equations for the method. Nevertheless, the lin-
earization is typically only valid for small displacements and the quadratic penalizer
functionsmake this method vulnerable to both outliers in the data constancy assumption
as well as outliers in the smoothness assumption.
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2.5.2 Differentiability Aspects

Particularly the OFC makes use of derivatives of image data while other conceivable
data terms might even involve higher-order derivatives. Since image data has external
sources, differentiability of that data cannot be guaranteed a priori. A widely used
remedy to this problem is the application of a Gaussian smoothing to the given data. It
ensures that the filtered data is infinitely many times continuously differentiable and
thus stabilizes the numerical evaluation of its derivatives [59]. In the remainder of this
thesis, we will hence assume all images to be filtered with a Gaussian with standard
deviation σ.

2.5.3 Euler-Lagrange Equations

Let us state the Euler-Lagrange equations explicitly for this pioneering work. The
integrand F (x, y,u, v,ux ,uy , vx , vy ) is given by

F =
(

Ixu + Iy v + It

)2+α
(

|∇u|2+|∇v |2
)

=
(

Ixu + Iy v + It

)2+α
(

u2
x +u2

y + v2
x + v2

y

)

. (2.10)

Sincewe have two unknowns, the general equation system associated to a 2-D functional
consists of two equations, one for u and one for v , and is given by

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy , (2.11)

0 = Fv −
∂

∂x
Fvx −

∂

∂y
Fvy . (2.12)

The partial derivatives can be computed as

Fu = 2 · Ix ·
(

Ixu + Iy v + It

)

, ∂
∂x

Fux = α2uxx ,
∂
∂y

Fuy = α2uy y ,

Fv = 2 · Iy ·
(

Ixu + Iy v + It

)

, ∂
∂x

Fvx = α2vxx ,
∂
∂y

Fvy = α2vy y .

Plugging in these expressions and dividing by 2, the final system of equations reads

0 = Ix ·
(

Ixu + Iy v + It

)

−α∆u , (2.13)

0 = Iy ·
(

Ixu + Iy v + It

)

−α∆v , (2.14)

with reflecting Neumann boundary conditions n⊤∇u = 0 and n⊤∇v = 0 (where n is an
outer normal vector pointing across the image boundary) and ∆u = uxx +uy y being
the standard Laplace-operator.
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2.5.4 Motion Tensor Notation

Any kind of quadratic data term based on linear or linearized constancy assumptions
for the optical flow w can be written as (w⊤p)2 where p defines the constraint on w.
We can derive the so-called motion tensor J [30, 47] from this formulation via:

(w⊤p)2 = 0

⇔ (w⊤p)(w⊤p)⊤ = 0

⇔ w⊤pp⊤
︸ ︷︷ ︸

=:J

w = 0

⇔ w⊤ J w = 0 . (2.15)

For the example of the linearized BCA, we obtain pBCA = (Ix , Iy , It )⊤ as the generating
or constraint vector (see Eq. 2.8) such that the motion tensor JBCA reads:

JBCA = pBCA p⊤
BCA

= (Ix , Iy , It )
⊤

(Ix , Iy , It )

=





Ix Ix Ix Iy Ix It

Iy Ix Iy Iy Iy It

It Ix It Iy It It



 . (2.16)

Rewriting Equations. Using this notation, we can rewrite the partial derivatives Fu

and Fv of the Euler-Lagrange equations. To generalize things, we identify w1 := u and
w2 := v and denote the j -th row of the motion tensor J as J( j ). The respective partial
derivative Fw j

, where j is the index of an unknown of the variational model, is then
given by

Fw j
= 2 · J( j )w

= 2 ·p j ·p⊤w (2.17)

with p= (p1, p2, p3)⊤.

Basis of a General Framework. This notation allows for a general framework that is
able to express a lot of pointwise constraints comprising constancy assumptions based
on higher order features (see Sect. 2.6.2), similarity terms (see Sect. 2.10.1) or trajectorial
regularizers (see Chapter 7, Sect. 7.5).

2.6 The Method of Brox et al.

The method of Horn and Schunck has been a pioneering work in variational optical flow
estimation. However, it has some drawbacks: It is vulnerable to outliers in the data and
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the solution due to the quadratic terms, it is only able to estimate small displacements
due to the linearized data term, and it is not robust against illumination changes between
both frames since the BCA cannot match correspondences with different brightness
levels. The method of Brox et al. [26] addresses these issues and introduces concepts to
overcome these drawbacks: It uses sub-quadratic penalizer functions to add robustness
against outliers, it adds some degree of illumination invariance due to using an advanced
data constancy assumption, and it allows to estimate large displacements due to the
usage of a data term without linearization. Based on the method of Horn and Schunck,
we will discuss these concepts in the following independently from each other.

2.6.1 Sub-Quadratic Penalization

In a global variational optical flow method, there are at least two terms, i.e. the data
term and the smoothness term, that steer the final solution.

Outliers. In the image domain there are always locations where the correct solution
cannot fulfill the assumptions behind both terms. This includes intentional motion
discontinuities that contradict the smoothness assumption as well as noisy data or
occlusions where the correct solution contradicts the data constancy assumption(s). By
using quadratic terms, the estimated solution tends to be a trade-off and thus violating
both assumptions to some comparably small extent instead of putting most trust in
the locally more appropriate term and violating the other one to a potentially greater
extent.

Introducing Penalizer Functions. Let us consider the variational model of Horn and
Schunck to be equipped with a quadratic penalizer function Ψ(s2) = s2 around both
terms, then we can rewrite Eq. 2.9 as

E(w) =
∫

Ω

Ψ

((

Ixu + Iy v + It

)2
)

+αΨ
(

|∇u|2+|∇v |2
)

d x̃ . (2.18)

Now, we are able to replace this penalizer function Ψ by a sub-quadratic differentiable
counterpart that locally allows for higher deviations without affecting the overall energy
too much. In the minimization using the Euler-Lagrange equations, the expressions that
are associated to each of the terms are multiplied with the outer derivativeΨ′ = ∂

∂s2
Ψ(s2)

which is a decreasing function if Ψ is sub-quadratic. For local deviations in one of the
assumptions, which lead to large arguments of both Ψ and Ψ

′, this comes down to a
local downweighting of the respective assumption. Still, such a sub-quadratic penalizer
function should have some particular properties: it should be positive, increasing in
the argument s2 and strictly convex to allow for a unique solution [152]. However, we
will later refrain to some extent from the last requirement when introducing advanced
smoothness terms.
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Subquadratic Penalizers. A typical choice for such a sub-quadratic penalizer function
is the (regularized) absolute value function Ψ(s2) =

p
s2+ǫ2 [26], where ǫ> 0 ensures

differentiability at s2 = 0, or its weighted equivalent, the Charbonnier regularizer
Ψ(s2) = 2ǫ2

p
1+ s2/ǫ2 [33]. When such a penalizer function is applied to the data term,

it adds robustness against noise and occlusions [18, 19], whereas in the case of the
smoothness term, such a function allows for motion discontinuities, i.e. it makes the
smoothness term discontinuity-preserving and the results become piecewise smooth
[97, 117, 42, 2, 152].

2.6.2 Robustness against Illumination Changes

The drawback of the brightness constancy assumption (BCA) is the fact that it is not
robust against illumination changes. A constancy assumption can be made robust
against some type of illumination changes if the information that encodes this type of
changes can be discarded. We can consider the brightness just as a feature of a pixel in
the image and the BCA as an instance of a feature constancy assumption. A first step
towards illumination invariance is achieved by using gradient information as a feature
in the constancy assumption [137, 142, 136, 117]. This way the data term becomes
robust against additive illumination changes. In contrast to the brightness, which is
a scalar feature, the gradient is vector-valued feature consisting of the x-derivative
and the y-derivative. Hence, the gradient constancy assumption (GCA) provides two
constraints:

Ix(x)− Ix(x+w) = 0 , (2.19)

Iy (x)− Iy (x+w) = 0 . (2.20)

Similar to the BCA, we can also linearize these constraints which reads

Ixxu + Ix y v + Ixt = 0 , (2.21)

Iy xu + Iy y v + Iy t = 0 . (2.22)

Motion Tensor Notation

From this linearization, we obtain the generating vectors of the motion tensor for each
constraint as pGCA,x = (Ixx , Ix y , Ixt )⊤ and pGCA,y = (Iy x , Iy y , Iy t )⊤, respectively. The
motion tensor of a vector-valued constraint is given by the sum of the motion tensors
generated by the vectors p of each constraint. In this case, this reads

JGCA = JGCA,x + JGCA,y

= pGCA,x p
⊤
GCA,x +pGCA,y p

⊤
GCA,y
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=





Ixx Ixx Ixx Ix y Ixx Ixt

Ix y Ixx Ix y Ix y Ix y Ixt

Ixt Ixx Ixt Ix y Ixt Ixt



+





Iy x Iy x Iy x Iy y Iy x Iy t

Iy y Iy x Iy y Iy y Iy y Iy t

Iy t Iy x Iy t Iy y Iy t Iy t





=





Ixx Ixx + Iy x Iy x Ixx Ix y + Iy x Iy y Ixx Ixt + Iy x Iy t

Ix y Ixx + Iy y Iy x Ix y Ix y + Iy y Iy y Ix y Ixt + Iy y Iy t

Ixt Ixx + Iy t Iy x Ixt Ix y + Iy t Iy y Ixt Ixt + Iy t Iy t



 . (2.23)

Both tensors JBCA and JGCA are then combined in a weighted sum, such that the
linearized data term reads

EData(w) =
∫

Ω

w⊤ (

JBCA+γJGCA
)

w d x̃ . (2.24)

This data term keeps the full information of the given data via the BCA and adds
robustness against illumination changes via the GCA. Depending on the context, the
weight γ can be adjusted to determine the balance between both aspects.

2.6.3 Large Displacements

So far, we have only considered data constraints in their linearized version, since the
linearization makes the unknowns explicit. The linearization, however, is only valid for
small displacements, since it is a local approximation of the original problem which
usually is not linear. An alternative approach is to keep the original assumptions
without linearizations [97, 74, 3] and to postpone the linearization step to the numerical
scheme. In contrast to the functional with linearized data constancy assumptions, which
is convex, the original one is non-convex and has multiple local minima instead of a
global one.

Coarse-to-fine Schemes. In order to find a global or at least a good local minimum
of a minimization problem, coarse-to-fine schemes have become popular [19, 91]. They
iteratively solve downsampled versions of the problem starting from a coarse resolution
up to the original resolution and use solutions from coarser resolutions as initializations
for the solutions on the finer levels. In the context of motion estimation, one can
observe that not only the sizes of objects become smaller on coarser resolutions but
also their displacements. Hence, for each displacement scale, there will eventually be a
resolution level where the displacement is shrinked to an order of magnitude where
the linearization is valid. Having this in mind, it is obvious that large displacements
can be estimated by a linearization on the respective coarser resolution level where
the corresponding displacement becomes small. Doing this iteratively on multiple
resolution levels allows to estimate displacements of arbitrary scales.

Coarse-to-fine Warping. Hence, we can apply a coarse-to-fine warping strategy [15]
which is a particular instance of an incremental coarse-to-fine fixed point iteration:
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Starting with a small displacement estimation on the coarsest possible resolution with
a linearized version of the functional, we upsample the current optical flow to the
next finer level and compensate the second frame for it, i.e. we eliminate the large
displacements that have been estimated on the coarser level (the warping step). This
way, only small displacements remain that can again be estimated with a linearized
version of the functional in a fixed point iteration. These small displacements are then
an incremental solution to the overall problem and added to the upsampled initial
solution (i.e. we conduct an incremental computation). The summed up solution is then
transferred to the next level where again the incremental problem is to be solved.

Mathematical Derivation

Let us now introduce the mathematical concepts behind this strategy. Given the
following non-linear functional

E(w) =
∫

Ω

(I (x+w)− I (x))
2+α

(

|∇u|2+|∇v |2
)

d x̃ , (2.25)

the corresponding Euler-Lagrange equations read

Ix(x+w) (I (x+w)− I (x))+α∆u = 0 , (2.26)

Iy (x+w) (I (x+w)− I (x))+α∆v = 0 , (2.27)

with boundary conditions n⊤∇u = 0 and n⊤∇v = 0.

Fixed Point Iteration. We can now introduce a fixed point iteration by considering
w at different time steps k and k +1 and modifying the equations accordingly:

Ix(x+wk
)

(

I (x+wk+1
)− I (x)

)

−α∆uk+1 = 0 , (2.28)

Iy (x+wk
)

(

I (x+wk+1
)− I (x)

)

−α∆vk+1 = 0 . (2.29)

Incremental Formulation. Here, we can embed the incremental computation by
splitting the unknown wk+1 into a known part wk – which is given by upsampling the
solution from a coarser level or by the initialization w0 = (0,0,1)⊤ on the coarsest level
– and an unknown increment dwk = (duk ,d vk ,0)⊤ from the new time step via

wk+1
︸ ︷︷ ︸

final solution

= wk
︸︷︷︸

upsampled solution

+ dwk

︸︷︷︸

unknown increment

. (2.30)

Hence, we rewrite Eqs. 2.28 and 2.29 as

Ix(x+wk
)

(

I (x+wk +dwk
)− I (x)

)

−α∆uk+1 = 0 , (2.31)

Iy (x+wk
)

(

I (x+wk +dwk
)− I (x)

)

−α∆vk+1 = 0 . (2.32)
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Postponed Linearization. Now, we can linearize the data term with respect to dwk

leaving the known large displacement part wk non-linearized and making the small
displacement increment dwk explicit. The linearized version of the equations reads

0 = Ix(x+wk
)






(

∇3I (x+wk
)

)⊤
dwk + I (x+wk

)− I (x)
︸ ︷︷ ︸

≈ ft




−α∆uk+1

, (2.33)

0 = Iy (x+wk
)






(

∇3I (x+wk
)

)⊤
dwk + I (x+wk

)− I (x)
︸ ︷︷ ︸

≈ ft




−α∆vk+1

. (2.34)

where the spatio-temporal gradient is defined as ∇3 := (∂x ,∂y ,∂t )⊤.

Motion Tensor Notation. Also in this postponed linearization – which for a coarse-
to-fine warping scheme with only one resolution level comes down to the equations
for the linearized model – the motion tensor notation is applicable. However, we have
a different motion tensor J k for each resolution level. For convenience reasons, let us
re-define dwk = (duk ,d vk ,1)⊤. The re-formulated equations are then given by

0 = J k
(1)
dwk −α∆uk+1

, (2.35)

0 = J k
(2)
dwk −α∆vk+1

, (2.36)

where J(i ) denotes the i -th row of the motion tensor J . The motion tensor J k can be
obtained from any linearized constancy assumption or be constituted as the sum of
multiple motion tensors for different linearized constancy assumptions.

Overall Minimization Strategy

Similar to the case of the linearized version of the energy functional, the linearized
sub-problem within the coarse-to-fine warping scheme is convex and thus has a unique
minimizer. Hence, the non-convex minimization problem is approximated by a series
of convex sub-problems.

If the variational model contains sub-quadratic penalizer functionsΨD in the data term
and ΨS the smoothness term, the equations on some coarse-to-fine level k read

0 = Ψ
′
D (dwk⊤ J kdwk

) · (J k
(1)
dwk

)

−α div
(

Ψ
′
S(|∇(uk +duk

)|2+|∇(vk +d vk
)|2)(uk +duk

)

)

, (2.37)

0 = Ψ
′
D (dwk⊤ J kdwk

) · (J k
(2)
dwk

)

−α div
(

Ψ
′
S(|∇(uk +duk

)|2+|∇(vk +d vk
)|2)(vk +d vk

)

)

. (2.38)

Here, there are two fixed point iterations which are applied in a nested way:
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1. In order to get rid of the non-convexity of the original functional, the coarse-to-
fine warping strategy is applied, where the non-convex problem is solved as a
series of convex sub-problems.

2. In order to get rid of the potentially non-linear terms in the resulting convex
sub-problems, the lagged nonlinearity method is applied, where nonlinear sub-
problems are solved as series of linear sub-problems.

Finally, there are series of linear sub-problems which can be solved using iterative
solvers for linear equation systems.

Please note that coarse-to-fine warping fails in cases where a small object is not dis-
tinctive on the coarse-to-fine level that is appropriate to determine its displacement.
This case covers relative large displacements as defined in 1.3.

2.6.4 Final Model

By integrating all the improvements discussed so far, we obtain the following final
variational model for the method of Brox et al.:

EBrox(w) =
∫

Ω

ΨD

(

|I (x+w)− I (x)|2+γ|∇I (x+w)−∇I (x)|2
)

+αΨS

(

|∇2u|2+|∇2v |2
)

d x̃ , (2.39)

where ΨD (s2) =ΨS(s2) =
p

s2+ǫ2 is the (regularized) absolute value function and γ

and α are balancing weights. This type of sub-quadratic smoothness term is also called
Total Variation (TV) [163]. Please note that we omit the spatio-temporal smoothness
assumption that has also been proposed in [26], since it may only improve results for
rotational or divergent motions (when using more than two frames). In other cases,
however, it is not appropriate. Moreover, since the two-frame case is prevalent in this
thesis, we resort to a purely spatial regularization strategy.

2.7 The Method of Bruhn and Weickert

The variational model of the method of Bruhn andWeickert [29] is based on that of Brox
et al. [26]. However, there is a difference when it comes to the penalization strategy
of the involved data term. As we have seen so far, it is beneficial to separately apply
penalization functions on both the data term and the smoothness term as there are
locations where one of the terms is fulfilled while the other is not. This way the term
that is fulfilled is still actively steering the estimation while the influence of the other
is reduced during the minimization. The same argumentation, however, also is valid
for a data term that contains more than one constancy assumption.
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Outliers in the Data Constraints. Let us explain this at hand of the brightness
constancy assumption (BCA) and the gradient constancy assumption (GCA). For each
of both assumptions, there are cases where only the respective data term is valid. In
the case of additive illumination changes, the GCA is fulfilled while the BCA obviously
is not valid. On the other hand, if an object moves in front of a changing background,
the corresponding gradients between the object’s boundaries and the background are
not consistent. Hence, the GCA is not valid while the BCA may be fulfilled.

2.7.1 Final Model

The variational model of Bruhn and Weickert, hence, is a slight variation of the model
of Brox et al. where the sub-quadratic penalizer function Ψ is applied separately to
each data constraint. It is given by

EBW(w) =
∫

Ω

ΨD

(

|I (x+w)− I (x)|2
)

+γΨD

(

|∇I (x+w)−∇I (x)|2
)

+αΨS

(

|∇u|2+|∇v |2
)

d x̃ , (2.40)

where ΨD (s2) =ΨS(s2) =
p

s2+ǫ2 is the (regularized) absolute value function, and γ

and α are balancing weights.

2.8 The Method of Zimmer et al.

While the variational methods of Brox et al. [26] and Bruhn and Weickert [29] so
far introduced concepts that lead to considerable improvements over the pioneering
work of Horn and Schunck, still there are some important aspects which have been
neglected so far. This starts with the obvious fact that the presented methods have been
tailored to use grey value images, disregarding any type of color information. Moreover,
the data term, which eventually is linearized within the minimization, furthermore
contains implicit weightings of the data constraints which depend on the image contrast.
Hence, at objects of high contrast the data term has more influence than at objects
of low contrast. Finally, the smoothness term provides a constraint on the amount
of smoothing but not on its direction. It is, however, desirable to only reduce local
smoothing across motion discontinuities, which are a subset of the image edges, but not
along them. Including these aspects into the modeling allows for a far more adaptive
variational optical flow model, as proposed by Zimmer et al. [165, 164].

2.8.1 Constraint Normalization

Let us start by discussing a strategy to overcome the implicit weightings in the data
constraints, which is called constraint normalization. The motivation behind constraint
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normalization origins from a weighting deficiency in the optical flow constraint (OFC)
which as a reminder reads

0 = Ixu + Iy v + It . (2.41)

This single constraint is not sufficient to compute both components u and v of the
optical flow, but it provides a line constraint on the optical flow. Given that |∇I | > 0,
the OFC allows to compute the share of the flow that is orthogonal to the local image
edges which is known as the normal flow wn = (w̃⊤

n ,1)⊤ = (un , vn ,1)⊤ [16]. It is the
solution with the smallest L2-norm to the OFC and reads

w̃n :=
−∇I It

|∇I |2
. (2.42)

Let w̃ = (u, v)⊤ be the spatial share of the optical flow, then we can reformulate the
squared right side of the OFC as

(

Ixu + Iy v + It

)2 = (∇I⊤w̃+ It )
2

= |∇I |2
(∇I⊤w̃+ It

|∇I |

)2

= |∇I |2
(∇I⊤w̃

|∇I |
+

It

|∇I |

)2

= |∇I |2
(∇I⊤w̃

|∇I |
+
∇I⊤∇I

|∇I |2
It

|∇I |

)2

= |∇I |2
(∇I⊤

|∇I |
w̃+

∇I⊤

|∇I |
∇I It

|∇I |2

)2

= |∇I |2
(∇I⊤

|∇I |

(

w̃+
∇I It

|∇I |2

))2

= |∇I |2
(∇I⊤

|∇I |

(

w̃−
−∇I It

|∇I |2

))2

= |∇I |2








∇I⊤

|∇I |
(w̃− w̃n)

︸ ︷︷ ︸

=:d








2

. (2.43)

The expression that is denoted by d is a normal form of the line l that is given by the

OFC (with normal ∇I⊤

|∇I | and position vector w̃n). For any w̃, the absolute value of the
projection of its difference to a point on the line (here given by w̃n) onto the normal of
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l provides the distance of w̃ and l . Hence, |d | is a distance measure. The OFC hence is
a distance term d2 weighted by |∇I |2. This means that the data term is amplified in
high-gradient regions and suppressed in low-gradient regions. This is not intended,
since, on the one hand, there may be low-contrast boundaries of moving objects which
are supposed to introduce a motion discontinuity and, on the other hand, there are
large gradients induced by noise or in occluded regions where a data term should not
be amplified.

Hence, Lai and Vemuri [77] proposed a constraint normalization, i.e. to divide the
constraint by the unwanted weight, which introduces a normalization weight

θBCA :=
1

|∇I |2+ǫ2cNorm
, (2.44)

where ǫcNorm > 0 avoids divisions by zero and prevents small gradients from being too
influential. Such gradients may e.g. come from noise in flat regions, where the data
term should not be amplified. In the motion tensor notation, the normalization reads

J̄BCA := θBCA · JBCA . (2.45)

Normalization of General Data Constraints

In the literature, there are also similar estimation problems with linear constraints
of higher dimensionality. These comprise the estimation of scene flow [143], the
estimation of multiframe optical flow [148, 130], the joint estimation of optical flow and
illumination changes [41] as well as the simultaneous estimation of multiple optical
flows [127]. Hence, let us consider a general linear constraint with N -dimensional
generating vector p= (pi )1≤i≤N . Then we set p̃= (pi )1≤i≤N−1 as the vector with the
first N−1 components of p and a flow w̃with the corresponding N−1 sought functions.
The linear constraint then can be written as

0 = p̃⊤w̃+pN . (2.46)

The squared right side can then analogously be re-formulated as

(p̃⊤w̃+pN )
2 = |p̃|2

(
p̃⊤w̃+pN

|p̃|

)2

= |p̃|2
(
p̃⊤w̃

|p̃|
+

pN

|p̃|

)2

= |p̃|2
(
p̃⊤w̃

|p̃|
+
p̃⊤p̃

|p̃|2
pN

|p̃|

)2

= |p̃|2
(
p̃⊤w̃

|p̃|
+
p̃⊤

|p̃|
p̃ pN

|p̃|2

)2
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= |p̃|2
(
p̃⊤

|p̃|

(

w̃+
p̃ pN

|p̃|2

))2

= |p̃|2








p̃⊤

|p̃|
(w̃− w̃n)

︸ ︷︷ ︸

=:d








2

, (2.47)

where w̃n := −p̃ pN

|p̃|2 is a point on the hyperplane defined by Eq. 2.46. Here, d is the

normal form of the corresponding hyperplane which analogously to the case of the
OFC provides a distance measure for a point w̃ to the hyperplane. This holds for any
linearized constraint with generating vector p of any dimensionality. The corresponding
normalization factor is given by

θ :=
1

|p̃|2+ǫ2cNorm
, (2.48)

where ǫcNorm > 0. Please note that the normalization factor is applied for each generating
vector p separately. Hence, if a normalized motion tensor is assembled of the Np

normalized constraints, it is given by

J̄ :=
Np∑

i=1

θi · Ji =
Np∑

i=1

1

tr((Ji )N )+ǫ2cNorm
· Ji , (2.49)

where (Ji )N is the subtensor excluding the N -th row and the N -th column, i.e. consisting
of the first N −1 columns and N −1 rows of the motion tensor Ji associated to the
generating vector pi , and tr(A) denotes the trace of a matrix A.

Since p can define any linear constraint, this general motivation in particular also holds
for the two constraints pGCA,x and pGCA,y that are obtained from the linearized gradient
constancy assumption.

2.8.2 Color Image Sequences

Using color images instead of grey value images allows us to consider more constraints
that connect the image data and the optical flow [101]. Each image channel I c out of
the Nc color channels provides one constraint pc for each type of feature constraint, i.e.
we have three constraints for each pixel in the BCA and six constraints for each pixel
in the GCA.

Penalization Strategy. Considering the penalization strategy on these constraints,
there are different possibilities which may in particular depend on the color space that
is considered. In the case of an RGB color space, usually a joint penalization of the
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color channels is used, since these channels are of the same type. A different example
is the HSV color space where the channels have different properties w.r.t. the degree of
illumination invariance [54, 94]. In this case, a separate robustification makes sense,
since in the context of illumination changes the respective constancy assumption may
be fulfilled for a more invariant channel but not for a less invariant channel.

Final Data Term. While the original work of Zimmer et al. [164] focuses on the HSV
color space, we will focus on the RGB color space and thus conduct a joint penalization
of the color channels. Hence, the overall data term is assembled by summing up the
data terms for each image channel within a joint penalization and it reads

EData =
∫

Ω

Ψ

(
Nc∑

c=1

(

I c
(x+w)− I c

(x)
)2

)

+ γΨ

(
Nc∑

c=1

|∇I c
(x+w)−∇I c

(x)|2
)

d x̃ . (2.50)

Similarly, the associated motion tensor including the normalization factors is given by

J̄ :=
Np∑

i=1

Nc∑

c=1

1

|p̃c
i
|2+ǫ2cNorm

· J c
i =

Np∑

i=1

Nc∑

c=1

1

tr((J c
i

)N )+ǫ2cNorm
· J c

i . (2.51)

2.8.3 Anisotropic Smoothness Term

So far, the smoothness term lead to an equal smoothing in all directions, i.e. the flow
is also smoothed across edges in the solution which leads to unsharp flow fields and
inaccuracies at motion discontinuities. It is, however, desirable to reduce smoothing
across edges while keeping it along edges and, thus, to consider directions in the
smoothness terms.

In order to develop a regularization strategy that respects motion discontinuities, let us
start by reviewing the smoothness term of the method of Brox et al. [26] which reads

ESmooth(w) =
∫

Ω

Ψ
(

|∇u|2+|∇v |2
)

d x̃ , (2.52)

where Ψ(s2) is a subquadratic (and convex) penalizer function in s.

The respective Euler-Lagrange equations, where we omit the explicit statement of a
particular data term for the sake of simplicity, are given by

0 = Fu −αdiv
(

Ψ
′ (|∇u|2+|∇v |2

)

∇u
)

, (2.53)

0 = Fv −αdiv
(

Ψ
′ (|∇u|2+|∇v |2

)

∇v
)

, (2.54)
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and can be considered the steady state of the following diffusion-reaction system [152]
which reads

∂t u = Fu −αdiv
(

Ψ
′ (|∇u|2+|∇v |2

)

∇u
)

, (2.55)

∂t v = Fv −αdiv
(

Ψ
′ (|∇u|2+|∇v |2

)

∇v
)

. (2.56)

Underlying Diffusion Process. The smoothing within the variational method is done
in the diffusion part of the above system which reads

∂t u = div
(

Ψ
′ (|∇u|2+|∇v |2

)

∇u
)

, (2.57)

∂t v = div
(

Ψ
′ (|∇u|2+|∇v |2

)

∇v
)

. (2.58)

In the non-robust case of the model of Horn and Schunck (where Ψ
′(s2) = 1), the

corresponding diffusion process falls down to simple homogeneous linear diffusion:

∂t u = div (1 ·∇u) =∆u , (2.59)

∂t v = div (1 ·∇v) =∆v . (2.60)

In the general case, it makes sense to classify smoothness terms at hand of the corre-
sponding diffusion processes. Isotropic variants of diffusion processes for some sought
function wi ∈ {u, v} are given by

∂t wi = div
(

g ·∇wi

)

, (2.61)

with g being the scalar diffusivity. There are different possibilities for the choice of g .

Homogeneous Diffusion

The simplest choice g := 1 leads to homogeneous (i.e. space-independent) and isotropic
(i.e. direction-independent) diffusion [68]. Since this diffusion does not respect any
edges, neither from image data nor from the estimated optical flow, edges are over-
smoothed and results are overall rather blurry.

Image-Driven Isotropic Diffusion

Sincewe know that the image edges, which consist of structural edges and textural edges,
are a superset of the motion discontinuities, one strategy to avoid an oversmoothing
is to reduce smoothing at image edges, i.e. to make the diffusivity depend on the
magnitude of the image gradient |∇I |. One possible choice for the scalar diffusivity is
g := g (|∇I |2) with g (s2) being a positive and decreasing function [2]. Such functions
are usually given as the derivatives of a strictly convex function Ψ(s2). These types
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of diffusivities are called image-driven isotropic. They are inhomogeneous, since the
diffusion is space-dependent. Corresponding smoothness terms are simply multiplied
by g (|∇I |2). Since g does not depend on w, it is not affected by the derivations in the
Euler-Lagrange equations. Since, however, g := g (|∇I |2) not only reduces smoothing
at structural edges but also at textural edges, the resulting flow field is likely to be
oversegmented in highly-textured regions.

Flow-Driven Isotropic Diffusion

In order to avoid oversegmentation artifacts, g can be chosen as g :=Ψ
′(
∑2

j=1 |∇w j |2),

with Ψ
′ being positive and decreasing, which is the natural result when applying

a sub-quadratic penalizer function Ψ to the otherwise quadratic smoothness term
[122, 117, 152] (as already presented for the method of Brox et al. [26]). Again, this
diffusion is inhomogeneous since it is reduced at flow edges. In contrast to image-driven
diffusion, this type of diffusion is nonlinear, since g depends on the sought functions
w. The corresponding diffusivities are called flow-driven isotropic. They do not show
over-segmentation artifacts like in the image-driven case, but they are still isotropic and
thus lead to the same diffusion across edges and along edges which still is not optimal.

Anisotropic Variants

It is typically desirable to strengthen edges by having a considerable smoothing along
them but a reduced one across them. This requires the use of direction-dependent, i.e.
non-scalar, diffusivities in the diffusion process. Hence, we replace the scalar diffusivity
g by a diffusion tensor D [116, 139], such that the general diffusion process reads

∂t wi = div (D ·∇wi ) (2.62)

where the eigenvectors of D state the main directions of the diffusion and the corre-
sponding eigenvalues state the magnitude of the diffusion.

All of the aforementioned isotropic diffusivities can obviously be embedded into this
formulation as D := g · Id2×2, where Id2×2 is the identity matrix of size 2×2. In this
case, the eigenvalues are the same for both directions. Let us now introduce the
anisotropic counterparts to the aforementioned inhomogeneous, isotropic diffusivities
by assembling diffusion tensors with in general different eigenvalues for both directions.

Image-Driven Anisotropic Diffusion

For the image-driven anisotropic case, the strategy is to project the gradients of the
sought functions onto the direction of the edge (that is orthogonal to the gradient),
which is represented by r= 1

|∇I⊥| I
⊥. A simple intuitive approach would be to consider

the projection matrix D := rr⊤ as diffusion tensor. However, this would avoid diffusion
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across edges or in homogeneous regions completely (since one or both eigenvalues
would be zero) which is usually not intended due to stability reasons. Thus, the diffusion
tensor is regularized to allow for a small amount of smoothing across image edges and
reads

D :=
1

|∇I |2+2ǫ2

(

∇I⊥∇I⊥⊤+ǫ2diffRegId2×2

)

(2.63)

with ǫdiffReg > 0 and knowing that |∇I⊥| = |∇I | holds. The corresponding smoothness
term [97] is given by

ESmooth(w) =
∫

Ω

2∑

j=1

∇w⊤
j D ∇w j d x̃ . (2.64)

Still, the anisotropic case leads to oversegmentation artifacts and the image gradient is
sensitive to noise.

Flow-Driven Anisotropic Diffusion

In the flow-driven anisotropic case, the idea is also based on the structure tensor. But
here, it is a multi-channel variant of the structure tensor S :=

∑2
j=1∇w j∇w⊤

j
on the

flow functions and without rotation of the gradients [152]. Its eigenvalues indicate
the change rate along and across the flow edge, similar to structure tensors for image
structures. Since the eigenvalue across edges is high and we want to reduce the diffusion
across them, a positive, decreasing function Ψ

′ is applied to S in order to form the
diffusion tensor which reads

D := Ψ
′
(S) = Ψ

′
(

2∑

j=1

∇w j∇w⊤
j

)

, (2.65)

where the application of the scalar function g :=Ψ
′ to a symmetric square matrix A of

size N ×N is defined as

g (A) = (v1,v2, . . . ,vN ) diag
(

g (σ1), g (σ2), . . . , g (σN )
)

(v1,v2, . . . ,vN )
⊤

with vi being the eigenvectors of A and σi being the corresponding eigenvalues. This
means that g (A) has the same eigenvectors but modified eigenvalues compared to A.
Weickert and Schnörr have shown in [152] that the corresponding smoothness term is
given by

ESmooth(w) =
∫

Ω

trΨ

(
2∑

j=1

∇w j∇w⊤
j

)

d x̃ . (2.66)

The advantage of this smoothness term is that it avoids oversegmentation artifacts.
However, the edges may not be well localized and unsharp, since they are derived from
a structure with an evolving nature.
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Joint Image- and Flow-Driven Anisotropic Diffusion

There are several variations that combine image- and flow-driven diffusion in order to
overcome the limitations from the above presented approaches. In general, anisotropic
approaches are preferable, since they allow for a direction-dependent smoothing that
respects motion discontinuities. Hence, we will focus on a combined anisotropic
approach. Since we are interested in well-localized and sharp edges like in the image-
driven case, it makes sense to consider the structure from the images. However, not all
image edges coincide with motion discontinuities. Thus, it makes sense to steer the
amount of regularization using the flow contrast instead of the image contrast [133].

Diffusion Tensor. Given two orthogonal directions r1 and r2 = r⊥1 , such an anisotropic
joint image- and flow-driven diffusion tensor [165, 164] reads

D := Ψ
′
S1

(
2∑

j=1

(r⊤1 ∇w j )
2

)

·r1r⊤1 +Ψ
′
S2

(
2∑

j=1

(r⊤2 ∇w j )
2

)

·r2r⊤2 . (2.67)

It is invariant under rotations due to the joint penalization of all sought functions w j

and anisotropic since it has different eigenvalues for different directions.

Regularization Tensor. In contrast to other approaches like [133], the directions ri

are not directly derived from the structure tensor of the image, but from the motion
tensors of the data constraints. The addition of the normalized upper-left 2×2 matrices
of the motion tensors provides the so-called regularization tensor Rρ which is given by

Rρ :=
3∑

c=1

Kρ ∗
[

Np∑

i=1

γiθi

(

p̃c
i (p̃c

i )
⊤)

]

, (2.68)

where Np is the total number of data constraints, p̃i = (pi ,1, pi ,2)⊤ contains the first two
components of the generating vector pi for some data constraint, c denotes the image
channel, Kρ∗ denotes the convolution with a Gaussian of standard deviation ρ, γi are
the weights of the individual data terms and θi are the corresponding normalization
factors. The two eigenvectors ri of the regularization tensor contain the constraint
edges as a generalization of the image edges. Since, hence, this type of regularization
works complementary to the data term, it is called complementary regularizer . Please
note, that when neglecting the normalization factor and restricting to the brightness
constancy assumption, the regularization tensor coincides with the structure tensor.

Smoothness Term. The corresponding smoothness term is given by

ESmooth(w) =
∫

Ω

ΨS1

(
2∑

j=1

(

r⊤1 ∇w j

)2

)

+ΨS2

(
2∑

j=1

(

r⊤2 ∇w j

)2

)

d x̃

=
∫

Ω

2∑

i=1

ΨSi

(
2∑

j=1

(

r⊤i ∇w j

)2

)

d x̃ . (2.69)
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2.8.4 Final Model

The final model of Zimmer et al. [165, 164] is obtained by modifying the model of
Bruhn and Weickert [29]. To this end, we apply the data constraints on multiple color
channels and replace the isotropic smoothness term by the complementary regularizer.
As mentioned before, we make use of the RGB color space. Finally, the model reads

EZimmer(w) =
∫

Ω

δΨD

(
3∑

c=1

|I c
(x+w)− I c

(x)|2
)

+γΨD

(
3∑

c=1

|∇I c
(x+w)−∇I c

(x)|2
)

+α
2∑

i=1

ΨSi

(
2∑

j=1

(

r⊤i ∇w j

)2

)

d x̃ . (2.70)

where α, δ and γ are global weights and the direction vectors r1 and r2 are derived
as mentioned before. Our penalization strategy does not directly follow [165, 164].

Instead, we replace the regularized absolute value function ΨD (s2) =
√

s2+ǫ2
D
by the

similar Charbonnier penalizerΨD (s2) = 2ǫ2D

√

1+ s2/ǫ2
D
which is a weighted equivalent.

Moreover, regarding the smoothness term we follow Volz et al. [148] and choose
the edge-enhancing and non-convex Perona-Malik penalizer ΨS1(s2) = ǫ2S1 log(1+
s2/ǫ2S1) [104] when smoothing across the edge and the edge-preserving Charbonnier

penalizer ΨS2(s2) = 2ǫ2S2

√

1+ s2/ǫ2
S2 when smoothing along the edge. Please note that

the constraint normalization is not explicitly stated in the model but applied in the
numerics, since it is motivated by the linearized data constraints.

2.9 A Variant for Affine Flow Fields

The regularizers that are crucial for the already presented methods favor piecewise
constant flow fields, since they aim at keeping the gradients low within the flow
field. This is beneficial in case of dominant fronto-parallel motion. In the presence
of considerable ego-motion in forward or backward direction, however, piecewise
constant flow fields are not appropriate. Here, the dominant motion follows the z-axis
(depth direction) in 3-D such that the apparent flow field in 2-D is typically convergent
or divergent. Examples of such scenes are provided by the KITTI 2012 and 2015
benchmarks [52, 92]. In this case, regularizers that penalize deviations on the gradients
of the flow components – so-called first-order regularizers – do not perform well.
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Second-Order Regularization. In case of motions that are not piecewise constant,
it is useful to replace such first-order regularizers by second-order regularizers that
instead penalize deviations in the second derivatives of the flow. Such regularizers
allow for piecewise affine flow fields instead of piecewise constant flow fields and are
thus better suited for the estimation of non-fronto-parallel flow fields [138, 106, 23, 145].
A very intuitive isotropic example of such a regularizer that has already been used
in the context of image denoising [82] and shape-from-shading [147] is based on the
Hessian matrix and reads

ESmooth(w) =
∫

Ω

ΨS

(
2∑

j=1

||H w j ||2F

)

, (2.71)

where ||H ·||F is the Frobenius norm of the Hessian andΨS(s2) denotes the Charbonnier
penalizer that encourages piecewise affine solutions if applied to the Hessian. Recently,
also more advanced second-order regularization strategies have been developed [24,
105, 61, 87, 89]. A further analysis of these, however, is out of the scope of this thesis.

2.9.1 Final Model

Regarding the data constraint, we keep the one of the method of Zimmer et al. in-
cluding the constraint normalization in the numerics. Together with the second-order
smoothness term, the final model reads

EZimmer−AFF(w) =
∫

Ω

δΨD

(
3∑

c=1

|I c
(x+w)− I c

(x)|2
)

+γΨD

(
3∑

c=1

|∇I c
(x+w)−∇I c

(x)|2
)

+αΨS

(
2∑

j=1

||H w j ||2F

)

d x̃ . (2.72)

where α, δ and γ are global weights and the penalizer function ΨS is the Charbonnier
penalizer as defined before. If not explicitly stated otherwise, this model will be the
baseline for the KITTI benchmarks while the method of Zimmer et al. will be the
baseline for any other benchmark or data set.

2.10 The Method of Brox and Malik

So far, a lot of advances regarding both the modeling part and the numerical part
have been discussed. This includes the handling of large displacements in general.
Relative large displacements of small objects, however, remain a severe problem. If the
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Figure 2.2: Illustration of the problematic case of a relative large displacement at
hand of the Tennis sequence (Frames 496 and 497) from [27]. Left: When the image is
downsampled to a resolution where the displacement of the small tennis ball is in the
order of one pixel, the ball is hardly visible anymore. Right: The baseline method is
not able to capture its displacement correctly.

displacement of an object relative to the background motion is larger than its size, it is in
general not distinctive (compared to its background) on that level in the coarse-to-fine
scheme which is appropriate to handle its displacement, i.e. where the corresponding
displacement is small (see Fig. 2.2 for an example). This is a conceptual problem of
coarse-to-fine warping schemes.

Small Objects vs. Noise. In a different sense, this can also be considered as a regularity-
enforcing behavior of the coarse-to-fine warping scheme. On that mentioned level,
such an object is either not visible at all or it is so small that it is indistinguishable
from noise. Not adapting to noise on any level, however, is a key consequence of the
combination of sub-quadratic data terms and regularity-enforcing smoothness terms.
Among all possible motion candidates, the motion of the object’s background is the
most regular and hence also preferred as a candidate for the motion of the small object.

Integration of Feature Matches. In this context, Brox et al. [25] and Brox and Malik
[27] came up with the idea to combine the standard variational method with the
complementary feature matching approach. The latter completely comes without
regularity and determines displacements by a brute force nearest neighbor search.
Nevertheless, a unique solution is desired also in this approach. While in variational
approaches a unique solution is the result of having enough constraints coming from
both the data term and the smoothness term, the missing regularity constraint in the
feature matching approach requires a different strategy to provide the procedure with
an improved uniqueness.
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Enforcing Uniqueness. The uniqueness enforcing strategy in feature matching cov-
ers several concepts: (i) restricting the matching process to locations where there is
enough structure to provide unique features (so-called key-points), (ii) using features
that assemble the local information in a discriminative way while preserving desired
geometric and/or photometric invariances, and (iii) performing forward-backward
consistency checks of the matches in order to remove ambigue – and thus inconsistent
– matches.

If one assumes that those small objects that undergo a less regular motion (due to
their relative large displacements) at least have a unique appearance, their motion can
effectively be determined by feature matching and complement a variational optical
flow model that is able to estimate the more regular parts of the apparent motion.

2.10.1 General Variational Model

In order to allow a set of pre-computed feature matches of type wP = (uP, vP,1)⊤ to
guide the motion estimation, Brox and Malik proposed to add a similarity term to a
variational baseline model which guides the estimation of the optical flow w by the
matcheswP at those locations wherewP can be provided. The general model then reads

EBM(w) = Ebase(w)+βEsim(w,wP) (2.73)

where Ebase(w) is the model of Bruhn and Weickert [29] (see Sect. 2.7) as the baseline,
β is a global weight and the additional similarity term Esim is given by

Esim(w,wP) =
∫

Ω

χP(x)ρP(x)Ψ
(

|w−wP|2
)

d x̃ . (2.74)

This term includes an activation flag χP(x), which is 1 if a feature match is given at x and
0 otherwise, a local confidence function ρP(x) which rates the reliability of the match
and the similarity constraint with a sub-quadratic penalizer functionΨ(s2), which adds
robustness against outliers.

2.10.2 Discussion

The question arises why variational approaches are combined with instead of being
replaced by feature matching approaches. First of all, let us start with a property of
feature matches that is a direct consequence of the concepts (i) and (iii): the matches
are sparse whereas the optical flow has the desirable property of being dense.

Guidance by Features vs. Inpainting of Features. Densifying the set of feature
matches could also be done with simple inpainting. However, there are other undesired
properties of feature matches that remain present with simple inpainting. This includes
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the fact that feature matches are typically only pixel-accurate and that the spatial extent
of discriminative features introduces inaccuracies at motion discontinuities since a
single feature may cover parts from different objects. Both issues are not resolved via
inpainting. Variational optical flow approaches, in contrast, are sub-pixel accurate and
can better adapt to local motion patterns due to their more local data terms. These
beneficial properties are preserved when using feature matches as guidance during the
coarse-to-fine optimization.

Discrete Matches in a Continuous Optimization. Within the continuous optimiza-
tion of the variational optical flow approach, the influence of the discrete matches varies
among the coarse-to-fine levels. There is a fixed number of matches but an increasing
number of pixels from coarse levels to fine levels. Hence, the optimization is rather
dominated by the feature matches at coarse levels while the influence decreases at
finer levels. In any case, the standard data and smoothness terms of the variational
model still apply to each pixel. This has multiple benefits: (i) The feature matches
steer the estimation of the optical flow at coarse levels where a good initialization
otherwise is missing due to an inappropriate upsampled flow. (ii) At finer levels, some
of the remaining false positive matches are removed, since the conventional parts of the
variational approach take over. In a pure inpainting approach, where all information
only comes from the feature matches, they would not be removed . (iii) Finally, the
variational approach also provides an optical flow for regions that do not carry enough
information to assemble descriptive features, such as homogeneous regions.

2.10.3 Features

In order to apply feature matching, it is first necessary to compute features at each
pixel of each frame. A lot of research has been done in order to find descriptive features
– also called descriptors – with desired properties such as invariances w.r.t. geometry,
illumination or scale. Brox et al. [25] and Brox and Malik [27] especially used three
different features in their work: segmentation-based Region Matching Descriptors
[25, 4], Histogram of Oriented Gradients (HOG) [36] and Geometric Blur (GB) [14]. Let
us now describe the versions of the descriptors that have been used in [27].

Region Matching Descriptors

The idea behind the first type of feature is based on a segmentation method as proposed
by [4]. The resulting segments form the regions that are matched between frames.
Since the underlying boundary detection does not only simply consider edges but also
the overall texture, it avoids e.g. to detect boundaries within repetitive textures.

Hierarchy of Regions. The method delivers a hierarchy of regions that result from this
robust boundary detection step. In this hierarchy, regions with strong edges persist
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through many levels while regions with weak edges are quickly merged into larger
regions. Out of the reference frame, only the most stable regions are considered.
According to [25] this excludes regions that are too small or that are present in less than
five levels of the hierarchy. The authors finally fit an ellipse to each of the remaining
regions and normalize the area around the centroid to a 32× 32 patch, on which
descriptors are computed.

Descriptors. For each region, two descriptors S and C are computed. The descriptor S

shall account for the shape of a region by considering 16 orientation histograms with 8
bins, as inspired by the SIFT- [80] and HOG-descriptors [36]. The descriptor C contains
the mean color of the same 16 parts as the descriptor S. For C , however, these are
restricted to those parts that belong to the region.

Descriptor Distance. The centroids of the regions serve as the locations of the descriptors.
The distance between two different regions is based on separate Euclidean distances
of the associated descriptors S and C . In a first step, for both types of descriptors,
normalized squared Euclidean distances are computed for pairs of regions (i , j ) which
read

d2
(Si ,S j ) =

||Si −S j ||2
1
N

∑

k,l
||Sk −Sl ||2

, (2.75)

d2
(Ci ,C j ) =

||Ci −C j ||2
1
N

∑

k,l
||Ck −Cl ||2

, (2.76)

where N denotes the number of all combinations i , j . The final squared distance of a
pair of regions is the the average of the normalized squared distances which reads

d2
(i , j ) =

1

2

(

d2
(Si ,S j )+d2

(Ci ,C j )
)

. (2.77)

Further details and additional filtering steps can be found in [25].

Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) descriptor has been introduced in [36] in
the context of human detection. In the context of motion estimation, it has been used
both in the context of feature matching [27] and as a feature constancy based data term
of an optical flow method [109].

Gathering Shape Information. The descriptor encodes shape information by considering
gradient orientations, which at the same time provides invariance to additive illumina-
tion changes. Its computation comprises the computation of gradients, the binning of
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HOG descriptor [27] GB descriptor [27]

Figure 2.3: The blocks that are used in the HOG and the GB descriptor.

gradient orientations into histograms, a sub-division of the local neighborhood (which
is also called a block) into smaller cells, where the cell-wise histograms are normalized
w.r.t. contrast, and finally the assembling of the descriptor.

Descriptor. There are a lot of parameters such as the number of bins in the histograms,
the decision if the sign of the gradient is considered (providing orientations in the
range [0◦−360

◦]) or neglected (providing orientations in the range [0◦−180
◦]), the size

of the local blocks and cells, the choice of the norm that is used in the normalization
step and a lot more. Further parameters can be found in [36]. In [27], the following
procedure is applied: The descriptor considers a block (neighborhood) of 15×15 pixels
around the central pixel where the central pixel as well as its neighboring pixels with
distances of four pixels are the centers of cells of size 7×7 in which the histograms are
computed (see Fig. 2.3). These histograms consist of 15 different orientations in the
range [0◦−360

◦], i.e. the signs of the gradient orientations are considered.

Geometric Blur

Another example for a descriptor is given by the Geometric Blur (GB) descriptor which
has been introduced in [14] in the context of template matching.

Geometric Distortions. In contrast to the HOG descriptor, the GB descriptor explicitly
addresses the problem of geometric distortions between corresponding objects that can
origin from a change in the relative viewpoint. Since descriptors usually consider large
neighborhoods in order to be descriptive, conventional descriptors are highly sensitive
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to geometric distortions. The larger the considered neighborhood is, the larger are
the differences between a descriptor in one image and a corresponding descriptor in
another image.

Positional Uncertainty. When regarding two corresponding neighborhoods of similar
objects that undergo a relative geometric distortion, it becomes apparent that there is a
positional uncertainty between corresponding pixels in the peripheral regions around
the central pixel. The higher the distance to the center, the higher is the positional
uncertainty.

Descriptor. A descriptor can be made robust against positional uncertainties by con-
sidering a blurred version of the image where information from different positions is
smeared. The core idea behind the Geometric Blur descriptor is to consider multiple
differently smoothed versions of the underlying image in order to account for the
varying positional uncertainty within the considered neighborhood. The descriptor
is assembled by considering a less smoothed version of the image at the central pixel
of the neighborhood and more strongly smoothed versions at the peripheral regions.
Usually, the images are pre-processed by computing the gradient orientations since, on
the one hand, the method works best on sparse images – gradients are typically sparse
– and, on the other hand, gradient orientations introduce some degree of illumination
invariance. Further details can be found in [14].

In the variant of [27], again histograms of gradient orientations are used that cover 15
bins. Instead of a fixed 7×7 window, however, three different Gaussian windows with
σ0 = 0, σ1 = 1 and σ2 = 2 are considered. As can be seen from Fig. 2.3, the descriptor
contains one entry from the histograms for σ0 (at the center), four entries from the
histograms for σ1 (four inner neighbors) and eight entries from the histograms for σ2.

2.10.4 Details on Feature Matching

The basis of the feature matching approach is a nearest neighbor search, i.e. for each
descriptor in the reference frame (source descriptor) one looks for that descriptor in the
subsequent frame (target descriptor) that has the smallest (Euclidean) distance (SSD).
The difference between the locations of the target and of the source descriptor describes
the displacement between both features, the so-called feature match.

Robust Matching. In order to add robustness, two further techniques are applied.
First, a forward-backward consistency check is performed: A match is only kept if the
source descriptor also is the best match in an opposite nearest neighbor search that is
conducted starting with the target descriptor. This excludes ambigue matches. Second,
a local confidence is assigned to the feature match. Given the distance d1 to the best
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match and the distance d2 to the second best match, one computes

ρ(x) =
d2−d1

d1
. (2.78)

This confidence measure amplifies the weight of a feature match for very similar
descriptors (i.e. d1 close to zero) but dampens its influence if the best match is not
notably more similar to the source descriptor than the second best match, i.e. if the
source descriptor is not distinctly discriminative.

2.10.5 Final Method

The authors compared and evaluated the different descriptors for feature matching
and concluded that the HOG descriptor [36] provides sufficient correct matches while
producing the least false matches. Hence, their final method uses HOG descriptors for
feature matching. In both the conference version [25] and the journal version [27] of
their work the authors consistently made use of the model of Bruhn and Weickert [29]
as their baseline, which was state-of-the-art at the time of their conference publication
[25]. The final model then reads

EBM(w) =
∫

Ω

Ψ
(

|I (x+w)− I (x)|2
)

+γΨ
(

|∇I (x+w)−∇I (x)|2
)

+βχP(x)ρP(x)Ψ
(

|w−wP|2
)

+αΨ
(

|∇u|2+|∇v |2
)

d x̃ , (2.79)

where Ψ(s2) =
p

s2+ǫ2 is the (regularized) absolute value function, and γ, β and α are
balancing weights.





Chapter

3

Large Displacement

Optical Flow

In this chapter, we will further analyze the deficiencies of the coarse-to-fine warping
scheme when relative large displacements are apparent, i.e. when there are small objects
that undergo a large motion relative to their background (as described in Chapter 1,
Sect. 1.3). This allows us to sub-divide the set of relative large displacements into two
categories: moderately large displacements and arbitrarily large displacements. For
each of these categories, we will present a novel method that implements a strategy for
estimating the respective type of large displacements correctly; while in this chapter
we present a method for handling arbitrarily large displacements, in the next chapter
we will present a method for handling moderately large displacements. These are based
on two papers [129, 127].

3.1 Deficiencies of Coarse-to-fine Warping

The incremental coarse-to-fine warping strategy [15, 26, 103] has become the de-facto
standard as the optimization strategy for variational optical flow methods. It covers the
estimation of small displacements in general and, moreover, it covers the estimation of
large displacements of large objects. In each of these cases, the optical flow is sufficiently
regular, such that on the respective resolution level that is appropriate to estimate a
particular displacement these results are far away from noisy results caused by outliers.

Downsampling Objects. Let us now have a look how an object behaves through
successive downsampling within the coarse-to-fine scheme. When downsampling an
image, there may be different states for an object on different levels w.r.t. its distin-
guishability from the background. We will consider three cases: (i) In the first, finer
group of resolution levels, it is clearly distinguishable from its background, i.e. there
is at least one pixel which only covers the object but not its background. (ii) In the
subsequent second group, there is a state of smearing where a coarse pixel does not
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fine level
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small object
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Figure 3.1: Evolution of a small object during the process of downsampling at hand
of the tennis ball in the Tennis sequence [27]. While the tennis ball is completely and
distinctively visible on the fine level, on the medium level there is only one pixel that
can clearly be associated with it. On the coarse level, the marked pixel, which covers
the ball, is mostly influenced by the background.

only cover the small object but also parts of the background, but this pixel is still clearly
distinguishable from the surrounding pure background pixels due to a beneficial mix-
ture of color values. (iii) In the third and last group of resolution levels, the background
dominates and the share of color at a pixel that origins from the small object is too
small to be distinguishable from the remaining background. An illustrative example of
this problem is shown in Fig. 3.1.

Estimating Different Scales of Displacements. For an object whose displacement
scale can be estimated at a resolution level of the first group, the conventional coarse-to-
fine warping scheme is sufficient to estimate its motion. This covers small displacements
and absolute (non-relative) large displacements (simple Case 1). If the displacements can
be estimated at a level from the second group, we face moderately large displacements.
Here, adaptations to the variational approach may help (Case 2). In contrast, for an
object whose displacement scale can only be estimated at a level of the last group,
the coarse-to-fine scheme is clearly not able to estimate its motion. This covers the
remaining arbitrarily large displacements (Case 3).

Please note that the transitions between these groups are smooth and they also depend
on the local contrast between foreground and background, since this property essentially
influences the distinguishability between foreground and background.
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Large Displacements

Absolute Large Displacements Relative Large Displacements

Arbitrarily Large Displacements Moderately Large Displacements

Figure 3.2: Hierarchy of terms that describe different categories of large displace-
ments.

While the first case yet can easily be handled by coarse-to-fine schemes, the cases
two and three remain a challenging problem. In the literature, there is no distinction
between these cases so far; they are simply recognized as large displacements. Typical
solutions are inspired by the method of Brox and Malik [27], which we have discussed in
Chapter 2 (Sect. 2.10). Hence, we will – for now – concentrate on case three – handling
arbitrarily large displacements – and present a novel method for handling this type of
displacements.

3.2 Terminology

So far, we have introduced several sub-categories of large displacements. Let us briefly
clarify their terminology as depicted in Fig. 3.2. In order to distinguish those large
displacements that need particular care from those that can be handled by conventional
coarse-to-fine warping schemes, we introduced the term relative large displacements.
Moreover, we introduced the terms moderately large displacements and arbitrarily large

displacements as sub-categories of relative large displacements. In order to avoid overly
complex linguistic expressions, the word “relative” is left out in these cases. In any case,
we may restrict to the simple expression large displacements in the following, if the
particular category can be derived from the context.
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3.3 Estimation of Arbitrarily Large Displacements

For the scenario of arbitrarily large displacements, different approaches have been
proposed. This starts with very basic block matching approaches [96] which yield
almost dense flow fields, but are known to provide poor results due to the ambiguity of
the search problem. In contrast, characteristic image features such as SIFT [80] can be
used within an exhaustive search. These features typically provide accurate but sparse
results. In order to improve results to be dense and accurate at the same time, some
popular strategies based on the combination of variational approaches with exhaustive
search have been introduced. One implementation of such an exhaustive search is the
feature matching-step in approaches like the work of Brox and Malik [27] (see Chapter
2, Sect. 2.10). Another implementation is given by the method of Steinbrücker et al.
[126]. It abandons the coarse-to-fine warping strategy and applies quadratic relaxation
with alternating global optimizations on a data term without linearization and on a
smoothness term. This allows for an exhaustive search when optimizing the data
term, which is not limited to a specific displacement scale. The evaluation on small
displacement data, however, is limited, and the given results of this scenario do not
demonstrate state-of-the-art performance. Another different alternative that provides
accurate and dense results is given by Rhemann et al. [113] which is based on adaptive
window matching via a nonlinear filtering step.

Feature Matching. In the literature, from all those methods approaches based on the
integration of discriminative feature matches have been favored, since the exhaustive
search in the matching step allows for arbitrary displacements and proper inclusion
of feature matches provides superior results. However, the following problem has to
be solved: If a feature is not unique enough, the matching step will likely result in a
false match (also known as false positive). A forward-backward consistency check can
alleviate but not completely avoid this problem. Moreover, the direct integration of
the obtained matches into a variational approach via an additional similarity term as
proposed in [25, 27] does not only adapt the estimation to the real large displacements
of small objects. It also adapts to the false matches that are transferred from the feature
matching step. Hence, it might be promising to make the integration of matches
adaptive. A corresponding strategy shall integrate useful matches but discard false
matches.

3.4 Related Work

An approach to avoid the inclusion of false positives into the estimation was proposed
by Xu et al. [159, 160]. In this method, the integration of feature matches is post-poned
to the minimization. At each coarse-to-fine level, multiple sets of flow candidates are
obtained. These come from the upsampled optical flow of the previous coarser level,
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from a feature matching step using SIFT features [80] and from a patch matching step
[10]. It has to be noted that the number of candidates from the additional matching
steps is reduced to a small number of promising candidates, which, however, are
flow candidates for all pixels of the image. The upsampled result as well as the set of
additional flow candidates are then fused into a single flow field via discrete optimization.
Finally, this single flow field then serves as initialization for the current coarse-to-fine
level. Although this method achieves good results, it is rather slow due to the discrete
fusion steps during the optimization of the variational approach. Thus, it would be
desirable to have an approach that integrates feature matches without complicating
and slowing down the optimization of the variational method.

3.5 Contributions

In order to address this problem, our novel method keeps the integration model-based
and does not affect the variational optimization but adapts the matching process. Based
on our corresponding paper [129], it builds upon the method of Brox and Malik [27]
which integrates pre-computed feature matches into a variational optical flow frame-
work via a similarity term in the model. Our method improves over this inspiring
work in three ways: (i) We build upon a more advanced baseline optical flow method,
the method of Zimmer et al. [164], in order to improve small displacement results in
general. (ii) We restrict the integration of feature matches to those locations where
an additional guidance by such matches is considered to be helpful in order to avoid
false matches to deteriorate the result at those locations where the baseline already
provides an accurate result. (iii) We extend the uniqueness confidence measure for
feature matches as known from [27] in order to additionally consider the expected
improvement of a feature match over the corresponding baseline flow vector.

We will demonstrate that the abandonment of matches at locations where no improve-
ment is expected does not only improve the flow quality but also decreases the workload.
Please note that our method [129] was state-of-the-art in 2012. In the meantime since
its publication, a lot of progress has been done in the literature that has been partially
inspired by our work. This progress includes but is not limited to the usage of improved
features that lead to less false positives such as [154, 58], the setup of extended pipelines
for the integration of feature matches [111, 69] as well as the integration of improved
feature matching methods such as [70]. A further review of these methods, however, is
out of the scope of this thesis.
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3.6 ALD-Flow

Our first method, that aims at the estimation of arbitrarily large displacements, is called
Adaptive Large Displacement Optical Flow (ALD-Flow) and has been proposed in [129].

In this approach, we apply a novel three-step strategy in order to determine where
additional feature matches are actually helpful. First of all, we compute flow fields
forward and backward between the reference frame and its successor using our baseline
approach. In a second step, based on these flow fields, we decide at which locations
the estimation could actually benefit from supplementary feature matches. In this
context, we also identify and remove unreliable locations where feature matches would
potentially lead to outliers. Finally, we compute feature matches only at those carefully
selected positions and adaptively integrate them into the estimation. By restricting
ourselves only to those locations where feature matches are really needed, we improve
both the quality and the speed of the estimation.

3.7 Variational Model

As our baseline method, we use the method of Zimmer et al. [165, 164] as presented in
Chapter 2 (Sect. 2.8) whose variational model reads

Ebase(w) =
∫

Ω

δΨD

(
3∑

c=1

|I c
(x+w)− I c

(x)|2
)

+γΨD

(
3∑

c=1

|∇I c
(x+w)−∇I c

(x)|2
)

+α
2∑

i=1

ΨSi

(
2∑

j=1

(

r⊤i ∇w j

)2

)

d x̃ . (3.1)

In the following, the corresponding baseline flow will be denoted as wbase.

Given a set of feature matches wP, we will integrate them into our approach by equip-
ping the model with a similarity term Esim as presented in Chapter 2 (Sect. 2.10.1):

E(w) = Ebase(w)+Esim(w,wP) . (3.2)

This additional term is given by

Esim(w,wP) = β

∫

Ω

χP(x)ρP(x)ΨP
(

|w−wP|2
)

d x̃ , (3.3)

where β is a balancing weight andΨP is the Charbonnier penalizer [33]. The activation
flag χP(x) and the confidence function ρP(x) will be described later in this thesis, since
they are a by-product of the process of feature matching.
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3.8 Adaptive Integration of Feature Matches

The process of simple feature matching is hardly robust against outliers. It highly
depends on the uniqueness of the underlying features. Although forward-backward
checks are an improvement in this context, there can still be considerably many false
positive matches that survive this check. Hence, in order to make the integration of
feature matches more robust, some additional steps are necessary. To this end, we start
by reviewing the ideas behind the selection strategy of Brox and Malik [27]. Afterwards,
we explain our novel strategy to integrate large displacement flow vectors into the
variational baseline method without severe deterioration of the accuracy.

3.8.1 The Selection Strategy of Brox and Malik

In [27], the authors propose to reduce the computational effort by integrating feature
matches only at every fourth pixel in x- and y-direction. This is a valid reduction of effort
since the descriptors at these locations still cover information from the neighborhood
due to their patch-based nature. Furthermore, to improve the quality, it is helpful
to analyze the structure in the image. Having the aperture problem in mind, it is
obvious that not all locations in the image are equally suitable to be matched without
any regularization. Hence, the authors propose to avoid ambiguities by only using
feature matches at locations with sufficient structure. To this end, they determine the
structuredness of each pixel by computing the smaller eigenvalue λ(x) of the structure
tensor [64], and use features for matching only at those locations where λ(x) ≥ 1

8 λ̄

holds, with λ̄ being the average structuredness within the image.

3.8.2 Adaptive Sparsification Strategy

The structuredness-based selection strategy of Brox and Malik answers the following
question: At which locations do we have enough image information to assemble a discrim-

inative descriptor? (see Fig. 3.3, top). While this is undoubtedly an important question,
we can go one step beyond and also try to answer the following important question: At
which locations is the integration of feature matches particularly useful to improve the

final result? (see Fig. 3.3, bottom). Assuming that we can answer this question correctly,
it allows us to discard those locations for the integration of feature matches where
the baseline flow is already sufficiently accurate. Overall, this improves the quality of
the flow estimation, since the feature matches at these locations cannot improve the
estimation (due to an already accurate baseline flow) but only deteriorate it (due to the
chance of being a false positive). Moreover, it reduces the computational effort, such
that we can even consider every second pixel in x- and y-direction in the sparsification
process and thus double the sampling rate while still having a much lower workload
compared to [27]. In the end, this means that we have more matches at locations of
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structureness criterion

structure tensor (λ1)

energy criterion

baseline flow data energy (e1)
regions of interest (s1)

Figure 3.3: Illustration of the selection criteria. Thresholding the smaller eigenvalue
λ1 of the structure tensor of the first frame indicates sufficient structuredness for a
feature descriptor while thresholding the data energy e1(x) of the baseline indicates
the need for additional guidance by feature matches. The combination of both gives
us the regions of interest for feature matching. Here, dark colors indicate high values.

small objects with large displacements in order to support the correct estimation of
their displacement while strongly reducing the potential to harm the estimation at
other locations. Let us now provide the details on how to select the corresponding
locations (regions of interest, see Fig. 3.3, right).

Selection Criteria

In order to decide if a feature match may improve the estimation or not, we first compute
an initial flow field using the baseline method. Using this flow, we evaluate the local
energy e1(x) of the data term, which can be seen as a generalized registration error,
respecting the data constancy assumptions. More precisely, we consider it to be a
reciprocal confidence measure of the baseline flow where a higher flow quality leads to
lower values. In general, the energy of the data term is high at those locations where
the motion is not estimated well and thus the estimation needs additional guidance
by a feature match. In our sparsification strategy, we call this the energy criterion (see
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Fig. 3.3, bottom). Using this criterion, unnecessary matches are avoided and, moreover,
the number of outliers is reduced.

Please note that a simple forward-backward check using baseline flows in forward
and backward directions will not indicate the relevant locations, since relative large
displacements are typically not captured by both flow fields in either direction. We
additionally make use of the structuredness criterion from [27] in order to incorporate
only matches of discriminative features.

Adaptive Forward-Backward Sparsification

Following [27], we will not only conduct a matching in forward direction from the first
frame to the second frame but also a consistency check in backward direction (from the
second frame to the first frame). In this context, there are three different sets of pixels
to consider: the origins of the matches in the first frame (matching candidate set), the
set of potential matching targets in the second frame, and the set of potential targets in
the first frame for the consistency check in the backward direction. While the forward
matching establishes correspondences between the candidate set and the target set (see
Fig. 3.4, top), the consistency check establishes correspondences between the target set
and the consistency set (see Fig. 3.4, bottom).

Applying the Criteria. In [27], only the matching candidate set has been sparsified and
this has been done using only the structuredness criterion. In contrast, we furthermore
apply the energy criterion to this set. Such a sparsification is already beneficial, since a
proper sparsification of the candidate set has two positive effects: it improves the quality
of the candidate set and it increases the speed of the matching process. Nevertheless,
also a sparsification of the two target sets has a positive effect: it further decreases the
runtime of the matching process by reducing the search space. Such a reduction makes
sense, since e.g. a discriminative feature of a highly structured region will hardly be
matched with a feature of a rather homogeneous region. Moreover, as another example,
a feature of a mismatched small object is also not supposed to match with a feature
of an object whose motion can already be correctly determined by the baseline flow.
Hence, we will apply our sparsification strategy to all sets.

Additional Criteria in the Second Frame. When sparsifying all sets, which includes the
matching target set in the second frame, we also need a structuredness criterion in
this frame and an energy criterion in backward direction. To this end, we make use
of the smaller eigenvalue λ2(x) of the structure tensor of the second frame for the
structuredness criterion and of the data energy e2(x) of a backward flow of the baseline
method for the energy criterion. In this context, we need the backward flow, since only
the data energy of a flow that origins in the second frame can indicate mismatches at the
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Figure 3.4: Illustration of the subsequent sets of locations during the matching
process with a forward-backward consistency check (considered pixels are black). The
sparsification reduces the runtime while the increasing size of the sets supports the
consistency check to filter out unreliable matches.

correct location in this frame and the backward flow is assumed to show inaccuracies
for the same objects for which the forward flow shows inaccuracies.

Sizes of the Sets. Nevertheless, we make sure that for both matching directions the target
sets are bigger than the respective sets of origins in order to keep multiple potential
targets per match and thus to keep some potential ambiguity. This is necessary for the
consistency check to filter out unreliable matches that are not unique enough. Hence,
the sets of locations that are considered subsequently during the matching process will
have an increasing size (see Fig. 3.4).

Definition of the Sets of Locations

In order to define these sets, we will make use of the smaller eigenvalue λ1(x) of the
structure tensor in the first frame, its equivalent λ2(x) in the second frame, the energy
e1(x) of the data term for the baseline flow in forward direction and its equivalent e2(x)

for the backward direction. In any case, the respective sets of locations are determined
by thresholding these structuredness and (reciprocal) confidence measures from below,
i.e. at these locations the respective values exceed the given thresholds.
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Set 1: Candidates for Matching (Regions of Interest). Since we start the whole
matching process from the first frame, the candidate set is based on the maps λ1(x) and
e1(x). The corresponding thresholds are given by θλ1 and θe1. The first set s1, which
contains the locations of the candidates for matching, is hence defined as

x ∈ s1 ⇔ λ1(x) > θλ1∧e1(x) > θe1 . (3.4)

Set 2: Targets for Matching. As already discussed before, we also apply the sparsi-
fication strategy to the target sets. For the matching targets in the second frame, we
consider the maps λ2(x) and e2(x) with corresponding thresholds θλ2 and θe2. The
second set s2 is then analogously defined as

x ∈ s2 ⇔ λ2(x) > θλ2∧e2(x) > θe2 . (3.5)

In order to achieve the intended increase in size compared to the last set, these thresholds
are usually chosen lower than their counterparts in Set 1.

Set 3: Targets for Consistency Check. Whenever a match has been established, also
a backward matching is established starting from the target position and feature of
the match in order to check consistency (i.e. if the backward match hits the original
point). To this end, we need a set of target locations in Frame 1 that is a superset of s1

including the original points. At the same time it should be bigger than s1 to be a real
challenge for the consistency check, i.e. it is a strict superset of s1. The third set s3 is
defined by

x ∈ s3 ⇔ λ1(x) > θλ3 . (3.6)

where θλ3 is another structuredness threshold. At this stage, we omit the use of the
data energy, since we only want to check if the features themselves, and therefore the
matches, are sufficiently unique – which is not related to the baseline flow in any way.

3.8.3 Features

In the literature, various descriptors have been proposed that can be used for feature
matching. Following [27], we first consider HOGdescriptors [36], since these descriptors
lead to the best compromise of true positive and false positive matches. Hence, in a first
step, we compute HOG descriptors in s3 (which covers s1) and s2 and apply the process
of feature matching including the forward-backward consistency check on this type of
features. However, since Brox and Malik also recognized a higher discriminativeness of
the GB descriptor [14] and our sparsification strategy explicitly addresses the problem
of false positives (which is the emphasized weakness of GB descriptors), we also take
GB descriptors into account. To this end, we consider those locations from the set of
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Table 3.1: The quantiles that have been used in order to determine the thresholds
within our adaptive sparsification strategy. Values in brackets indicate the strict
threshold within a double thresholding strategy.

Set quantλ quante
(structuredness) (data energy)

s1 80% 98.5% (99.7%)
s2 60% 92%
s3 70% –

matching candidates s1 again where the feature matching step with HOG descriptors
did not result in a match (i.e. χP(x) = 0, although x ∈ s1), and apply the feature matching
step together with the forward-backward consistency check also to the GB descriptors.
We, hence, enrich a set of HOG feature matches with additional GB feature matches.

3.8.4 Thresholds

In order to determine the thresholds of the adaptive sparsification strategy, we have
to take into account the descriptiveness of the given features and thus the tendency
to produce false matches. The work of Brox and Malik [27] has shown that despite
of the forward-backward consistency check there are still considerably many false
positives remaining. The most important aspect of our work is the reduction of false
positives such that small displacement scenarios are not deteriorated by the integration
of feature matches. To this end, we strongly limit the amount of feature matches to the
most promising locations and only keep a very low amount of them for the integration
of feature matches. We achieve this using a quantile-based approach which gives us
a relatively extensive control over this amount – which is also necessary to arrange
the increasing sizes of the sets of locations (i.e. |s1| < |s2| and |s1| < |s3|). To this end,
we choose quantiles quantλ and quante for all sets s1 to s3 on the structureness and
energy maps of the respective frames that indicate which share of pixels in these maps
shall not pass the corresponding thresholds θλ and θe that are computed from these
quantiles.

Tab. 3.1 gives an overview of the used quantiles that we have chosen for an optimal
performance on the Middlebury training sequences [9] while still being able to capture
the large displacements of some particular sequences that have been used in [27]. Please
note that for quality reasons, we conduct a double thresholding scheme [32] on the
data energy when determining the candidate set s1 using a strict threshold in order to
determine seeds and a soft threshold that is applied in the neighborhood of those seeds.
The strict threshold is given in brackets.



3.8 • Adaptive Integration of Feature Matches 71

3.8.5 Activation Flag χP(x)

During the final estimation of the optical flow, the activation flag χP(x) is supposed to
indicate where we have a reliable feature match that can be integrated. So, as an initial
definition, its values depend on whether the location of a feature match belongs to the
candidate set s1 or not:

χP(x) =
{

1, if x ∈ s1

0, otherwise .
(3.7)

This activation flag reflects all sparsification steps that have been done a priori to the
feature matching. In the following refinement stages that are conducted a posteriori to
the feature matching step, we will further remove outliers from the integration into the
final flow estimation.

Refinement 1: Forward-Backward Consistency Check

The forward-backward consistency check subsequently sets χP(x) = 0 at each location
where consistency is not achieved, i.e. the backward match does not target to the
original point x.

Refinement 2: Data Energy of the Feature Match

Our initial goal is to integrate only feature matches that are presumed to improve the
final result. In order to further enforce this goal, we compute the data energy ep (x)

of each match and compare it to the data energy e1(x) of the baseline flow vector at
the same location. Only if ep (x) is smaller than e1(x), i.e. the costs of the data term
have improved using the feature match, we keep the corresponding feature match.
Otherwise, we discard it and set χP(x) = 0 at that location.

3.8.6 Confidence Measure ρP(x)

Apart from the activation flag, we also have to define a confidence measure that rates
the reliability of a match. Our measure consists of two components ρP1(x) and ρP2(x)

which constitute the final confidence measure via

ρP(x) = ρP1(x) ·ρP2(x) . (3.8)

Component 1: Uniqueness of the Match

For the first component, we follow [27] and compute the confidence function

ρP1(x) =
d2(x)−d1(x)

d1(x)
, (3.9)
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Figure 3.5: Detailed illustration of the flow estimation for Frame 496 of the Tennis
sequence.

where d1(x) and d2(x) denote the matching costs of the best and the second best match,
respectively (see also Chapter 2, Sect. 2.10.4). This function rates the uniqueness of the
match.

Component 2: Improvement of the Data Energy

Additionally, we define a second confidence function

ρP2(x) =
(

e1(x)

ep (x)

)2

, (3.10)

which is based on the data energies (reciprocal confidences) e1(x) and ep (x) of the
baseline flow and of the feature match, respectively. This confidence measure assigns a
higher weight to those feature matches that exhibit a stronger relative decrease of the
local data energy, i.e. to those matches that are supposed to be more beneficial for the
estimation. Please note that ρP2(x) > 1 for all matches that have not been discarded.

Similar to our sparsification strategy where the structuredness measure targets the
discriminativeness of the features and the data energy addresses the potential for an
improvement in flow quality, our confidence measure ρP(x) respects both aspects, the
feature uniqueness via ρP1(x) and the potential to improve the flow quality via ρP2(x).

3.8.7 Overview of the Method

Let us briefly recapitulate the three main steps of our method. In a first step, we compute
dense flow fields forward and backward between both frames using our baseline method.
Then, in a second step, we carefully select positions for feature matching based on
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the analysis of the image structure and the baseline flow fields, and compute feature
matches at those locations. In a final step, these matches are incorporated into the
estimation using our complete model with the similarity term. In this context, the
activation flag and the confidence measure are used as weights. A detailed illustration
of the steps is depicted in Fig. 3.5.

3.9 Aspects of the Minimization

Basically, we minimize the nonconvex and nonlinear functional using concepts from
Chapter 2. This is based on the coarse-to-fine warping strategy as described in Sect. 2.6.3
along with the lagged nonlinearity method as described in Sect. 2.3.1. After discretiza-
tion, the resulting sequence of linear equation systems is solved with a successive
overrelaxation scheme (SOR) as hinted in Sect. 2.3. This is similar to the minimization
strategy of several other variational approaches from the literature [26, 29, 164, 27].
Moreover, we apply constraint normalization as described in Sect. 2.8.1.

3.9.1 Scale-Wise Weighting Scheme

An important novel aspect used in our minimization scheme is the scale-wise weight βk

of the similarity term that depends on the current level k of the coarse-to-fine warping
scheme which is defined as

βk := β ·
(

k

kmax

)1.8

, (3.11)

where kmax is the index of the coarsest level and k = 0 denotes the finest level. It
provides the highest weight β at the coarsest level and evaluates to zero at the finest
level. This weighting scheme makes the estimation more robust against persisting
outliers in the matches, since both the data and the smoothness term will have a high
local energy for such an outlier, guiding the estimation away from it. It follows the idea
of Brox and Malik [27] who run one last iteration on the finest level using β= 0.

3.10 Evaluation

Let us now evaluate the performance of our Adaptive Large Displacement Optical Flow

(ALD-Flow) method. To this end, we consider both synthetic and real-world sequences
for which we performed a variety of experiments with small and large displacements.
Since there is no ground truth for the sequences that contain relative large displacements,
as they come from real-world data, the evaluation of our method is done visually. For
the sequences of benchmarks, we conduct quantitative analyses by minimizing error
measures on the given data and comparing the resulting error values. Details on the
parameters and their retrieval can be found in Appendix A.5.
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Figure 3.6: Condensed overview of the flow estimation for different large displacement
sequences. From Left to Right: Tennis sequence (Frames 496 and 577), Beanbags
sequence (Frame 10), Miss Marple sequence (Frame 52). From Top to Bottom: (a)
Overlayed input images. (b) Initial flow field without feature matches. (c) Local energy
of the data term (registration error). (d) Final result of our method.

3.10.1 Relative Large Displacements

In our first experiment, we focus on real-world sequences with relative large displace-
ments. Therefore, we have applied our method to four popular image pairs from the
literature: two from the Tennis sequence [27], one from the Miss Marple episode “A
pocket full of rye” [27] and one from the Beanbags sequence known from the Middlebury
benchmark [9]. The corresponding results obtained by our approach as well as the
local energy of the data term are depicted in Fig. 3.6. As one can see, the energy of the
data term is well suited to identify regions where supplementary feature matches can
improve the estimation. Moreover, in contrast to the initial baseline method, our final
approach is clearly able to handle large displacements correctly. This becomes explicit
at various locations, e.g. at the tennis ball, the tennis racket, the right arm of the tennis
player, the beanbags, both hands of the man throwing the beanbags and the thumb of
the man picking up the phone.
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Table 3.2: Comparison of the average angular error (AAE) for the ALD-Flow, the LDOF
method [27] as well as the corresponding baseline methods. Results are given in degrees.
Underlined fonts indicate the best results among a method and its baseline, while bold
fonts indicate the overall best result.

Method Avg. Rub. Hyd. Gro2 Gro3 Urb2 Urb3 Dim. Ven.

LDOF (base) 3.38 3.77 2.32 2.09 5.59 2.28 3.99 1.82 5.19
LDOF 3.93 3.94 2.44 2.68 6.38 2.64 5.07 1.85 6.45

Our baseline 2.62 2.23 1.68 1.75 5.05 2.11 2.83 1.83 3.50
ALD-Flow 2.57 2.23 1.68 1.75 4.94 1.88 2.74 1.83 3.48

Table 3.3: The average endpoint error (AEE) of ALD-Flow and its baseline method.

Method Avg. Rub. Hyd. Gro2 Gro3 Urb2 Urb3 Dim. Ven.

Baseline 0.218 0.068 0.135 0.118 0.521 0.214 0.336 0.096 0.256
ALD-Flow 0.212 0.069 0.135 0.118 0.513 0.202 0.309 0.096 0.255

3.10.2 Small Displacements

In our second experiment, we investigate the impact of incorporating feature matches
for sequences that do not contain large displacements. To this end, we evaluated our
method on the Middlebury training data set. As one can see in Tab. 3.2 (AAE) and
Tab. 3.3 (AEE), the results do not deteriorate when incorporating feature matches in
our baseline method. In contrast, for some of the sequences we even observe notable
improvements although the displacements are relatively small (Urban 2, Urban 3, Grove
3). These findings differ significantly from the ones reported in [27] for the LDOF
method where outliers lead to severe degradations of the results (see also Tab. 3.2). We
attribute this behavior to our adaptive sparsification strategy that carefully selects only
those locations where supplementary feature matches are actually needed and that
discards matches that might deteriorate the results.

The observed improvement in terms of quality and robustness compared to the LDOF
method becomes even more obvious in Fig. 3.7, where we visually compare the corre-
sponding results for some sequences of the Middlebury evaluation data set: We observe
an enormous decrease in the number of artifacts caused by wrong feature matches
while still being able to handle large displacements, as can be seen by the example of
the Backyard sequence.

Besides the improvements in terms of quality and robustness, our adaptive approach
offers another advantage: a highly reduced matching workload. This becomes evident in
Tab. 3.4 that compares the amount of matching operations required for the LDOFmethod
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Figure 3.7: Comparison between LDOF and ALD-Flow with respect to outliers for some
sequences from the Middlebury benchmark. From top to down: Backyard, Wooden
and Urban. From left to right: Overlayed frames, LDOF, ALD-Flow.

Table 3.4: Comparison of feature statistics between LDOF and ALD-Flow. Listed are
the number of extracted features for both frames, the number of computed feature
matches and the required number of feature comparisons to compute these matches.

Method Beanbags Backyard Basketball

LDOF #Features F1 287K 287K 287K
#Features F2 287K 287K 287K
#Matches 12K 13K 8K

#Comparisons 6,753,628K 7,746,183K 4,537,080K

ALD-Flow #Features F1 89K (31.0%) 88K (30.7%) 90K (31.4%)
#Features F2 24K ( 7.3%) 19K ( 6.6%) 24K ( 8.4%)
#Matches 1,402 (11.7%) 1,393 (10.7%) 1,641 (20.5%)

#Comparisons 158,602K ( 2.3%) 149,484K ( 1.9%) 186,972K ( 4.1%)

and ALD-Flow. As one can see, our approach reduces the number of comparisons to
determine the matches by up to two orders of magnitude compared to the sparsification
and structuredness criteria from [27].
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Table 3.5: Evaluation of the impact of different combinations of selection criteria and
confidence strategies on the final result. The reported average angular error (AAE) has
been computed for the Middlebury training data set.

Selection Confidence Avg. Rub. Hyd. Gro2 Gro3 Urb2 Urb3 Dim. Ven.

No Selection Uniform 5.04 2.23 1.68 1.75 5.25 3.34 2.78 2.27 21.04
Struct. (λ1,λ2) Uniqueness 3.19 2.44 2.12 1.77 5.03 3.42 4.13 1.83 4.78
Energy (e1,e2) Energy 2.68 2.25 1.68 1.76 5.01 2.74 2.68 1.83 3.51
Both Both 2.57 2.23 1.68 1.75 4.94 1.88 2.74 1.83 3.48

Figure 3.8: Results for the Tennis sequence (Frame 496) for different combinations
of selection criteria and confidence strategies. From Left to Right: (a) No selection
+ uniform (46336 matches). (b) Structure + uniqueness (9573 matches). (c) Energy +
energy (1220 matches). (d) Both + both (only 734 matches).

3.10.3 Component Analysis

In our third experiment, we analyze the impact of different combinations of selection
criteria and confidence strategies on the final result. To this end, we used different
variants of our ALD-Flow method and computed the results for the Middlebury training
data set. As one can see from the result in Tab. 3.5, already the novel energy-based
selection-criterion in combination with the energy-based confidence measure yields
good results. However, combining structure- and energy-based selection criteria and
confidence strategies clearly yields the best results. This also confirmed by Fig. 3.8 that
depicts results for the Tennis sequence (Frame 496) based on the same combinations.

3.10.4 Sensitivity to Variations of the Thresholds

In our fourth experiment, we investigate the sensitivity of the thresholds for feature
selection, which control the amount of feature matches that are integrated into the
variational optical flow estimation. To this end, we used our approach with optimal
settings and varied all thresholds from 40 to 160 percent of their original value. The
results in Fig. 3.9 show only slight deteriorations for moderate parameter variations
(80%, 120%) and more pronounced degradations for strong parameter changes (40%,
160%). This demonstrates that the approach offers a certain stability w.r.t. moderate
parameter variations.
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Figure 3.9: Evaluation of the sensitivity of the threshold parameters for the Beanbags
sequence (zoom-ins). From Left to Right: All thresholds changed to (a) 40 percent,
(b) 80 percent, (c) 100 percent, (d) 120 percent, (e) 160 percent of the optimal value.

Figure 3.10: Rank of our ALD-Flow in the Middlebury benchmark w.r.t. the average
angular error (AAE) (time of submission: June 28th, 2012).

3.10.5 Comparison to the Literature

In our fifth experiment, we compare the performance of our method to that of other
approaches from the literature. This is done by means of the Middlebury evaluation
data set (some results have already been shown in Fig. 3.7). The corresponding table for
the average angular error (AAE) is depicted in Fig. 3.10 and the table for the average
endpoint error (AEE) is depicted in Fig. 3.11. The tables show that our method achieved
ranks five and seven out of 73 methods at the time of submission (June 28th, 2012).
Moreover, it significantly outperforms the Complementary Optical Flow method [165]
(rank 26), the LDOF-method [27] (rank 47) and the LDOF-baseline [26] (rank 36).

3.11 Additional Evaluation

In meantime since the development of our method, a lot of progress in the field has
been done. Amongst others, this comprises the development of improved features
such as Deep Matches [154, 112] and the publication of a variety of new benchmarks,
i.e. the KITTI 2012 [52] benchmark, the MPI Sintel [31] benchmark and the KITTI
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Figure 3.11: Rank of our ALD-Flow in the Middlebury benchmark w.r.t. the average
endpoint error (AEE) (time of submission: June 28th, 2012).

2015 [92] benchmark that can be publicly used for performance evaluation. Hence, we
additionally demonstrate the results of our method on those benchmarks and, moreover,
investigate how our adaptive sparsification strategy performs when applied to more
modern features by conducting an experiment that incorporates Deep Matches instead
of HOG [36] and GB [14] feature matches.

3.11.1 Variational Framework Implementation

For the additional experiments, we have embedded ourmethod into amore sophisticated
coding framework that easily allows us to modify both individual components of our
strategy as well as terms in the variational model. The most important difference is
that it offers an implementation for the second-order smoothness term as described
in Chapter 2 (Sect. 2.9) that allows us to conduct meaningful experiments on the
KITTI benchmarks. Since, moreover, it also offers faster numerical solvers and other
minor numerical improvements, results are a bit different and we, hence, start by
investigating the results for the Middlebury benchmark that are obtained using the
new implementation.

3.11.2 Comparison among Both Implementations

Tab. 3.6 and Tab. 3.7 depict the results of the old and the new implementation of
ALD-Flow, each including the corresponding baseline method. When comparing both
implementations, the new implementation overall obtains slightly better results (an
AAE of 2.55 vs. 2.57 and an AEE of 0.212 vs. 0.212 for ALD-Flow as well as an AAE
of 2.59 vs. 2.62 and an AEE of 0.215 vs. 0.218 for the baseline method). Moreover,
ALD-Flow is superior to its baseline method with an AAE of 2.55 vs. 2.59 and an AEE
of 0.212 vs. 0.215.
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Table 3.6: Comparison of the average angular error (AAE) for both implementations of
ALD-Flow as well as the corresponding baseline methods. Results are given in degrees.
Underlined fonts indicate the best results among a given implementation while bold
fonts indicate the overall best result.

Method Avg. Rub. Hyd. Gro2 Gro3 Urb2 Urb3 Dim. Ven.

Baseline (old) 2.62 2.23 1.68 1.75 5.05 2.11 2.83 1.83 3.50
ALD-Flow (old) 2.57 2.23 1.68 1.75 4.94 1.88 2.74 1.83 3.48

Baseline (new) 2.59 2.43 1.71 1.76 5.07 2.01 2.56 1.63 3.52
ALD-Flow (new) 2.55 2.42 1.71 1.77 4.92 2.00 2.41 1.63 3.54

Table 3.7: Comparison of the average endpoint error (AEE) for both implementations
of ALD-Flow as well as the corresponding baseline methods. Underlined fonts indicate
the best results among a given implementation while bold fonts indicate the overall
best result.

Method Avg. Rub. Hyd. Gro2 Gro3 Urb2 Urb3 Dim. Ven.

Baseline (old) 0.218 0.068 0.135 0.118 0.521 0.214 0.336 0.096 0.256

ALD-Flow (old) 0.212 0.069 0.135 0.118 0.513 0.202 0.309 0.096 0.255

Baseline (new) 0.215 0.074 0.138 0.117 0.520 0.238 0.293 0.085 0.255

ALD-Flow (new) 0.212 0.073 0.138 0.118 0.512 0.248 0.265 0.085 0.256

3.11.3 Performance on Major Benchmarks

In order to see how well our strategy generalizes, we conduct further experiments on
all major benchmarks. Please note that for the KITTI benchmarks we resort to second-
order regularization, as already stated in Chapter 2 (Sect. 2.9.1). Tab. 3.8 displays the
corresponding results w.r.t. the associated error measure for both the baseline method
and our ALD-Flow. From this overview, it becomes obvious that our ALD-Flow method
slightly improves results in four out of five cases. Only for the KITTI 2012 benchmark,
the results are worse. However, this is the only benchmark that contains only ego
motion which is completely regular. The unregularized matching step using HOG- and
GB-features can harm the estimation while the potential to improve results (compared
to a regularized variational baseline) in a setting with a completely regular motion is
lower compared to the other benchmarks that contain more dynamic motions. But
even in this case, there is only a slight overall deterioration.
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Table 3.8: Results of ALD-Flow and its baseline on training data from different bench-
marks.

Middlebury Sintel (sub.) Sintel KITTI ’12 KITTI ’15
(AAE) (AEE) (AEE) (AEE) (BP3) (BP3)

Baseline 2.59 0.215 7.055 4.722 10.39% 24.56%
ALD-Flow 2.55 0.212 7.039 4.684 10.68% 24.48%

3.11.4 Integration of Improved Matches

A further interesting question is whether our adaptive sparsification strategy is also
useful if we use more advanced features that produce less false positives. To answer
this question, we make use of Deep Matches [154, 112] that have been proposed after
the publication of our method and have been widely used in the literature, e.g. in
[154, 111, 44, 86], since the original work demonstrated clear improvements over HOG-
and SIFT-features in the context of optical flow. Hence, we replaced the HOG and GB
matches by Deep Matches and integrated them once on the original provided grid of
locations and once on a grid of locations that is obtained after applying our adaptive
sparsification strategy. Please note that we have used the original implementation of
the authors to conduct the matching and applied our strategy after we obtained the
set of matches. We, hence, only applied the sparsification to the (already sparse) set s1

of matching locations but not to any target sets, i.e. not to the sets s2 or s3, since the
matching process is not affected by our strategy in this case.

Small Displacements

Let us now compare the performance of our adaptive sparsification strategy applied
on Deep Matches to the performance of the baseline and to the performance of the
baseline with a direct integration of all matches. To this end, we evaluated our strategy
once with a common set of thresholds for all benchmarks – indicated as ALD+Deep
– and once with thresholds optimized separately for each benchmark – indicated as
ALD+Deep (opt. θ). The results are given in Tab. 3.9.

There are manifold observations to be discussed. We can see that a direct integration of
DeepMatches on average improves results compared to the baseline by 9.8% – except for
the Middlebury benchmark where results drop by 4 to 6 percent. Using a common set of
thresholds for all benchmarks, our sparsification strategy further improves results by 2%
percent on average compared to a direct integration, but leads to slight deteriorations
of less than 1 percent for the KITTI benchmarks. Compared to the baseline, results
are still superior in almost all cases (except for the AAE error on the Middlebury data)
with average improvements of 12%. This already is a convincing result, since in any
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Table 3.9: Comparison of the baseline and a direct integration as well as adaptive
integrations of Deep Matches into the baseline (ALD+Deep and ALD+Deep (opt. θ)).

Middlebury Sintel (sub.) Sintel KITTI ’12 KITTI ’15
(AAE) (AEE) (AEE) (AEE) (BP3) (BP3)

Baseline 2.59 0.215 7.055 4.722 10.39% 24.56%
ALD-Flow 2.55 0.212 7.039 4.684 10.68% 24.48%

ALD+Deep (direct) 2.69 0.227 5.529 2.952 10.13% 22.90%
ALD+Deep 2.60 0.209 5.205 3.055 10.20% 23.07%
ALD+Deep (opt. θ) 2.56 0.213 5.205 3.055 9.87% 22.60%

comparison the improvements of our adaptive sparsification strategy on the one hand
supersede the slight deteriorations on the other hand. If, however, we decide to refrain
from using a common set of thresholds for the adaptive integration but optimize them
individually for each benchmark, we obtain a consistent and significant improvement
compared to both the baseline (by 12.8%) and to a direct integration of Deep Matches
(by 2.9%). Compared to a direct integration, only on the complete Sintel data set there
is a slight drop in performance. This, however, may be explained by the fact that we
have not conducted separate cumbersome optimizations on the complete data set but
used the parameters that have been obtained from the optimizations on the subset also
on the complete data set. When comparing conventional ALD-Flow with HOG- and
GB-matches to its counterpart with Deep Matches, the errors on average drop by 9.6%
for a direct integration of Deep Matches, by 11.8% for an adaptive integration with
common thresholds and by 12.6% with individual sets of thresholds for each benchmark.

Discriminativeness of Deep Features. An observation that confirms the higher discrimi-
nativeness of Deep Features compared to HOG or GB features is given by the optimized
common thresholds for our sparsification strategy. While the high values for these
thresholds for the HOG and GB features (> 80%, see Tab. 3.1) are necessary in all
benchmarks in order to obtain accurate results, the common thresholds used for the
superior Deep Features all lie in a range between 50 and 60 percent for the respective
quantiles. This indicates that compared to the other features more feature matches are
helpful during the estimation of the optical flow when using Deep Features. Consid-
ering the thresholds that were optimized individually for the Middlebury benchmark,
they are relatively high (64% for the energy threshold θe , 99% for the structuredness
threshold θλ). This is no surprise, since these matches deteriorated results within a
direct integration and hence have to be integrated with care.
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Figure 3.12: Comparison of a non-adaptive and two adaptive integrations of Deep
Matches into our baseline. From left to right: (a) Non-adaptive integration. (b)
Adaptive integration with the same thresholds as for the HOG- and GB-features. (c)
Adaptive integration with lower thresholds between 50 and 60 percent.

Large Displacements

Similar findings can be drawn from a visual comparison on the Tennis sequence in
Fig. 3.12. We observe that a direct, non-adaptive integration of all Deep Matches leads
to considerable artifacts in the optical flow. In contrast, an adaptive integration avoids
such artifacts – whereby we additionally compare different thresholds. While the
original thresholds, as used in the case of HOG- and GB-features, throw away too many
matches, thresholds between 50 and 60 percent (as learned for Deep Matches on the
Sintel benchmark) lead to convincing results, since the flow is more accurate at the arm,
the tennis racket and the right foot of the player while not showing severe artifacts.

Influence of the Selection Criteria

While the overall improvements of applying our strategy to Deep Matches are already
significant, we are furthermore interested in the influence of the different parts of the
sparsification strategy, i.e. the structuredness-based part and the energy-based part.
Please note that in contrast to the corresponding experiment on HOG- and GB-matches
in Sect. 3.10.3, the sparsification is only applied to the candidate set s1 and we do not
vary the confidence measure. Here, we rely on the publicly available implementation of
Deep Matching without any modifications where there is no single confidence measure
that we can dedicate to the structure-based part of our sparsification strategy. In
contrast, it provides an autocorrelation-based confidence value for each match which
we combine with our energy-based confidence measure in all cases (mixed).

The corresponding results can be found in Tab. 3.10, where compared to Tab. 3.9 we
additionally state results on the Middlebury and Sintel benchmarks, where only one
part of our strategy is active. Also in this case, we can observe that each part alone
already improves results while the combination of both gives by far the best results.
Evidently, the results demonstrate that our adaptive sparsification strategy provides
good performance both for different types of features and on different benchmarks.
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Table 3.10: Comparison of the influence of the structuredness and the energy criteria
in the adaptive sparsification strategy.

Selection Confidence Middlebury Sintel (sub.)
(AAE) (AEE) (AEE)

No Selection mixed 2.69 0.227 5.529
Structure (λ1) mixed 2.56 0.214 5.373
Energy (e1) mixed 2.59 0.215 5.425
Both mixed 2.56 0.213 5.205

3.12 Summary

In this chapter, we have addressed the problem of robustly integrating large displace-
ment feature matches into variational optical flow methods in order to achieve accurate
results containing arbitrarily large displacements. To this end, we built upon the method
of Brox and Malik [27], which integrates pre-computed feature matches into a vari-
ational optical flow estimation via a similarity term in the variational model. In the
feature matching step, this method inspects the image structure when selecting feature
locations in order to match only discriminative features.

In addition, we also considered the matching energy of the baseline method as an
indicator of the flow quality for this task. This means that we did not only consider
where there is enough structure to assemble a meaningful descriptor but we also
determined if the baseline flow locally leaves room for improvements (due to being
inaccurate). By respecting both aspects we avoided the integration of feature matches
at locations where the only possible effect is a deterioration of the results. Moreover,
the matching energy enabled us to sort out unreliable matches before the integration
and it helped us to determine the reliability of the remaining matches.

Our experiments have demonstrated that our adaptive sparsification strategy based
on structure and energy is very useful: When integrating the corresponding feature
matches into our baseline method, we succeeded in handling large displacements while
maintaining or even improving the accuracy of small displacements at the same time.
We could not only observe such improvements for matches using traditional features
like the Histogram of Oriented Gradients (HOG) or the Geometric Blur (GB) features
but we have also seen that even the newer and more sophisticated Deep Matches, whose
development was dedicated to the area of motion estimation, can be filtered effectively
to obtain improved results. Thus we demonstrated that it is possible to combine feature-
based and variational methods without compromising their advantages.
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4

Moderately Large Displacement

Optical Flow

A borderline case w.r.t. relative large displacements is the scenario of moderately
large displacements. Here, an object is smeared with its background but remains still
distinguishable on that resolution level of the coarse-to-fine scheme that is appropriate
to estimate its motion.

Basically, this case could also be covered by methods that estimate arbitrarily large
displacements. As we have seen in the previous chapter, such methods typically obtain
their large displacement abilities by integrating matching steps that are not inherently
regularized. The main problem is: Without regularization, this may lead to a deteri-
oration of the result by arbitrarily large false matches. While making such methods
more adaptive addresses the problem a-posteriori, it is also worthwhile to consider
avoiding these false matches a-priori by using regularized methods. This includes
variational approaches with coarse-to-fine schemes for the estimation of such potential
motion candidates. Since the respective object has not completely disappeared on the
appropriate level in the coarse-to-fine scheme, let us now analyze how such methods
can be adapted in order to make the correct estimation possible.

4.1 A Balancing Problem

If a pixel does not uniquely belong to a single object, there are – depending on the
perspective – either multiple correct flow vectors or none. Since we aim at computing
dense flow fields, we discard the latter perspective and thus have to consider the case
of multiple possible flow candidates. Hence, these candidates comprise the flow that
corresponds to the background motion and the flow that corresponds to the motion
of the small object. The important question now is: Which flow will come out on top

within a standard variational framework?
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Figure 4.1: 1-D Illustrations of different displacement scales that can be handled by
coarse-to-fine schemes. From left to right: Small displacement, large displacement of
a large object.

Data Term and Smoothness Term. To this end, let us have a look at the two terms
that constitute the variational model: the data term and the smoothness term. First
of all, we can state that, in any case, the smoothness term favors the background
flow: It does not introduce any motion gradient, while a relative large displacement
introduces large motion gradients being a clear violation of the smoothness assumption.
In contrast, the data term favors the flow candidate of that object/background that
dominates in the mixture of colors. In case of a small object that dominates this mixture,
the multi-objective variational optimization is trapped within a balancing problem.

4.1.1 A Simple Example in 1-D

Let us illustrate a simplified version of this problem in a 1-D scenario (see Fig. 4.1). To
this end, we make the following simplifying assumptions: (i) There is one unicolored
foreground object in front of some unicolored background. (ii) Our data term is given
by the brightness constancy assumption with an (almost) linear penalizer. (iii) The
estimated flow of the foreground object either completely maps the object to itself
or completely maps it to the background. (iv) There is a smoothness term with an
(almost) linear penalizer. With these assumptions, the data costs of the foreground
object are given by Iu ·∆x, where ∆x is the size of the object and Iu is constant within
the object – either given as Iu = 0 for the correct match or Iu =∆I being the difference
∆I between the colors of foreground and background for the incorrect match. Moreover,
the smoothness costs for the foreground object linearly depend on the motion gradient
ux – which either reads ux =∆u being the difference between the foreground and the
background motion for the correct match or it reads ux = 0 for the incorrect match
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Figure 4.2: 1-D Illustration of a relative large displacement

(due to estimating the background motion everywhere). In our 1-D example, the x-axis
covers the spatial dimension x of the scenario, the y-axis depicts the flow u and the
colored area shows the colors of the objects.

Costs of Different Scales of Displacements. We will now compare, how different
scales of displacements and objects influence potential violations of both terms. In
Fig. 4.1, we depict the standard scenarios that can be handled by conventional coarse-
to-fine schemes: a small displacement scenario (on the left) and a large displacement
scenario with a large object. In the small displacement scenario, the motion gradient ux

is small in any case, such that the solution mainly depends on the data costs (Iu ·∆x).
Since these are typically only small for the correct solution (Iu = 0) given a sufficient
size ∆x of the object, the motion estimate of the foreground object will be the correct
flow. In the case of a large displacement of a large object, both ∆u, which influences the
smoothness costs, and ∆x, which influences the data costs, increase, such that the ratios
between both types of costs are similar. In Fig. 4.2, we depict the scenario of a relative
large displacement. In this case, the correct motion gradient ux =∆u highly violates
the smoothness term. Moreover, the small object size ∆x likely leads to small data costs
Iu ·∆x for any solution. Hence, the solution is mainly steered by the smoothness term
which favors an estimate that corresponds to the background flow vector, since in this
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Figure 4.3: Illustration of the data costs at hand of the tennis ball of the Tennis sequence
[27]. At the coarse level, the tennis ball is hardly distinguishable from the background
but the displacement between the correct pixels still gives the least data costs.

case ux = 0 holds. Here, we have an inconvenient balance between the size of the object
∆x, which here downweights the data term, and the motion gradient ∆u, which here
makes the correct estimate too expensive to be chosen.

4.1.2 Balances within the Coarse-to-Fine Scheme

Let us now have a look at the balance between these terms within the coarse-to-fine
scheme. Usual smoothness weights are appropriate to estimate small displacements
and large displacements of large objects in a piecewise smooth flow field that does not
contain noise. This is possible, since on the respective level where the displacements
can be estimated, the objects are big enough to make a violation of the data term too
expensive and/or the motion gradients are small enough to prevent the smoothness term
from producing high energy costs. For a relative large displacement, the appropriate
resolution level of this displacement becomes coarser, the object is smaller and thus
the support of the data term, that is in favor of the correct flow candidate, shrinks.
Moreover, due to the inevitable mixing of colors, which is the result of aliasing-free
resampling, the contrast of the object compared to its environment also decreases. On
that level, this object is hardly distinguishable from noise, such that modern variational
models, that are robust against noise, will ignore it. Moreover, the large motion gradient
of the correct flow candidate produces high smoothness costs. Hence, the larger the
relative displacement is, the more the balance of power shifts towards the smoothness
term that favors the background motion candidate. This wrong decision cannot be
corrected on later stages of the coarse-to-fine approach.
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An Exemplary Relative Large Displacement. An illustration of this problem can
be seen in Fig. 4.3 at hand of the tennis ball of the Tennis sequence [27]: On that coarse
level from the coarse-to-fine pyramid where the displacement between the ball in both
frames is only one pixel, it is still distinguishable from the background but not very
clearly. When having a look at the data costs of potential displacements between the
tennis ball in the reference frame I1 and the corresponding neighborhood pixels in the
subsequent frame I2, we observe that they are slightly smaller for the correct large
displacement vector (somewhere between one and two pixels to the right) than for the
background flow vector (zero displacement at this level). But the exemplary advantage
of 3.5/4.5 over 5.8 (using the BCA) is very small. When adding a smoothness term, there
are considerable costs for a potential motion gradient to all neighboring pixels. Such a
motion gradient very likely is a lot more expensive with a conventional smoothness
weight than having a slightly higher data cost at only one pixel by propagating the
background flow as the final solution for the object. In this case, there is a clear tendency
for the background motion to be the cheapest solution for the object.

4.2 Related Work

A strategy to overcome the balancing problem is to locally choose an appropriate
balance between both the data term and the smoothness term. To this end, we have to
consider multiple global smoothness weights at once. The basic idea is to keep more
than one flow candidate by estimating flow fields for each of the global smoothness
weights and combine them into a final flow field. It has already been considered in
the approaches of Lempitsky et al. [78] and Tu et al. [140] but their effectiveness for
large displacement optical flow has not been elaborated, yet. While [78] did not focus
on large displacements at all, the approach of [140] uses flow candidates generated by
PatchMatch [10] to address large displacements. It remains unclear, how a regularized
variational approach can perform in the context of moderately large displacements.

Moderately Large Displacements. Although so far the case of moderately large
displacements has not been recognized in the literature explicitly, there are hints in
the literature that it is worth considering it as a separate case: (i) Concerning the
general problem that the estimation of arbitrarily large displacements yields the chance
to include arbitrarily large false matches, the work in [70] directly embeds feature
matching into a coarse-to-fine scheme where on each level the search space is restricted
in contrast to the otherwise unrestricted exhaustive search. Evidently, this suppresses
noisy results. (ii) Regarding the question, how useful even blurry information still can
be, the Geometric Blur feature [14] sticks out. It is recognized as a very discriminative
feature in the work of Brox and Malik [27]. Here, the blur is considered as a feature
that introduces some positional uncertainty which helps matching parts of objects



90 Chapter 4 • Moderately Large Displacement Optical Flow

that are not perfectly aligned. To some extent, this is comparable to our case where
corresponding objects within two frames are not close enough on that coarse-to-fine
level which is appropriate to estimate the correct displacement. The smearing connects
the objects and makes them virtually closer [2]. (iii) Having a look at the aspect of
regularization, the method of Drayer and Brox [44] becomes apparent. It shows that
feature matches can be robustified by regularizing them in a post-processing step. (iv)
Concerning the balancing problem, Brox and Malik [27] made the observation that
fast motion of high-contrast objects is more likely to be accurately estimated than
the motion of low-contrast objects. This is related to the fact that there is an implicit
weighting of the constancy assumptions with the corresponding image gradient as
observed in [165]. In view of the data costs, mismatches of high-contrast objects are thus
more expensive than those of low-contrast objects. Overall, this observation hints that
locally re-balancing the weights of the data term and the smoothness term may improve
the estimation of relative large displacements. Hence, given the four observations
from above, it seems desirable to develop a regularized variational method that tackles
the balancing problem in order to allow for the robust estimation of moderately large
displacements without introducing arbitrarily large false matches in the flow field.

4.3 Contributions

We address this issue by proposing a novel method based on our paper [127]. Our
regularized variational model jointly estimates multiple flow candidates using varying
smoothness weights and fuses these candidates into a single final flow field. The fusion
generally favors the smoothest flow field to obtain an overall noise-free flow field but it
allows to locally integrate flow candidates that origin from a less smooth field to also
allow for less regular motions. This is done in three ways: (i) We consider multiple
instances of the underlying baseline variational model with varying smoothness weights
for the estimation of multiple candidate flows that respect the variety of motion patterns
that can be present within a single optical flow field and that differ regarding their scale.
Moreover, a further instance is part of the estimation of the final flow. (ii) We design
and integrate a fusion term that intrinsically fuses flow candidates from the different
instances of the baseline model into the final flow field. (iii) We apply a weighting
scheme between the instances of the baseline for the candidate flows, the instance for
the final flow and the fusion term between all flows in order to make a joint estimation
of all components within a single, purely variational optimization possible.

In this way, we demonstrate that the limitations of variational approaches w.r.t. relative
large displacements can be shifted, if we refrain from requiring the estimation of
arbitrarily large displacements in order to avoid arbitrarily large false matches.
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4.4 ContFusion-Flow

Let us now discuss the design of our novel variational method that is called Continuous

Fusion Flow (ContFusion-Flow). It builds upon the method of Zimmer et al. [165, 164]
which comprises a variational model that very well adapts to the image data while
generating noise-free results. Our method pushes its limits w.r.t. the estimation of
relative large displacements a bit further without incorporating any external matching
algorithms.

Unlike many other methods, we do not need a pipeline of different algorithms consisting
of multiple independent steps to estimate large displacements. Although such pipeline
methods in the meantime provide excellent results and can cope with a lot of large
displacement cases, there are still cases where the large displacement problem of small
objects is intrinsically unsolvable – e.g. in the presence of multiple non-unique instances
with arbitrarily large displacements. On the other hand, however, a surprisingly large
share of large displacement cases that are solvable can actually be solved with a-priori
regularization, i.e. using a variational method. This is a very interesting observation,
particularly in comparison to the seminal work of Brox and Malik [27] in the context
of large displacement optical flow.

In contrast to our work on arbitrarily large displacements, our ContFusion-Flow method
does not need to handle false positives from unregularizedmatching steps and, moreover,
it is intrinsically able to cope with non-unique objects due to the regularized estimations.

4.5 Variational Model

As our baseline method, we make also use of the method of Zimmer et al. [165, 164]
as presented in Chapter 2 (Sect. 2.8). In the following, it will be denoted by Ebase.
Based on this functional, we are in the position to describe our joint estimation and
fusion model. In the style to methods from the literature and our previous method that
include descriptor matches [27, 129, 154, 112], we also combine a baseline method with
some kind of similarity term that integrates matches into the optical flow estimation.
In our case this term Ecpl is called coupling term and feeds Ncand candidate flows
wP = {wP1, . . . ,wPNcand

} from the candidate model Ecand into the solution. To this end,
we propose the joint variational model

E(wP,wf) = Ebase(wf)αf
︸ ︷︷ ︸

Baseline Model

+Ecpl(wP,wf)
︸ ︷︷ ︸

Coupling Term

+ Ecand(wP)
︸ ︷︷ ︸

Candidate Model

, (4.1)

that consists of three terms. Apart from those terms which we will describe in the
following, the joint model comprises one instance Ebase(wf)αf of the baseline model for
estimating the final flow wf with smoothness weight αf.
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4.5.1 The Candidate Model

Before we detail on the fusion of the flow candidates, let us discuss how these candidates
are obtained. To this end, we consider multiple instances of the baselinemodel Ebase(w)α

with different smoothness weights αi that estimate the corresponding candidate optical
flows wPi . The candidate model is thus given by

Ecand(wP) = λcand ·
Ncand∑

i=1

Ebase(wPi )αi
. (4.2)

where the single instances can capture different levels of motion details, i.e. displacement
scales, due to the different smoothness weights. The weight λcand balances Ecand(wP)

and Ebase(wf)αf by steering the direction of information flow between the candidate
flows and the final flow. The higher it is, the more the estimation of the candidates wP

remains unaffected by the coupling term such that the information only flows from wP

to wf via Ecpl while backward information flow is suppressed.

4.5.2 The Coupling Term

Finally, in order to couple the candidate flows wPi and the final optical flow wf, we
introduce a coupling term EC for each of these instances weighted by an individual
parameter βi and a global parameter λcpl. The combined coupling term reads

Ecpl(wP,wf) = λcpl ·
Ncand∑

i=1

βi EC(wP,wf)i , (4.3)

where the distinct coupling terms are defined as

EC(wP,wf)i =
∫

Ω

ci (x,wP) ·ΨC

(

|wPi −wf|2
)

d x̃ . (4.4)

Here, ci is a local confidence function for the candidate flow wPi and ΨC is the Char-
bonnier penalizer [33] that makes the estimation more robust against outliers in the
candidate flows. In Sect. 4.6, we will define appropriate confidence functions ci that
steer the local influence of each instance flow wPi on the final flow wf.

4.6 Smoothness Weights and Confidence Functions

Since we desire candidate flows at different smoothness scales, the questions arise how
to choose the global smoothness weights of these flows and how to locally decide which
flow candidate is the most appropriate. Let us discuss these two issues in the following
sections.
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Figure 4.4: Illustration of the results for a decreasing smoothness weight with confi-
dence functions and the fused result. Brighter areas in the confidence visualizations
denote higher values.

4.6.1 Smoothness Weights

First of all, we define a maximum smoothness weight α1 which is intended to be
appropriate at most locations. On top of this, we consider smoothness weights that are
significantly smaller in order to be able to capture relative large displacement motions.
Our choice for the smoothness weights αi of the flow candidates wPi is an exponential
decrease w.r.t. α1 given by

αi :=
α1

2i−1
. (4.5)

With this choice, we can cover a wide range of different smoothness scales with only a
low number of candidate flows. By the example of the Tennis sequence [27] depicted in
Fig. 4.4, one can see at which smoothness scale the different motion patterns appear.
While the first, smoothest flow covers the background motion and the overall motion
of the Tennis player smoothly, the second flow covers the motion of the racket and
the arm well, the third flow covers the motion of the hand and the right foot while the
fifth flow covers the motion of the ball. Please note that we intentionally used isotropic
regularization in this depiction in order to make results visually comparable to LDOF
[27] which uses the same baseline with isotropic regularization.

4.6.2 Assumptions on Local Confidences

Now that we have determined global smoothness weights for the candidate model
that are appropriate to obtain a wide range of helpful candidate flows, we need a local
measure for the quality of each candidate in order to let the most appropriate one
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dominate the overall estimation of the optical flow. Given a set of candidate flows wPi

with different smoothness scales, we take into account the considerations from Sect. 4.1
to state the local assumptions on how to integrate these flows in the estimation of the
final flow wf:

1. A less smooth flow is likely to fulfill the data term better than a smoother flow,
independently from being reliable or unreliable. Hence, a less smooth flow shall
only have influence if it provides significantly less data costs than both the next
smoother flow candidate and the smoothest flow candidate.

2. The less smooth a flow is, the more texture is necessary in order to achieve
meaningful flow vectors (similar to [27]). Otherwise, we might likely get trapped
into the aperture problem.

3. A less smooth flow should not be considered if the data is unreliable (i.e. in over-
or undersaturated regions).

In order to integrate those assumptions in our local confidence functions ci , we make
use of the same measures for the data cost and for the local structure as in our ALD-
Flow approach (see Chapter 3, Sects. 3.8.1 and 3.8.2), i.e. we evaluate the data term in
order to compute the data costs and we compute the structure tensor [64] to measure
structuredness. For an increased robustness, we evaluate both of them on local patches.

4.6.3 Composition of the Local Confidence Function ci

Following the assumptions from the last section, we model the local confidence function
ci as used in the coupling term (see Eq. 4.4 where i is the index of the candidate flow)
as the product of three weights which will be defined in the following.

Cost Reduction Weight

Let e be the data costs and let ρL×L(g ,x) be a functional that averages the function
g in a L ×L neighborhood around x. As required by Assumption 1 in Sect. 4.6.2, the
following two functions describe the patch-wise energy improvement of the flow wPi

compared to the previous, smoother flow wPi−1 and the first and smoothest flow wP1,
respectively:

δprev,L(x,wP, i ) = ρL×L(e(wPi−1),x)−ρL×L(e(wPi ),x) , (4.6)

δfirst,L(x,wP, i ) = ρL×L(e(wP1 ),x)−ρL×L(e(wPi ),x) . (4.7)

The cost reduction weight is then defined as

w d
i (x,wP) = log

(

1+eκd (δprev,L(x,wP,i )+δfirst,L(x,wP,i ))
)

, (4.8)
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where κd is a free parameter. This function resembles a linear one for large arguments
of the exponential while it approaches zero for decreasing (negative) arguments.

Structuredness Weight

Let s(x) be the smaller eigenvalue of the structure tensor (integrated over a 7× 7

neighborhood) of the reference frame I1, let s̄ be its average value over the whole image
and let ri = α1

αi
. The structuredness weight is then defined as

w s
i (x) =

(
s(x)

s̄

)κs ·log(ri )

, (4.9)

where κs is a free parameter. This weight is more pronounced for less smooth candidate
flows (i.e. if ri is bigger) as required by Assumption 2 in Sect. 4.6.2.

Data Reliability Weight

We define χI (x) as an indicator function that excludes under- or undersaturated regions.
It reads

χI (x) =
{

1, I c
1(x) > τ and I c

1(x) < 255−τ ∀c ∈ {1,2,3}

0, otherwise .
(4.10)

where τ = 1 is a robustness threshold. This weight implements Assumption 3 from
Sect. 4.6.2.

Overall Confidence Function

The overall confidence functions c1, . . . ,cNcand
are then defined as follows

ĉi (x,wP) = w d
i (x,wP) ·w s

i (x) ·χI (x) (i > 1) . (4.11)

In order to be numerically robust, they are bounded from above via

ci (x,wP) = min (ĉi (x,wP) ,1000) . (4.12)

Since the smoothest flow wP1 serves as reference, it should be used everywhere except
for those locations where a less smooth flow could improve the result. Hence, we define
the confidence c1 of the smoothest flow as

c1(x,wP) = 1 , (4.13)

which corresponds to the confidence of the other flows at averagely structured areas
with only a small energy reduction.
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Figure 4.5: Illustration of exemplary candidate flowswith confidence functions (excerpt
of Fig. 4.4). Brighter areas in the confidence visualizations denote higher values.

Exemplary visualizations of these local confidence confidence functions ci for the
Tennis sequence are shown in Fig. 4.4 (bottom row) where brighter values indicate
higher confidence. A zoom of the most important candidate flows can be found in
Fig. 4.5. As one can see, for each relative large displacement, we have a high confidence
in the smoothest candidate flow that is able to capture it.

4.7 Distinguishing Small Objects from Noise

As we have seen at the beginning of this chapter, a small object undergoing a relative
large displacement is typically hardly distinguishable from noise on that (coarse) level
that is appropriate to estimate its motion. Let us illustrate at hand of the Tennis sequence
why our model is still able to estimate such motion without adapting to noise. To this
end, we consider the motion of the tennis ball in Fig. 4.6 whose correct estimation
appears in terms of a bright red spot on the left side of the color coded flow. As we can
see, the displacement is estimated within a relatively unsmooth candidate flow field
that adapts to both small objects and noise. In contrast to the false motions that are the
results of real noise, however, the motion candidate of the tennis ball is fused at later
levels of the coarse-to-fine pyramid where the ball is distinguishable from noise. Hence,
our method benefits from its ability to estimate a motion candidate at one coarse-to-fine
level (where the large displacement can be estimated) and choose it to be the most
appropriate one on another level (where the object is distinguishable from noise).
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Figure 4.6: Estimation and fusion of the large displacement of the tennis ball from
the Tennis sequence (Frame 496) [27]. While the corresponding candidate motion is
estimated at a coarse level, the fusion into the final result is done at a medium level.

4.8 Aspects of the Minimization

Similar to ALD-Flow, we basically minimize the nonconvex and nonlinear functional us-
ing concepts from Chapter 2, including the coarse-to-fine warping strategy as described
in Sect. 2.6.3 along with the lagged nonlinearity method as described in Sect. 2.3.1.
After discretization, the resulting sequence of linear equation systems is solved with a
successive overrelaxation scheme (SOR) as hinted in Sect. 2.3, this time, however, using
a multicolor variant [1] that can be parallelized and SIMD vectorized. Moreover, we
apply constraint normalization as described in Sect. 2.8.1.

Please note that in Eq. 4.4 the candidates wP are apparent in both the confidence
functions and the coupling term. In order to avoid multiplications of unknowns during
the minimization, in each coarse-to-fine level we compute the confidence functions
based on the flow from the previous level. This can also be seen as a lagged nonlinearity
method regarding the computation of the confidences.
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Figure 4.7: Comparison of LDOF and our method with the corresponding baseline
results. Left to right: Baseball sequence [160], Beanbags sequence [9], Bird sequence,
Football sequence [160], Human Eva sequence [123]. Top to down: Overlayed frames,
LDOF baseline, LDOF, our baseline, our result, our result (LDOF regularizer).

4.9 Evaluation

In order to evaluate the performance of our method, we conduct several experiments.
These include a qualitative comparison against LDOF [27] that investigates the large
displacement capabilities of our method, an experiment that analyzes the effect of
constraint normalization in this context, an experiment that evaluates the effect of
different types of data costs and a quantitative experiment on all major benchmarks.
Details on the parameters and their retrieval can be found in Appendix A.6.
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Figure 4.8: Comparison of LDOF and our method with the corresponding baseline re-
sults. Left to right: Tennis sequences 496, 502, 538, 577 [27]. Top to down: Overlayed
frames, LDOF baseline, LDOF, our baseline, our result, our result (LDOF regularizer).

4.9.1 Large Displacement Sequences

In our first experiment, we evaluate the performance of our method in the context of
large displacements. To this end, we consider various challenging large displacement
sequences from the literature and compare our results to those of the method of Brox
andMalik (LDOF) [27] which has introduced descriptor matching in variational methods
for large displacement optical flow.
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Figure 4.9: Effect of constraint normalization on the estimation of relative large dis-
placements. From left to right: No constraint normalization, ζ= 1, ζ= 0.1, ζ= 0.01,
ζ= 0.001, ζ= 0.00001. From top to bottom: Tennis sequences 496 and 577.

In Figs. 4.7 and 4.8 we show the results of both the publicly available implementation
of LDOF and our novel variational method for large displacement optical flow. As
one can see, our method correctly estimates the large displacements that LDOF is
able to estimate – and even some more (see e.g. Tennis sequence 496 in Fig. 4.7). This
particularly includes the displacements of the tennis balls that evidently exceed their
sizes. The extremely challenging Bird sequence [160] in Fig. 4.7 shows the limitations
of both methods as none of them could capture the motion of the bird’s head. In order
to demonstrate that the correct estimation of large displacements does not depend on
the anisotropic regularizer, we also added results for our method with an isotropic
smoothness term (which is also used in LDOF).

While we have chosen the number of candidate flows fixed for all sequences, one may
actually improve the results further by choosing this number according to the extent
of large displacements. For instance, for the Beanbags sequence, already a value of
Ncand = 3 is sufficient to estimate the large displacements, while we need a value of
Ncand = 7 in order to capture the motion of the tennis ball in Tennis sequence 577.

4.9.2 Constraint Normalization

In our second experiment, we show that constraint normalization [165] is helpful in
the context of large displacements (see also Chapter 2, Sect. 2.8.1). To this end, we
estimated flow fields without normalization and with normalization for different values
of the normalization parameter ǫcNorm. While the general benefits of the constraint
normalization have already been shown in [165], Fig. 4.9 shows the results on two large
displacement sequences. As one can see particularly at hand of the tennis balls, both
the deactivation of the constraint normalization and a too high value of ǫcNorm inhibit
the estimation of large displacements. A too low value for ǫcNorm, in contrast, leads to
noisier results. Using constraint normalization with a value between 0.001 and 0.01

(our standard value) for ǫcNorm provides the best results.
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Figure 4.10: Effect of different data constancy assumptions on the final result. From
left to right: Brightness constancy assumption (BCA), Gradient constancy assumption
(GCA) and both combined. From top to bottom: Data costs of the baseline flow
(brighter grey values indicate larger energies), final result.

This demonstrates that the weight balancing effect of the constraint normalization
also helps in the context of large displacements, since we have to find weight balances
between data term and smoothness term that fit the present motion patterns.

4.9.3 Influence of the Data Constancy Assumptions

In our third experiment, we analyze the two types of data terms we used in our model
w.r.t. their data costs and their influence on the fusion scheme. While the brightness
constancy assumption (BCA) can produce high costs at any part of a mismatched object,
the gradient constancy assumption (GCA) can only produce high data costs where
edges are involved. It is hence a lot sparser (see Fig. 4.10, top row). As can be seen
from the bottom row of Fig. 4.10, the fusion using only the GCA data term is by far
inferior to the results of using BCA or combining both data terms. The data costs of
a pure GCA data term for incorrect matches are too low and hence it cannot compete
with the smoothness term which prevents the motion discontinuity of a relative large
displacement. In contrast, when including the BCA, the denser data costs make the
misestimation of relative large displacements more expensive and thus increase the
probability to estimate such displacements correctly. This shows that data costs with
dense coverage for mismatched objects are important for our fusion scheme.
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Table 4.1: Results of Continuous Fusion Flow and its baseline on training data from
different benchmarks.

Middlebury Sintel (sub.) Sintel KITTI ’12 KITTI ’15
(AAE) (AEE) (AEE) (AEE) (BP3) (BP3)

Baseline 2.73 0.229 6.375 4.084 10.68% 24.25%

Ncand = 1 2.73 0.231 6.365 4.082 10.60% 24.18%

Ncand = 2 2.72 0.231 6.028 4.081 10.55% 24.25%
Ncand = 3 2.75 0.232 5.808 3.974 10.53% 24.39%
Ncand = 4 2.77 0.232 5.832 3.986 10.48% 24.45%
Ncand = 5 2.80 0.235 5.967 4.029 10.47% 24.49%
Ncand = 6 2.84 0.245 6.119 4.102 10.47% 24.72%
Ncand = 7 2.99 0.274 6.189 4.128 10.48% 24.51%

4.9.4 Major Benchmarks

In order to see how this method performs in a quantitative sense, we conduct a fourth
experiment on all major benchmarks. As before, we use first-order regularization for
the Middlebury and MPI Sintel benchmarks and second-order regularization for the
KITTI benchmarks. Tab. 4.1 shows the corresponding results for the training data. The
most significant changes can be seen in for the MPI Sintel benchmark [31]. Compared
to the baseline method, the average endpoint error (AEE) decreases from 4.084 down
to 3.974 (by 2.7%) and from 6.375 down to 5.808 (by 8.9%) on the respective subset of
sequences that we used for parameter optimization. This behavior is partially confirmed
by the results for the evaluation data sets that are listed on the MPI Sintel benchmark
webpage where our method is denoted as ContFusion and the baseline is denoted as
COF_2019. While the error slightly increases from 6.171 to 6.263 (by 1.5%) on the clean
pass, it decreases from 8.065 to 7.857 (by 2.6%) for the final pass. Minor improvements
on the training data can also be reported for the KITTI benchmark 2012 where the AEE
decreases from 10.68 down to 10.47 (by 2%), while for the KITTI 2015 and Middlebury
benchmarks there is no significant improvement. Overall, however, the improvements
on most benchmarks show that our novel strategy of the simultaneous estimation and
fusion of motion candidates is also beneficial in a quantitative sense.

Optimization of More Parameters

So far, for simplicity reasons, we have only optimized the very crucial parameters Ncand,
α1 and γ while keeping the δ = 1 for all benchmarks and all other parameters fixed
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Table 4.2: Results of Continuous Fusion Flow and its baseline on training data from
different benchmarks whereby all parameters have been optimized.

Middlebury Sintel (sub.) Sintel KITTI ’12 KITTI ’15
(AAE) (AEE) (AEE) (AEE) (BP3) (BP3)

Baseline 2.73 0.229 6.375 4.084 10.68% 24.25%

Ncand = 1 2.73 0.229 6.365 4.082 10.60% 24.18%

Ncand = 2 2.72 0.229 6.028 4.081 10.55% 24.25%
Ncand = 3 2.72 0.227 5.743 3.972 10.53% 24.39%
Ncand = 4 2.72 0.227 5.757 3.960 10.47% 24.41%
Ncand = 5 2.71 0.229 5.859 3.910 10.45% 24.46%
Ncand = 6 2.71 0.226 5.849 3.905 10.46% 24.37%
Ncand = 7 2.70 0.225 5.831 3.975 10.47% 24.49%

for all sequences (see Appendix A.6). The other parameters λcand (overall weight of
the candidate models) and λcpl (overall weight of the coupling term), however, are not
negligible. To better see the full potential of our method, we conduct a fifth experiment
that also involves these parameters in the parameter optimization. Tab. 4.2 contains the
achieved results when optimizing more parameters. We can see that in this case, we can
also achieve consistent improvements for the Middlebury benchmark and further minor
improvements for the other benchmarks (except for KITTI 2015). In particular for large
sets of candidate models (Ncand ≥ 5), we avoid the otherwise significant decreases in
performance.

4.9.5 Limitations

As we have seen before, our method is not able to capture large displacements in the
presence of illumination changes, since the illumination-invariant gradient constancy
assumption (GCA) alone is not resilient enough to reliably estimate large displacements.
The behavior at occlusions is another limitation of our method. This can be seen both
visually at the large displacement sequences (in Figs. 4.7 and 4.8) and quantitatively at
the unmatched EPE in the public results of the MPI Sintel benchmark (that increases
compared to the baseline). Additionally to regions with mismatched objects, occluded
regions produce potentially high data costs. Since our confidence function heavily
relies on data costs, accurate smooth flows are replaced by less smooth candidate flows
that lead to a smaller local data energy while, however, being potentially meaningless.
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4.10 Summary

In this chapter, we pushed the limits of variational approaches that are minimized
using a standard coarse-to-fine warping scheme a little bit further w.r.t. relative large
displacements. We have shown that many large displacement cases from the literature
can be estimated without the need for descriptor matches. The weaknesses of existing
variational methods in these cases are not due to weak data representations on coarse
resolutions but due to a weight balancing of the data term and the smoothness term
that is inappropriate for the estimation of relative large displacements.

Using multiple instances of the baseline model and appropriate choices of weighted
coupling terms, we show that we can estimate different scales of motions in a regu-
larized way within a single variational model that simultaneously estimates and fuses
candidate flows with different smoothness weights. The findings were confirmed by the
evaluation which showed a good performance for relative large displacements and a
quantitative improvement over its baseline method on different benchmarks. Moreover,
we demonstrated that concept of data constraint normalization is particularly helpful
in re-balancing the data term and the smoothness term when estimating relative large
displacements.

Limitations include the behavior at occluded regions, where advanced occlusion han-
dling would be necessary, and the handling of severe illumination changes, where the
BCA is not applicable at all and the GCA alone cannot help to estimate relative large
displacements correctly. The latter case will later be addressed in Chapter 6.



Chapter

5

Optical Flow and Illumination

Compensation

Another important data challenge is given by changes in the illumination between the
frames of an image sequence, particularly in outdoor scenarios such as driver assistance
systems or video surveillance tasks. Along with this, the robustness of optical flow
methods under uncontrolled illumination is a major target in recent research. In order
to support this research, real-world benchmarks such as the different editions of the
KITTI Vision Benchmark Suite [52, 92] have been designed that ideally reflect such
scenarios. The sequences depict automotive scenarios in an urban environment where
typical illumination changes such as camera re-adjustments or shadows and highlights
as instances of physical illumination effects appear.

5.1 Illumination Invariance

A very intuitive way to handle illumination changes is to consider features of an image
that are invariant under the assumed type of illumination changes. This holds for any
type of computer vision problem that considers different depictions of the same scene. It
is hence not surprising that a lot of research has been donew.r.t. invariant image features.
We have already seen some examples of such features, among which the gradient can be
considered as the starting point in the research on illumination-invariant features due to
its simple computation and its invariance under global additive changes. In the context
of motion estimation, the gradient comes into play in several variants: On the one hand,
it has been used directly in terms of the gradient constancy assumption (GCA) within
the data term of variational optical flow models [26, 29, 165, 25, 160]; similar constancy
assumptions have also been constructed from higher order derivatives [75]. On the
other hand, it is the basis for a lot of more advanced features like SIFT [80] or HOG [36]
which are used either for feature matching [25, 27, 70] or as a constancy assumption
of a variational model [79, 109]. Among additional invariances w.r.t. other aspects
such as geometry or scale, such advanced features often gain even higher degrees of
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illumination invariance by further computations like e.g. normalization steps performed
on whole patches of gradients.

A more direct implementation of higher degrees of illumination invariances is given
by specifically tailored features that e.g. come from photometric invariants of color
images [144, 94, 164] and mutual information [66], such as the normalized cross cor-
relation (NCC) [155]. Moreover, there are small patch-based descriptors based on the
comparison of neighboring pixel values, such as the census transform [124, 106, 23]
and the (complete) rank transform [162, 40] which are invariant even under any type
of monotonic illumination changes. Surveys that compare some of these methods
can be found e.g. in [125, 145]. A similar goal is achieved by methods that discard
illumination-relevant information in a preprocessing step. This includes the concept of
structure-texture decomposition [150] or the concept of derivative-type filters [132].

Discarding Information. Building on illumination invariance always means to dis-
card potentially valuable information at the same time. If illumination changes are only
moderate or not even present, such an omission of brightness or contrast information
may significantly deteriorate the results. A good example is given by the previously
discussed Continuous Fusion Flow when comparing the gradient constancy assumption
(GCA) with the brightness constancy assumption (BCA): the result of the invariant
GCA did by far contain less relative large displacements than the results for the BCA or
the combination of both, and it was considerably noisier at the same time (see Chapter
4, Fig. 4.10). Moreover, most invariants are meaningless at homogeneous regions, since
they rely on illumination-invariant parts of the information about the local contrast,
which, however, is missing there. Summarizing: Since discarding potentially valuable
information destroys the ability of the data term to steer the estimation of the optical
flow at many locations – which can have negative effects on the overall result –, it
would be desirable to keep this information and exploit it in the estimation process.

5.2 Estimating Illumination Changes

Another possibility is not to discard such information at all but to estimate it, i.e. to
treat it as a further unknown in the problem. This comes down to an explicit estimation
of illumination changes. By an online compensation of one of the images of an image
sequence for the illumination changes w.r.t. the other image, the BCA can be made valid.
This is possible in a joint estimation of the illumination changes together with the optical
flow, i.e. together with the latter we estimate the so-called brightness transfer function

(BTF) between both frames – which is known as relative intensity transfer function in
[38]. It describes a mapping of intensities between corresponding pixels of both frames
and, hence, allows to compensate a frame for the apparent illumination changes and thus
to eliminate these changes without omitting the remaining illumination information.
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5.2.1 Spatial Properties

Fortunately, illumination changes do not need to be considered pixelwise, since they
typically affect entire image regions. Otherwise, the problem would be unsolvable,
since any unconstrained variation of the brightness at a location in the image sequence
could solely be expressed by an illumination change and the estimation of an optical
flow would neither be possible nor meaningful. Instead, we can rely on regions of
similar illumination which comes down to using neighborhood information in the
estimation. No matter whether we consider shadows or global illumination changes,
these conditions all apply to regions of smaller or bigger sizes.

Types and Magnitudes. When we discuss the locality of illumination changes, we
should also regard the different aspects of illumination changes: they can be of a
different type and they can have a varying magnitude. Hence, some questions arise: Do
we consider a global type of changes with a constant magnitude? Do we consider a
global type with a varying magnitude? Or do we consider varying types of illumination
changes with varying magnitudes?

5.2.2 Parametrizations

All of these aspects come into play at different stages of the joint estimation. Typically,
the type of illumination changes appears in terms of a corresponding parametrization
while the magnitude of the illumination changes is given by the coefficients w.r.t. this
chosen parametrization. This also hints that the type of illumination changes is usually
determined offline by choosing a suitable parametrization while the magnitude of the
illumination changes is estimated online by estimating the corresponding coefficients
which we call illumination coefficients.

Parametrizations can be obtained in different ways, either by explicit modeling e.g.
via additive [35] or affine [53] illumination changes or by directly learning them from
training data.

5.2.3 Coefficients

The estimation of the optical flow itself is already highly ill-posed whereby the aperture
problem plays an important role [16]. The usage of regularization in variational optical
flow estimation alleviates the problem a lot. When additionally illumination changes are
supposed to be estimated in terms of coefficients for a given parametrization, additional
regularization is required in order to avoid an arbitrary description of the change of
brightness at a pixel by a change of the illumination. Only a well-balanced regularization
scheme for both the optical flow field and the fields of illumination coefficients can lead
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to a meaningful separation of brightness changes at the pixels into motion-induced
brightness changes and illumination-induced brightness changes.

5.3 Related Work

Since in this context different research fields are important, namely optical flowmethods
that jointly also estimate illumination changes and parametrization learning in the
context of BTFs, we will subdivide the related work w.r.t. the different research fields.

5.3.1 Optical Flow Approaches

The idea to jointly estimate optical flow and illumination changes has already driven
some methods in the literature. This includes both approaches that estimate a single
global BTF [38] as well as methods that estimate coefficients for a given parametrization
in order to determine local illumination changes. The variety of such explicitly modeled
illumination changes on the one hand comprises simple additive [35, 95] and affine
[53, 98, 76, 60] terms and on the other hand reaches up to complex brightness models
derived from physics [65]. A combination of local and global ideas has also been
proposed in [60]: First, a local affine model is used to estimate the correspondences in a
PatchMatch-like approach [10] and, second, a single global BTF is estimated from these
correspondences.

In order to distinguish real illumination changes and motion-induced brightness varia-
tions, it is not only necessary to have an appropriate regularization scheme that prevents
arbitrary solutions but also to have an appropriate model for the illumination changes.
So far, however, such models were either designed ad-hoc [35, 53] or are based on a
certain physical process [62]. An investigation to determine the most suitable model
for a given set of data, however, is missing. Moreover, there are no efforts to analyze
the design of the regularizer of the coefficient fields which is responsible for a good
separation of brightness effects due to motion and due to illumination changes. Finally,
existing variational methods with parametrized illumination models rely on simple
concepts for data and smoothness terms [53, 38]. Hence, it is of considerable interest
to see how a more sophisticated joint method performs on challenging benchmark
data that contain significant illumination changes. In this thesis, we will develop such
a method with an advanced model that allows for flexible parametrizations of the
illumination.

5.3.2 Basis Learning

Also in the context of estimating brightness transfer functions and finding suitable
representations a lot of work has been done in the literature. Considering the estimation
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of BTFs or camera response functions, there are some methods that address these issues,
mainly in the context of HDR imaging. These include the computation of the BTF
using histogram specification as proposed by Grossberg and Nayar [56] as well as the
estimation of the camera response function as proposed by Debevec and Malik [37]
and Grossberg and Nayar [57]. The latter work uses learned basis functions for this
task. In the context of representing appearance changes, there are works that make
use of basis functions for illumination changes. Hager and Belhumeur [62] used them
for template tracking whereas Black et al. considered this kind of representation in
their work on iconic changes [20]. Another work comes close in spirit: the approach
of Tieu and Miller [135] estimates a 3-D basis via PCA to represent color eigenflows
that represent color changes and map RGB color vectors from one image to the other.
Finally, basis functions are also used in optical flow methods both in spatial and in
temporal direction for the modeling of the flow itself or the trajectories of points. An
early representative is given by the work of Nir et al. [100] who over-parametrized the
optical flow. Recently, such basis functions are also used in the works of Garg et al. who
proposed temporal tracking of non-rigid objects with subspace constraints [51] and of
Ricco and Tomasi who proposed to learn trajectories with global occlusion reasoning
[114]. Hence, apart from developing a more sophisticated model that can make use of
flexible parametrizations of the illumination changes it would also be desirable to learn
such parametrizations in terms of basis functions from training data.

5.4 Contributions

In this chapter, we tackle the problem of estimating the motion jointly with the illumi-
nation changes. In this context, our contributions are fourfold: (i) We present a novel
variational approach for the joint estimation of optical flow and illumination changes
that can handle variable parametrizations of illumination changes. (ii) We demonstrate
how a suitable parametrization can be learned by a principal component analysis (PCA)
of the brightness changes in training data. Such a learned parametrization represents
the BTF in terms of a basis. In this learning step, we do, moreover, not only estimate
one global BTF per image pair but several local ones by clustering different regions
of similar illumination changes. (iii) We compare such learned parametrizations with
explicitly modeled ones. (iv) We compare different regularization schemes in order to
find an optimal combination of regularizers for the optical flow and the illumination
coefficients. The contents of this chapter have been published at a conference [41]. In
contrast to the PhD thesis of Demetz [39], who is another co-author of our paper and
also discusses contents of this paper, we will rather focus on the modeling part than on
the learning part.
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5.5 Parametrization of Illumination Changes

In order to have a flexible and at the same time tractable way to estimate the illumination
changes in terms of coefficients, we take inspiration from the work of Grossberg and
Nayar [57] who proposed the use of parametrized brightness transfer functions (BTFs)
in the context of photometric calibration for HDR imaging. We use such a function, that
maps intensities from the first frame to corresponding intensities in the second frame,
to account for illumination changes between both frames. Given a set of NcIll basis
functions φ j : R→R and an intensity I , the corresponding parametrized BTF reads

Φ(b, I ) = φ̄(I )+
NcIll∑

j=1

b j ·φ j (I ) , (5.1)

where φ̄(I ) : R → R is the so-called mean brightness transfer function and
b = (b1, . . . ,bNcIll

)⊤ are linear weights that state the influence of each basis vector.
This parametrization is very flexible, since the basis vectors can implement any type of
illumination change.

5.6 Variational Model

Let us now define the variational model that is able to estimate the optical flow w

and a coefficient field b : N×Ω→ R
NcIll·Nc (where Nc denotes the number of image

channels) that describes the magnitude of the illumination changes according to a
given parametrization. Following the basic approach of Cornelius and Kanade [35],
the joint computation of the optical flow and the illumination changes is conducted by
minimizing the following energy functional:

E(w,b) =
∫

Ω

D(w,b)
︸ ︷︷ ︸

Data Term

+ α ·Sflow(w)
︸ ︷︷ ︸

Flow Regularizer

+ αill ·Sill(b)
︸ ︷︷ ︸

Coefficient Regularizer

d x̃ , (5.2)

where α and αill are smoothness weights. The variational model comprises three terms:
the data term D that is responsible to establish a connection between two consecutive
frames geometrically via the optical flow and photometrically via the the parametrized
illumination changes (which are encoded in terms of coefficients), the smoothness term
Sflow which prevents arbitrary fluctuations in the flow, and a regularizer Sill for the
illumination coefficients that prevents arbitrary fluctuations within the coefficient field.
In the following, let us discuss these terms in detail.

5.6.1 Data Term

Existing data terms for the estimation of the optical flow typically model variations in
the brightness between consecutive images as purely induced by motion. In contrast,
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our data term allows to explain such variations additionally in terms of illumination
changes. Basically, we make use of the data concepts of Bruhn and Weickert [29] (see
Chapter 2, Sect. 2.7) and enrich the BCA and the GCA with the illumination coefficients,
such that the general data term reads

D(w,b) = DBCA(w,b)+γDGCA(w,b) , (5.3)

where γ is a positive weight that balances both assumptions. Let us now discuss the
two terms in detail.

Compensated Brightness Constancy Assumption

In general, there are two possibilities where to apply the BTF within the data constraint:
at the first frame or at the second frame. Since the second frame is evaluated at a
displaced position, we decided to apply the BTF to the first frame which reads

DBCA(w,b) = ΨD

(
Nc∑

c=1

(

I c
(x+w)−Φ(bc

(x), I c
(x))

)2

)

. (5.4)

This has some important advantages at the minimization stage: (i) It avoids products of
the unknowns in the linearization, (ii) The compensation can be done independently
which avoids the question about the detailed procedure when compensating: Is it
preferable to first warp the frame and then compensate for illumination or to change
the order of compensations?

In order to obtain a consistent notation w.r.t. colors for both the images and the illu-
mination coefficients, we denote by bc

(x) the coefficient field for the color channel c .
Please also note that the brightness changes are modeled to be spatially variant, i.e. with
non-constant coefficients b. Hence, we allow different brightness transfer functions Φ
at each position.

Temporal Aspects. In the context of camera response functions, the brightness trans-
fer function maps irradiances to intensities. In this context, intensities and irradiances
are data at the same time step. In our case, however, we map intensities between frames
from different time steps with a temporal distance of ∆t . Although we usually consider
successive frames to have a fixed non-zero temporal distance (defined as ∆t = 1), the
given image frames are treated as slices of a continuous image volume where motions
are defined for any temporal distances, including particularly the case ∆t → 0. In this
case, successive image frames converge to be equal, such that Φ(b, I ) should converge
against the identity function. The parametrization in terms of basis functions, however,
allows for basis functions where this convergence cannot be guaranteed a priori (in
case that φ̄(I ) 6= I which does not have a coefficient) or that do not generalize for other
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temporal distances. In general, we thus have to assume the parametrization of the BTF
to be time-variant, expressed by adding an index ∆t , i.e. we have Φ∆t .

This is a necessary remark to understand possible implications in the continuous
case. Since our usual case is ∆t = 1, it is, however, in practice sufficient to consider
Φ :=Φ∆t=1 and to have in mind that Φ∆t=0(b, I ) = I is assumed to be the identity. Any
parametrizations at other time steps (i.e. for ∆t 6∈ {0,1}) are not known and not needed.
Please note that in the later learning stage we implicitly assume that the temporal
distance ∆t = 1 holds for all used image sequences, i.e. we learn the basis functions
particularly for illumination changes between frames with a temporal distance of∆t = 1.

Compensated Gradient Constancy Assumption

Similar to the BCA, we can also adapt the gradient constancy assumption (GCA) which
then reads

DGCA(w,b) = ΨD

(
Nc∑

c=1

||∇I c
(x+w)−∇Φ(bc

(x), I c
(x))||2

)

, (5.5)

with ∇ being the spatial gradient operator. This transfers the intended capability to
handle the parametrized type of illumination changes also to the gradient constancy.

It may seem surprising to combine both the explicit estimation of illumination changes
and a constancy assumption that is based on illumination-invariance. However, its
invariance under additive illumination changes together with the robust penalizer
can steer the estimation at those locations where an adaptation of the illumination
coefficients to the illumination changes is difficult. An example where this is the case
are the early stages of the estimation where all unknowns are far away from having
converged to their final values. Please keep also in mind that the GCA provides two
additional constraints at each pixel in the minimization. In a setting where otherwise
solely the smoothness terms would resolve the hopeless underdetermination of the
equation system (with multiple unknowns at each pixel), additional constraints may
stabilize the computations.

Similar to the baseline, the same sub-quadratic Charbonnier penalizer ΨD is used for
both data constraints.

5.6.2 Regularization Terms

While even a conventional equation system with the two unknowns u and v is highly
underdetermined at most locations, since the data constraints locally often fail to provide
enough information, an increase of unknowns due to the illumination coefficients
worsens the situation. Hence, we need to employ spatial regularization for both the
unknowns of the flow and the illumination coefficients. Furthermore, the distribution
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of the observed variations in brightness cannot be determined by the data term alone.
Besides an appropriate parametrization, that is able to adequately describe the observed
illumination changes, there is also the aspect of how to model both regularization terms,
which is important to resolve this ambiguity. In the following, we will discuss the
design of both smoothness terms.

Flow Regularization

Consistently to the last chapters, we will employ the anisotropic first-order comple-
mentary regularizer (see Chapter 2, Sect. 2.8.3) which is given by

Sflow(w) =
2∑

i=1

ΨSi

(
2∑

j=1

(

r⊤i ∇w j

)2

)

, (5.6)

where ΨS1(s2) = ǫ2S1 log(1 + s2/ǫ2S1) is the Perona-Malik penalizer,

ΨS2(s2) = 2ǫ2S2

√

1+ s2/ǫ2
S2 is the Charbonnier penalizer and the direction vectors r1

and r2 = r⊥1 are defined as in Chapter 2, Sect. 2.8.3, for scenarios with dominant fronto-
parallel motion. In case of a dominant non-fronto-parallel motion we will resort to the
isotropic second-order regularizer from Chapter 2, Sect. 2.9 which reads

Sflow-AFF(w) = ΨS

(
2∑

j=1

||H w j ||2F

)

, (5.7)

where ΨS(s2) = 2ǫ2S

√

1+ s2/ǫ2
S
is the Charbonnier penalizer.

Coefficient Regularization

As we have seen at hand of the different motion directions (fronto-parallel or non-
fronto-parallel), for the flow field different orders of regularization may be appropriate.
For the illumination changes, the situation is a little simpler. It typically makes sense to
assume that neighboring pixels undergo piecewise similar illumination changes, i.e. the
illumination coefficients are piecewise constant. This, for instance, holds for shadows
as well as for an adapting camera whose aperture is narrowed or widened when more
light is incoming. If there are discontinuities in the coefficient field, it is natural to
also assume that they are a subset of the edges in the input images (e.g. shadows) [97].
Consequently, we transfer the successful concept of anisotropic flow regularization to
the illumination case and employ the anisotropic first-order complementary regularizer
of Zimmer et al. [165] on the illumination coefficients:

Sill(b) =
2∑

i=1

Ψ
i
illum

(
Nc∑

c=1

NcIll∑

j=1

ξ j

(

r⊤i ∇bc
j

)2
)

. (5.8)
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In this term, we use the same direction vectors r1 and r2 = r⊥1 as in Chapter 2, Sect. 2.8.3.
Please note that the associated regularization tensor needs to be computed from the
original, i.e. photometrically uncompensated, first frame I (x), since illumination edges
that are important for the anisotropic regularizationmight disappear in the compensated
version. Moreover, we employ a joint penalization strategy for all coefficient fields
whereby a single penalizer per direction is applied, since we assume that any spatial
change in the BTF not only leads to a discontinuity in a particular coefficient field but in
all of them. Within this joint penalization, we weight the derivative expressions for the
different coefficients with weights ξ j which reflect the different ranges of magnitudes
that the coefficient fields may have. The retrieval of these weights is discussed in
Sect. 5.7.3, since they are a by-product of the learning process of the basis functions.
Similar to the flow regularization case, a good anisotropic behavior is achieved when
applying the edge-enhancing Perona-Malik regularizer across edges (in r1-direction)
and the edge-preserving Charbonnier regularizer along them (in r2-direction) [148].

5.7 Basis Learning for Brightness Transfer

Functions

In the previous sections, we have presented the variational model that has to be min-
imized in order to obtain the optical flow and the illumination changes. Technically
spoken, we discussed, how to obtain the illumination coefficients b, i.e. the magnitude

of the illumination changes. Let us now discuss how to obtain the type of illumination
changes in terms of the mean BTF φ̄ and the basis functions φ j as well as the associated
weights ξ j that help respecting the orders of magnitude of the illumination coeffi-
cients in the corresponding regularizer. In contrast to the magnitude of illumination
changes that may vary between different image sequences of a scene, the potential
types of illumination changes can be regarded as consistent within a given setting, since
they depend on factors that are known a-priori (adaptation behavior of the camera,
indoor/outdoor-scenes, lighting conditions etc.). Hence, it makes sense to learn them
offline from training data of a given setting. To this end, we take inspiration from
the work of Grossberg and Nayar [57], since their Empirical Model of Response (EMoR)

parametrizes camera response functions of imaging systems in terms of basis functions,
and employ a similar learning strategy. However, instead of irradiances, which are an
important quantity in imaging systems, our model operates on intensities.

As already mentioned in Sect. 5.5, we relate input intensities and output intensities via

Φ(b, I ) = φ̄(I )+
NcIll∑

j=1

b j ·φ j (I ) , (5.9)
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which allows to represent many kinds of illumination models using appropriate basis
functions. This particularly includes polynomial and exponential illumination models
such as the affine model of Negahdaripour et al. [98] via

φ̄(I ) = 0, φ1(I ) = 1, φ2(I ) = I ,

as well as the purely additive models in Cornelius and Kanade [35] and Mukawa [95]
via

φ̄(I ) = I , φ1(I ) = 1,

and the simple standard case of modeling no illumination changes via

φ̄(I ) = I ,

which gives an exemplary overview on how to integrate ad-hoc parametrizations into
our framework.

Training Data for the Learning Process

Among all recent benchmarks, the KITTI 2012 Vision Benchmark Suite [52] is a good
choice to illustrate our learning strategy, since it provides a rare combination of real-
world data and (sparse) ground truth displacements. Due to the large set of image
sequences, we are able to consider many real correspondences between input and
output intensities in order to analyze true brightness transfer functions with many
pixels involved. For simplicity reasons, we will demonstrate the concepts at hand of the
scalar intensities of KITTI’s grey value images. For color images, the whole learning
procedure is either applied to each color channel separately or the BTFs of each channel
are combined to learn a joint basis.

5.7.1 General Learning Strategy

We can subdivide our strategy into two phases: an initialization phase to get a first
estimate of the basis functions and an iteration phase to get basis functions that are
learned from local brightness transfer functions. In the initialization phase, we start by
estimating one BTF per image pair via histogram specification [55]. On this set of BTFs,
the so-called observations, we perform a principal component analysis (PCA) in order
to obtain a small set of basis functions that is appropriate to describe the observations.

Iterative Localization of the BTFs. After this initialization phase, we have a first
initial set of basis functions based on global BTFs. By using them we can proceed with
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Algorithm 5.1 Pseudocode for basis learning.
1: initialization:

2: setOfBTFs ← {};
3: for all image pairs do
4: h1, h2 ← compute histograms;
5: BTF ← histogram specification on h1, h2; //global BTF
6: add BTF to setOfBTFs;
7: end for

8: φ̄, φ, ξ ← perform PCA on setOfBTFs

9:

10: iteration:

11: setOfBTFs ← {};
12: for all image pairs do
13: b ← computeCoefficients(wgt, φ̄, φ, ξ);
14: segments ← KMeans(b);
15: for all segments do

16: h1, h2 ← compute histograms on current segment;
17: BTF ← histogram specification on h1, h2; //local BTF
18: if not isDegenerated(currentSegment) then
19: add BTF to setOfBTFs;
20: end if

21: end for

22: end for

23: φ̄, φ, ξ ← perform PCA on setOfBTFs

24: goto iteration;
25:

the iteration phase, where we can use more local BTFs that describe local phenomena
(like e.g. drop shadows). To this end, we compute the illumination coefficients using
the given ground truth flow and the current version of the basis functions and segment
them in the coefficient space using K-Means clustering. Then we estimate a local BTF
for each segment (again using histogram specification) and apply a PCA on the new set
of BTFs over all segments in all image pairs in order to get an improved set of basis
functions. These basis functions can then be used for further iterations. An overview
in terms of a pseudocode is also given in Alg. 5.1.

This strategy is similar to what Tieu and Miller proposed [135]. They consider shifts in
the RGB color space between two images which in total provides the so-called color

flow. Applying the PCA on the color flows of multiple images then provides a basis
which the authors refer to as color eigenflow.
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5.7.2 Estimating Brightness Transfer Functions

Given a set of m segments from the set of image pairs (which in the initialization phase
corresponds to one segment per image pair), we now need to estimate m different
BTFs g : R→R (one for each segment). In this context, we follow Grossberg and Nayar
[56] who estimated global BTFs whereby we apply their strategy to local segments
instead of global images. To this end, we construct two histograms h1 and h2 for each
segment, where h1 accumulates the intensities in the first frame while h2 accumulates
the corresponding intensities in the second frame. We have to ensure to only consider
real correspondences between intensities which means that there must be a ground
truth flow vector that does not target to a location outside the image domain. Finally,
the BTF is given as the result of a histogram specification that transforms the source
histogram h1 to the target histogram h2.

Restriction toMeaningful Segments. However, wemust take care that the segments
contain meaningful brightness transfer functions. We assume segments that are too
small or that are fully saturated to be harmful in this context. To this end, we filter
out any segment that is widely dominated by a single intensity, i.e. in which 80% of
the pixel share the same intensity, or that shows a too sparse sampling of the dynamic
range, i.e. in which more than one third of all possible intensities are not present.

Representation of the BTF. Please note that we obtain a discrete function as the
result of the histogram specification which is given by a vector g ∈R

256 : i 7→ gi which is
not represented as a parametrization in terms of basis functions and the corresponding
coefficients. Such basis functions are obtained by the following PCA out of all the BTFs
of all remaining segments.

5.7.3 Learning Basis Functions

Based on the results of the last step we obtain m ≤ K ·p observation vectors gi from up
to K segments in each of the p training image pairs. From these observation vectors gi ,
we want to obtain a common set of basis transfer functions that are able to describe the
main aspects behind these observations. To this end, we apply a principal component
analysis (PCA) whereby we start by concatenating all observations gi (i = 1, . . . ,m) into
a so-called observation matrix

G := (g1| . . . |gm) ∈R
256×m

. (5.10)

From this matrix G we compute the row-wise mean ḡ that describes the sample mean
overall observations. It is then used to derive the covariance matrix C as

C = U⊤
ΣU =

1

m −1

m∑

i=1

(gi − ḡ)(gi − ḡ)
⊤

. (5.11)
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Figure 5.1: Comparison of different basis functions. From left to right: (a) Normalized
affine basis. (b) EMoR functions [57]. (c) Our basis functions learned from KITTI ground
truth data.

Applying a Principal Component Analysis. The eigenvectors of the covariance
matrix as the principal components, which are the columns of U, directly serve as
the sought basis functions φ j ( j = 1, . . . ,n). On top of this, the row-wise mean ḡ is
considered to be the 0-th basis function which is called the mean brightness transfer
function φ̄. As a by-product, the diagonal matrix Σ is generated by the eigenvalues of
C which express the variance of the given data w.r.t. the principal components. We can
consider them as well-suited estimates for the relative magnitudes of the coefficients
which are useful to balance the coefficients within the ansiotropic regularization term
from Eq. 6.4. For our balancing scheme, we consider the corresponding weights b j to
be the inverse square root of the eigenvalues.

Shapes of Learned vs. Ad-hoc Bases. In Fig. 5.1 we can see the estimated bases for
the KITTI Vision Benchmark Suite (2012) in comparison to both an affine basis and
the EMoR basis as given by [57]. While the EMoR basis functions model illumination
changes in the lower part of the range of intensities, our learned basis functions rather
model these in the upper part. A further, big difference can be found in the mean
brightness transfer function. The estimated mean BTF is rather linear in contrast to
the one of the EMoR basis, since we derive a mapping between intensities where the
expected average is given by the identity function. This is not expected when estimating
a camera response function as in [57].

5.7.4 Segmenting Illumination Changes

Our goal is now to find local brightness transfer functions within the image pairs from
the training data, since we assume that different parts of an image can undergo different
lighting conditions. To this end, we need to estimate the local brightness transfer
function for each pixel. In this context, an obstacle is that for this BTF (which can be
arbitrarily complex) there is only one local constraint at each pixel: Given the intensity
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Figure 5.2: Exemplary depiction of the clusters of a coefficient field. Left: Frame 1
of the KITTI 2012 training sequence #114. Right: Resulting clusters of the K -Means
algorithm. While black pixels indicate locations where no ground truth is provided,
each color indicates a separate cluster. On the one hand, we can see the three red spots
in the depiction that correspond to the inter-reflections at the windshield, while on
the other hand, we observe different clusters for the street and the environment which
are the result of a stronger brightening effect on the street in contrast to a weaker
brightening in the environment.

of the pixel in the first frame as an argument, the unknown BTF must provide the
intensity of the corresponding pixel in the second frame.

Estimating Illumination Coefficients. However, this extremely underdetermined
problem can be relaxed. Regarding the types of illumination changes, the arbitrary
complexity of the pointwise BTFs is reduced to those BTFs that are expressible using
the basis functions that we have estimated so far. What remains is the determination
of the corresponding magnitudes. Hence, the problem comes down to an estimation
of the coefficient vector b in each pixel. However, the tools to solve this problem are
already given in terms of our model from Sect. 5.6. While keeping the optical flow w

fixed, since we are provided with the ground truth wgt, the remaining estimation solely
concentrates on the coefficients b. In this context, we have to consider that there are
some pixels where no ground truth is available (i.e. due to occlusions or due to sparse
laser scans) such that we need to disable the data term there. Eventually, we end up
in an inpainting scenario using a variational method [153], since at some locations
the solution is purely determined by the regularizer of the coefficients. In contrast to
conventional inpainting scenarios, the inpainted pixels, where no ground truth is given
and thus no correspondence between intensities can be established, are not of interest.
The only purpose of this regularization is to enforce a global information flow in order
to solve the underdetermination of the otherwise local equation system.

K-Means Clustering. After the coefficients have been determined, they are separated
into clusters using K -Means clustering (usually K = 5). In this context, we only consider
the values within the NcIll-dimensional coefficient space for clustering but intentionally
dispense with the spatial coordinates in order to allow spatially unconnected regions to
belong to the same segment. We know that all pixels that are part of the same cluster
of coefficients do not have substantially different BTFs and thus are assumed to share
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Figure 5.3: Impact of iterating the estimation of the KITTI 2012 basis functions. From
left to right: (a) Initial basis. (b) After one iteration. (c) After four iterations.

similar lighting conditions. In Fig. 5.2, we find the color-coded result of such a clustering
where we clearly see different regions that exhibit different lighting situations.

5.7.5 Iterating the Estimation

After the initial estimates of global brightness transfer functions, an iterated estimation
of the basis functions using the segmentation step successively localizes the estimations.
Hence, local illumination phenomena lead to separate BTFs for the PCA, such that the
resulting basis functions can better describe the types of the apparent illumination
changes. A clearer separation of these types in terms of more distinct basis functions
again allows for a clearer segmentation of the coefficient vectors b, since the coefficients
can be distributed more clearly among the different basis functions. The impact of
iterating the estimation of the basis functions on their shapes can be seen in Fig. 5.3.
While the mean BTF remains approximately the identity, the main support of the other
basis functions is even further shifted towards the upper end of the dynamic range.

5.8 Aspects of the Minimization

Similar to the methods before, we basically minimize the nonconvex and nonlinear
functional using concepts from Chapter 2 which includes the coarse-to-fine warping
strategy as described in Sect. 2.6.3 along with the lagged nonlinearity method as de-
scribed in Sect. 2.3.1. After discretization, the resulting sequences of linear equation
systems are solved with a successive overrelaxation scheme (SOR) as hinted in Sect. 2.3.
Moreover, we apply constraint normalization as described in Sect. 2.8.1.

5.9 Evaluation

We will split the evaluation of our method for jointly estimating illumination changes
and optical flow, which is called BTFIllum, into two parts: One part is focused on the
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Table 5.1: Comparison of different variants of our method on the full KITTI 2012
training set.

Configuration Error (BP3)

Baseline (without illumination compensation) 11.17 %
Baseline (only gradient constancy) 10.75 %

Affine basis 11.07 %
EMoR basis 10.64 %
KITTI basis 10.71 %
KITTI basis (iterated) 10.19 %

KITTI basis (iterated, only brightness constancy) 10.65 %
KITTI basis (iterated, only gradient constancy) 10.95 %

basis learning stage and directly follows our paper [41]. The second part focuses on
the modeling and provides additional experiments. Details on the parameters and their
retrieval can be found in Appendix A.7.

5.9.1 Parametrization in terms of a Learned Basis

In the following, we present the results of several experiments that demonstrate the
performance of our method which represents illumination changes in terms of learned
basis functions. To this end, we evaluate our method on the KITTI 2012 benchmark
[52] and compare it to variants with different ad-hoc parametrizations and to methods
from the literature. We empirically keep K = 5 fixed for the K -Means clustering step
and concentrate on a fixed number of NcIll = 4 basis functions, which is a good trade-off
between computational effort and complexity. An experiment on the effect of varying
the number NcIll of basis functions can be found in the PhD thesis of Demetz [39].

Evaluation of Parametrizations

In our first experiment, we investigate the benefit of jointly estimating illumination
changes compared to a purely invariance-driven optical flow computation and compare
the performance of different parametrizations of the illumination changes. To this end,
we evaluated our method with and without estimating illumination changes. For the
former, we used two ad-hoc parametrizations, a learned basis after the initialization
phase and our learned basis after four iterations.

In Tab. 5.1, we see the corresponding results. We can observe at hand of our baseline that
including a BCA without illumination compensation deteriorates the results compared
to a variant where the partially illumination-invariant gradient constancy assumption
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Figure 5.4: Estimated coefficients and BTFs. Left column, from top to bottom:

Frame 1 of the KITTI 2012 training sequence #15 with three highlighted positions, the
estimated optical flow field, a plot of the BTFs where the colors of the BTFs correspond
to the colors of the corresponding highlighting boxes. Right column, from top to

bottom: Estimated coefficient fields b1 to b4. The depiction is centered w.r.t. a grey
value of 127 which corresponds to a coefficient value of 0. Darker values denote negative
coefficients, brighter values represent positive coefficients.

(GCA) is the only data term. Even the usage of an affine model [53] as an example for a
rather simple ad-hoc parametrization of the illumination changes does not significantly
improve the situation. If we choose the more complex Empirical Model of Response [57]
as a more advanced example for an ad-hoc parametrization, results begin to improve
compared to our baseline method, even if the latter completely relies on the partially
illumination-invariant GCA. The same holds for our learned basis after the initialization
phase which achieves a comparable result. The best performance, however, is achieved
using a basis that is the result of a learning process with several iterations and thus
is influenced not only by global but also by local brightness transfer functions at the
learning stage. From the last two rows, we furthermore observe that both constancy
assumptions - brightness constancy as well as gradient constancy - are necessary to
achieve top results. While the BCA does not discard any information and thus is the
only assumption that can make use of the estimated illumination changes to their full
potential, the GCA improves the initialization at early coarse-to-fine levels where the
coefficient fields have not converged, yet.
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Figure 5.5: Estimated coefficients and BTFs. Left column, from top to bottom:

Frame 1 of the KITTI 2012 training sequence #114 with three highlighted positions, the
estimated optical flow field, a plot of the BTFs where the colors of the BTFs correspond
to the colors of the corresponding highlighting boxes. Right column, from top to

bottom: Estimated coefficient fields b1 to b4. The depiction is centered w.r.t. a grey
value of 127 which corresponds to a coefficient value of 0. Darker values denote negative
coefficients, brighter values represent positive coefficients.

Transfer Functions and Coefficient Fields

In our second experiment, wewill have a deeper look at the brightness transfer functions
and the corresponding coefficient fields at hand of two example image sequences. To
this end, we will show, what effect both rather global and rather local illumination
changes have on the BTFs. While the first image sequence, which is depicted in Fig. 5.4,
shows rather moderate illumination changes, the second image sequence, depicted in
Fig. 5.5 also contains severe illumination changes. In both figures, we display the first
frame of each of the sequences along with the flow field and grey scale visualizations of
the coefficient fields. In each of these sequences there are locations that are interesting
to be analyzed further. We hence highlight locations in the first frame with colored
boxes for which we depict the BTFs in a graph below using the respective color. The
latter are computed as the linear combinations of the basis functions weighted by the
estimated coefficients at these locations.



124 Chapter 5 • Optical Flow and Illumination Compensation

Table 5.2: Comparison of pure two-frame optical flow methods for the KITTI 2012
evaluation sequences. Superscripts denote the rank of eachmethod in the corresponding
column at time of submission (March 7th, 2014). Methods in brackets can not be found
anymore in the present state of the ranking or their published results have changed.

Method Out-Noc Out-All Avg-Noc Avg-All

DDS-DF 6.03 % 1 13.08 % 2 1.6 px 5 4.2 px 3

TGV2ADCSIFT 6.20 % 2 15.15 % 4 1.5 px 2 4.5 px 4

Our method 6.52 % 3 11.03 % 1 1.5 px 2 2.8 px 1

Data-Flow 7.11 % 4 14.57 % 3 1.9 px 6 5.5 px 5

(EpicFlow) 7.19 % 5 16.15 % 5 1.4 px 1 3.7 px 2

DeepFlow 7.22 % 6 17.79 % 6 1.5 px 2 5.8 px 7

TVL1-HOG 7.91 % 7 18.90 % 10 2.0 px 7 6.1 px 8

MLDP-OF 8.67 % 8 18.78 % 9 2.4 px 9 6.7 px 11

DescFlow 8.76 % 9 19.45 % 11 2.1 px 8 5.7 px 6

CRTflow 9.43 % 10 18.72 % 8 2.7 px 11 6.5 px 9

C++ 10.04 % 11 20.26 % 12 2.6 px 10 7.1 px 12

C+NL 10.49 % 12 20.64 % 13 2.8 px 13 7.2 px 13

(IVANN) 10.68 % 13 21.09 % 14 2.7 px 11 7.4 px 14

fSGM 10.74 % 14 22.66 % 15 3.2 px 15 12.2 px 15

TGV2CENSUS 11.03 % 15 18.37 % 7 2.9 px 14 6.6 px 10

The image sequence in Fig. 5.4 contains rather global illumination changes as can be
seen at hand of the BTFs. They have a very similar shape which only differs a bit at
the upper range of the intensities. Overall, the image sequence becomes darker, which
can be seen both from the overall negative BTFs of the highlighted locations as well as
from the strongly negative values of the first coefficient field b1 (which are multiplied
with a positive basis function φ1). All plots of the coefficient fields show slight spatial
variations which indicate the local adaptations of the illumination estimation at different
parts of the scene, including shadows and over- as well as undersaturated regions.

In our second example in Fig. 5.5, we see significantly different BTFs for the highlighted
locations of the image sequence. Especially the blue BTF significantly differs from the
others, since the corresponding location in the frame contains an inter-reflection in the
windshield of the moving car. Such inter-reflections are also clearly visible in the plots
of the coefficient fields – sticking out from the rest of these fields.
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Table 5.3: Comparison of the bad pixel errors (BP3) for both implementations of our
method as well as the corresponding baseline methods. Underlined fonts indicate the
best results among a given implementation while bold fonts indicate the overall best
result.

Method Original New New (excl. sat.)

Baseline 11.17% 10.19% –
Baseline (GCA only) 10.75% 10.09% –

KITTI basis (iterated) 10.19% 9.96% 9.88%

KITTI basis (iterated, no GCA) 10.65% 15.04% 10.40%

5.9.2 Comparison to the Literature

In our third experiment, we compare our method to other optical flow approaches from
the literature. Tab. 5.2 shows a comparison of the performances of our method and
other pure two-frame methods without stereo constraints. We restrict our comparison,
since such constraints are not applicable in other settings where there is dynamic
motion that cannot be solely described by camera motion. Moreover, we disregard
multi-frame as well as scene flow methods here, since they need additional information
compared to our method. At the time of submission, our method achieved state-of-the
art performance leading to top results, particularly when considering all pixels (i.e.
including also occluded regions). In the latter case, it ranked first, both for the bad
pixel measure and for the average endpoint error measure. This clearly demonstrates
that the joint estimation of illumination changes and optical flow can outperform other
methods that only rely on invariants which discard illumination information.

5.10 Additional Evaluation

As outlined before, the underlying publication [41] of our method was joint work with
Demetz (amongst others). Since he focuses on the learning part, further experiments
regarding this aspect can be found in his PhD thesis [39]. The current thesis focuses
on all other aspects, particularly the modeling part. Hence, we performed additional
experiments which include componentwise analyses of the variational model, a novel
ad-hoc basis, results on more benchmarks and applications of our approach in more
recent methods.
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Table 5.4: Comparison of different regularizers for the illumination coefficients.

Regularizer Error

isotropic 9.91%
anisotropic 9.88%

5.10.1 Variational Framework Implementation

Similar to our experiments for our ALD-Flow method in Chapter 3, Sect. 3.11, we also
build upon a more sophisticated version of our coding framework, which allows to
do more advanced experiments on the modeling part. Besides the ability to make use
of illumination compensation when using color images, it also offers faster numerical
solvers and other minor numerical improvements, such that the results are a bit different.
Hence, as a starting point, we will compare the results of our old implementation and our
new implementation in our fourth experiment. While improving the implementation,
we made the following observation: Over- and undersaturated regions in both images
pose a severe problem for the estimation of illumination changes, since there either
different intensities are mapped to one intensity or vice versa one intensity is mapped
to different intensities. This leads to severe deteriorations in the flow field. Hence,
we equipped the data term, that includes both the optical flow and the illumination
coefficients, with a spatially variant weight that deactivates it at locations where the
grey value of one of the image frames is outside the interval ]0,255[. In Tab. 5.3 we
see the results of all variants, where New (excl. sat.) indicates our new implementation
with the mentioned saturation filter. We observe that, even without this filter, the new
implementation is superior to the old implementation in all cases except for the case
where the GCA is deactivated. When filtering under- and oversaturated regions by
deactivating the data term, however, the new variant further improves and is superior
in all cases. Nonetheless, we see that including the GCA still remains an important part
of our method. Overall, the general tendency that using illumination compensation is
beneficial stays the same.

5.10.2 Isotropic vs. Anisotropic Coefficient Regularization

In our fifth experiment, we investigate another important aspect of the model which is
the regularizer for the illumination coefficients. It is responsible for disambiguating the
otherwise highly underdetermined equation system and for segmenting the coefficients
into regions of similar illumination conditions. In order to see if our assumption
that discontinuities in the illumination coincide with image edges holds, we compare
different regularization strategies for the coefficients. To this end, we juxtapose the
results for the complementary regularizer and coefficient-driven isotropic regularization
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Table 5.5: Comparison of different schemes for weights ξ j in the regularizer for the
illumination coefficients.

Weights Error

all equal (ξ j = 1) 9.89%
learned 9.88%

in Tab. 5.4. Although there is only a minor difference, anisotropic regularization
expectedly is the superior strategy.

5.10.3 Weighted Regularization of the Coefficients

In our sixth experiment, we investigate the importance of the weights ξ j which balance
the regularization of the illumination coefficients bc

j
. From the principal component

analysis (PCA) step in the process of basis learning we obtained the eigenvalues which
represent the variance of the given data along the basis vectors and serve as the basis
to compute the weights ξ j . Let us now compare our method using these balancing
weights to a version where we set ξ j = 1. The results can be found in Tab. 5.5. From
these results, we observe that the weighting does not affect the results much. Although
the positive effect of using these weights is only of a minor nature, we should keep in
mind that the weights come for free as a by-product of the basis learning process.

5.10.4 A Normalized Affine Parametrization

In our seventh experiment, we modify the so far not very convincing affine parametriza-
tion for a comparison with our learned basis. While we were in the process of improving
our method, we further investigated why the affine parametrization [53] has only a
comparably low performance. In this context, it is worth noting that the basis vec-
tors from both the Empirical Model of Response [57] and the learned bases are normal
vectors except for the mean basis vector. In contrast, the basis vectors from the affine
parametrization have norms far bigger than 1. In this case, small spatial variations in
the coefficient field b lead to potentially big variations in the resulting estimation of
illumination changes. Hence, we tested a variant of the affine parametrizations where
on the one hand the mean basis vector describes the identity and on the other hand the
remaining basis vectors have been normalized, i.e.

φ̄(I ) = I , φ1(I ) =
I

n1
, φ2(I ) =

1

n2
, (5.12)

where n1 and n2 are normalization factors such that ||φi (I )||2 = 1. In Tab. 5.6, we
compare the results of our learned basis with results achieved with the normalized
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Table 5.6: Comparison between the learned basis and the normalized affine parametriza-
tion.

Parametrization Error

KITTI basis (iterated) 9.88%

Affine basis (norm.) 9.96%

affine parametrization. While the learned basis achieves superior performance, the
normalized affine parametrization provides a remarkable trade-off between quality and
computational effort, since it only consists of two basis vectors.

5.10.5 Performance on Major Benchmarks

In our eighth experiment, we investigate the performance of our method on all major
benchmarks. In contrast to the KITTI 2012 benchmark, all other benchmarks provide
color images which requires an appropriate strategy for handling color channels.

Handling Color Channels

When colors come into play, there are a lot of decisions to be made how to handle the
different image channels at both the learning stage and the stage of the flow estimation.

Learning Stage. In the learning stage, we can learn the basis functions on grey value
versions of the images or on the color images where this can be done either jointly or
separately for all channels. If learned separately, there still is the sub-decision to be
made whether the clustering of the BTFs shall be conducted jointly or separately for
the channels. If both learning and clustering are done separately, this case comes down
to treating each of the color channels of the images as grey value images and having a
completely independent learning process for each channel.

Estimation Stage. In the stage of optical flow estimation, there again is the option
to either use grey value versions of the images or to use the full color spectrum of
the original images. When using color images, there is the option to estimate a joint
set of illumination coefficients for all image channels or to have separate coefficients
for each of the image channels. In the latter case, both the data terms (DT) as well
as the smoothness term of the coefficients (ST) offer the options for either a joint
robustification over all channels or a separate one.

Results. At hand of the KITTI 2015 benchmark, we determined the results for all possible
combinations and state them in Appendix B.
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Table 5.7: Results of BTFIllum and its baseline on training data of different benchmarks.
Here, basis: gv denotes a basis that is learned on grey value images, while basis: jt/jt
denotes a joint basis for all color channels with a joint clustering. In contrast, basis:
sp/jt denotes a separate basis for each color channel with a joint clustering.

Middlebury Sintel (sub.) Sintel KITTI ’12 KITTI ’15
(AAE) (AEE) (AEE) (AEE) (BP3) (BP3)

Baseline (gv.) 2.63 0.214 6.573 4.273 10.19% 23.73%
Baseline (col.) 2.57 0.211 6.454 4.296 – 23.99%

BTFIllum

1 color channel
basis: gv 2.69 0.217 6.687 4.335 9.88% 23.55%

3 color channels
joint coefficients

basis: gv 2.61 0.211 6.615 4.110 – 23.72%
basis: jt/jt 2.61 0.213 6.542 4.438 – 23.87%
basis: sp/jt 2.60 0.212 6.567 4.120 – 23.86%

Major Benchmarks

In order to demonstrate the performance of our method, we do not solely rely on
the overall best setting for the KITTI 2015 benchmark (see Appendix B), since the
characteristics of the Middlebury and the MPI Sintel benchmarks are different from
those of the KITTI 2015 benchmark, but we select the most promising options from the
results in Appendix B, Tab. 1 and try out different combinations among these options. At
the estimation stage, we compare estimations on grey value images with those of color
images with joint coefficients. From the learning stage, we obtain bases on grey value
images and on color images which comprises both a joint basis for all color channels
and a separate basis for each of the channels, using, however, a joint clustering of the
coefficients. Hence, we omitted any kind of separate robustification and we omitted to
use a separate basis for each of the channels where also the clustering step has been
conducted separately for each channel.

In Tab. 5.7 we see the results for these combinations whereby the columns for the
KITTI benchmarks contain excerpts from previous experiments. When comparing
the baselines with and without color information, we see that color information is
helpful in most cases (also for the AEE on the KITTI 2015 benchmark as stated in
Appendix B, Tab. 1). The comparison of BTFIllum using grey value images with the
baseline shows that illumination compensation is beneficial for the KITTI benchmarks



130 Chapter 5 • Optical Flow and Illumination Compensation

Table 5.8: Impact of the illumination compensation on the variational refinement as
proposed by Maurer et al. [86] for different benchmarks.

Sintel KITTI ’12 KITTI ’15
(AEE) (BP3) (BP3)

No Compensation 1.96 9.47% 18.13%
Compensated 1.94 9.29% 18.10%

while deteriorating results on the other benchmarks. When comparing BTFIllum using
color images and a joint set of coefficients for all image channels with the baseline, there
are different observations to be made. For the Middlebury benchmark, which does not
contain significant illumination changes, we do not see a significant change in the AEE,
while the AAE slightly increases. For the Sintel benchmark, there is a slight decrease in
the performance on the subset while results improve for the complete data set. For the
KITTI 2015 benchmark, there are also no significant changes in the BP3 error. However,
there is some improvement in the corresponding AEE (see Appendix B, Tab. 1). Overall,
the joint basis leads to the worst results in most cases, since it covers a basis that is a
compromise of representing the different BTFs of the different image channels. Please
note that we also tested the use of separate coefficients which, however, demonstrated
inferior performance while increasing the workload.

5.10.6 Illumination Compensation for Variational Refinement

In our ninth experiment, we evaluate the influence of the illumination compensation
strategy in the context of variational refinement for optical flow. This strategy can not
only be used in stand-alone variational methods but also in a variational refinement
step of a pipeline approach [111]. Recently, there have been tremendous improvements
regarding variational approaches that are used for this step. Amongst other improve-
ments, we propose in [86] to use an illumination-aware data term for refinement using
the normalized affine parametrization. Although this method is not in the focus of this
thesis, it is interesting to see how the aspect of illumination compensation can help in
this context. While the method as a whole has shown superior performance compared
to prior work, we will now detail on the effect of the illumination-aware data term.
Tab. 5.8 shows the results on three benchmarks with and without illumination compen-
sation. We observe that illumination compensation consistently improves results in all
cases whereby the improvement is particularly distinct for the KITTI 2012 benchmark
[52]. This is quite remarkable, since illumination changes are already addressed in the
matching step of such pipeline approaches by using invariant features. Even on this
background, illumination compensation in the refinement step is still useful.
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5.11 Summary

In this chapter, we addressed the problem of handling complex illumination changes
within a variational optical flow method. To this end, we refrained from solely relying
on image features that are invariant under illumination changes, since they discard
valuable information and are only invariant under certain types of illumination changes.
Instead, we adapted our variational model with a parametrization for illumination
changes and a regularization scheme to distinguish illumination-induced from motion-
induced brightness changes. This allowed us to estimate the optical flow and the
illumination changes jointly.

As a first step, we developed our variational model based on the model of Zimmer et al.
[164]. Here, we adapted both the brightness constancy assumption and the gradient
constancy assumption with a parametrization for illumination changes that consists
of basis functions and coefficients. Furthermore, we equipped the model with an
anisotropic regularizer for the illumination coefficients to disambiguate the otherwise
underdetermined equation system.

In the second step, we described our learning procedure to find a suitable basis for the
introduced parametrization. To this end, we extracted brightness transfer functions
from image sequences and determined basis functions using a principal component
analysis on these BTFs. In order to capture a wider spectrum of such BTFs, we clustered
regions of different types of BTFs within the image sequences and iteratively determined
basis functions on local BTFs.

Our experiments demonstrated the effectiveness of our approach. In any case, where
there are substantial illumination changes, we could improve results over the corre-
sponding baseline that only uses invariant image features. Moreover, we demonstrated
the benefits of learned bases over ad-hoc bases like an affine parametrization. In the
end, our approach does not discard essential information and makes the brightness
constancy assumption (BCA), which has many useful properties such as geometric or
scale-invariances, also valid in the presence of illumination changes. This will show to
be beneficial in the next chapter, where we need the resilience of the BCA to estimate
large displacements in the context of illumination changes.





Chapter

6

Large Displacement Optical

Flow in the Context of

Illumination Changes

In the previous chapters we have seen that large displacements and illumination
changes pose severe challenges for variational optical flow methods. We have presented
strategies to handle both challenges by keeping a maximal amount of information
within the respective variational frameworks. On the one hand, we have a variational
framework that jointly estimates and fuses multiple flow candidates. The concept
behind that is called de-regularization, i.e. we build on different balances between data
term and smoothness term in order to estimate different motion patterns that comprise
a different degree of regularity. On the other hand, we have a variational framework
that jointly estimates illumination changes along with the optical flow. In contrast,
the concept behind this joint estimation is a pronounced regularization of both the
optical flow and the illumination changes in order to separate brightness changes into
motion-induced changes and real illumination changes.

Combination of Prior Approaches. Due to the importance of the BCA within the
de-regularization, our strategy to estimate moderately large displacements is not appro-
priate in the context of illumination changes (see Chapter 4, Fig. 4.10). Vice versa, our
strategy to handle illumination changes did not make use of any concepts to handle
large displacements. Hence, in general, it would make sense to combine both strategies
in order to be able to handle both challenges at once. However, a straightforward
combination of both, i.e. considering multiple instances of our model that jointly esti-
mates optical flow and illumination changes, is not possible, since the requirements
w.r.t. regularization are incompatible. A de-regularization strategy would prevent the
ability to distinguish motion-induced from illumination-induced brightness changes.
In order to illustrate the problem, let us consider a small, clearly isolated region that
changes its brightness. This could either be described by a small object that undergoes
a large displacement or by a very local illumination change (like a specular reflection
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in the extreme case). Without sufficient constraints from the neighborhood the disam-
biguation of these two descriptions is not possible. A conceivable solution could be to
keep a strong regularization of the illumination coefficients while only decreasing the
regularization of the flow. However, thereby the problem is that the joint estimation of
the illumination changes and the optical flow requires a good balance between three
therms: the data term, the regularizer of the flow and the regularizer of the coefficients.
A de-regularization applied only to the flow would perturb this balance.

6.1 Contributions

In this chapter, we will, hence, handle the problem of estimating large displacements in
the context of illumination changes by decoupling the estimations. We refrain from a
joint model and separate the estimation of illumination changes and optical flow into a
pipeline of variational methods. In this context, our contributions are threefold in terms
of combining ideas from the previous chapters: (i) We prepend a separate illumination
compensation step using the approach from Chapter 5 such that the de-regularization
strategy can be applied to a modified image pair that does not contain significant
illumination changes. (ii) We compute flow candidates using a family of variational
methods with varying data terms and varying smoothness weights for the computation
of large displacements. (iii) We use a selection strategy similar to the one for ALD-Flow
in Chapter 3 in order to only integrate helpful candidates into the final estimation.

Regularity Assumption on Illumination Changes. In the whole procedure, we
assume that illumination changes are more regular than potential motion patterns, such
that we can estimate them from a rather regular flow field that has been computed
beforehand using a baseline method (which may make use of illumination-invariant
features in the data term). Even if this flow field is invalid at some small regions that
may contain relative large displacements, the remaining valid flow vectors are sufficient
to allow for an estimation of rather regular illumination changes.

6.1.1 Organization

In order to show the effects of the contributions step-by-step, we will present two
variants of such a pipeline: In a first variant, which is a partially decoupled approach,
we apply our ContFusion-Flow from Chapter 4 (Sect. 4.4) to this modified image pair.
That is, we decouple the joint estimation of optical flow and illumination changes into
a pipeline of separate steps but keep the joint estimation and fusion of multiple flow
candidates. In a second variant which is a completely decoupled approach, we will
additionally decouple the estimation and fusion of multiple candidates and combine
them with a selection strategy similar to the one for ALD-Flow in Chapter 3 (Sect. 3.8.2)
for the integration into a final flow field.
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Figure 6.1: Coarse schematic overview of the partially decoupled method at hand of
the Tennis sequence [27].

6.2 IC-ContFusion: A Partially Decoupled Method

Whenwe decouple the estimations of both the optical flow and the illumination changes,
we need some initial optical flow field as the first step of our pipeline in order to measure
the illumination changes between corresponding pixels. In the following, we will
describe the three essential steps of our short pipeline: (i) the estimation of the initial
flow wbase, (ii) the estimation of the illumination changes based on the pre-computed
flowwbase, and (iii) the application of our joint model that estimates and fuses candidate
flows as described in Chapter 4 (Sect. 4.4). An overview is given in Fig. 6.1.

6.2.1 Estimation of an Initial Optical Flow

The estimation of the initial flowwbase is done using our baseline method from Zimmer
et al. [165, 164] as presented in Chapter 2 (Sect. 2.8).

6.2.2 Separate Estimation of Illumination Changes

The separate estimation of illumination changes can be conducted by a variational
approach that is similar to the one in Chapter 5. The main difference is that some
optical flow wbase is now given as input data along with the image sequence. The only
unknowns that remain are the illumination coefficients b : N×Ω→R

NcIll·Nc , which are
associated with a parametrization as in the last chapter, i.e. for each image channel it is
given by

Φ(b, I ) = φ̄(I )+
NcIll∑

j=1

b j ·φ j (I ) , (6.1)

where φ̄ is the mean transfer function, φ j : R→R are the corresponding basis transfer
functions, and b= (b1, . . . ,bNcIll

)⊤ is a set of linear weights.

In our decoupled case, they are now estimated as the minimizer of the global energy

Eill(b) =
∫

Ω

Dill(b)+αillSill(b) d x̃ , (6.2)
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which consists of a data term, a smoothness term and a smoothness weight αill. The
data term is given by

Dill(b) = ΨD

(
Nc∑

c=1

(

I c
(x+wbase)−Φ(bc

(x), I c
(x))

)2

)

(6.3)

where bc denotes the part of b that belongs to image channel c and the penalizer function
ΨD is the Charbonnier penalizer [33] (as in the baseline method). The smoothness term
implements anisotropic regularization and reads

Sill(b) =
2∑

i=1

Ψ
i
illum

(
Nc∑

c=1

NcIll∑

j=1

ξ j

(

r⊤i ∇bc
j

)2
)

. (6.4)

where the direction vectors r1 and r2 = r⊥1 are given as in Chapter 2 (Sect. 2.8.3) and ξ j

implement weights to compensate for the potentially different orders of magnitudes
that the different coefficients might have. In contrast to Chapter 5, we resort to an
affine parametrization, i.e. φ̄(I ) = 0, φ1(I ) = 1, and φ2(I ) = I , which is typically a good
compromise between quality and complexity. After we have estimated the spatially
varying coefficients b, we are finally able to compensate the first frame via Icomp(x) :=
Φ(b(x), I (x)). This is illustrated in Fig. 6.1.

6.2.3 Final Estimation

Given the modified image sequence with an illumination-compensated first frame,
we now apply our ContFusion-Flow from Chapter 4 in order to obtain an optical flow
estimation that contains large displacements.

6.2.4 Accuracy Issues within the Pipeline

This decoupling strategy 6.2.1 – 6.2.3 has one major drawback: in contrast to a joint
estimation, where the estimations of all unknowns mutually benefit from each other,
the benefits within a pipeline have a sequential nature. Moreover, each later step relies
on the assumption that the results of prior steps are accurate. In the real world, however,
this assumption is not fulfilled. This becomes obvious between the first step (optical
flow estimation) and the second step (estimation of illumination changes).

Initial Optical Flow Estimation. Occlusions or mismatched objects in the optical
flow, which is used as an input to estimate illumination changes, will very likely deteri-
orate the estimation in the second step, since there are flow vectors that map locations
of one object to those of another object. Such incorrect displacements introduce wrong
correspondences between grey values, which do not describe correct illumination
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changes. It is hence necessary to detect and mask unreliable regions in the flow field
before using it for the estimation of illumination changes.

Estimation of Illumination Changes. In contrast to the flow estimation, the com-
putation of the illumination changes does not provide comparable obstacles to the
subsequent steps. Given an accurate optical flow with enough reliable matches, which
may be indicated by an appropriate mask, we can estimate the illumination changes
using the functional in Eq. 6.2 that comprises a data term that is explicit in the un-
known illumination coefficients. Hence, the estimation is by far better tractable than
the estimation of the optical flow. In case of a set of strictly convex penalizer functions,
the separate estimation of illumination changes is even well-posed and thus has a
unique solution that continuously depends on the input data. Nonetheless, also for
the non-convex Perona-Malik regularizer, which is usually applied in the anisotropic
smoothness terms that we use, we usually obtain a meaningful solution. The problem
is further relaxed, since we are not actually interested in the coefficients b themselves
but in the resulting brightness transfer function (BTF) Φ(b, I ) which we want to use in
order to compensate the first frame for the estimated illumination changes. So even
non-convex functionals are acceptable as long as they lead to useful BTFs. To sum it up:
We can expect an accurate estimation of the illumination changes if the given optical
flow contains enough reliable matches after having masked out the unreliable ones.

Extending the Pipeline. Hence, we need to assess the quality of the optical flow
to mask out unreliable matches while, in contrast, we do not need any further post-
processing steps on the estimated illumination coefficients. We thus end up in a four-
step pipeline: (i) estimating a basic optical flow, (ii,a) finding and masking unreliable
locations in the flow, (ii,b) estimating the illumination changes using the results from
the previous steps and (iii) estimating an improved optical flow using an illumination-
compensated version of the first frame in the image sequence. We have already seen so
far how to deal with Step 1 (see Chapter 2, Sect. 2.8) and Step 3 (see Chapter 4, Sect. 4.4)
of this pipeline. For the identification of unreliable locations in the flow, however, let us
have a deeper look into the question how to locally measure the quality of the optical
flow. Later on, we will also modify the model in Eq. 6.2 to conduct Step 2 properly.

Measuring Flow Quality

In Chapter 3, Sect. 3.8.2, where we proposed the adaptive sparsification strategy, we
have already identified regions in the optical flow which need further guidance by
feature matches. To this end, we made use of the data energy of a given baseline flow.
There, we focused on using the same baseline model twice, first without feature matches
and afterwards with an additional similarity term that incorporates the feature matches
in the estimation. This was appropriate, since we explicitly wanted to assist the chosen
method by providing a set of feature matches tailored to overcome local misestimations
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of this method. This set was chosen to be sparse, since the underlying feature matches
are not necessarily reliable.

Dense Assessment of the Flow Quality. Now, the situation is different. Instead
of sparsely complementing the estimation with additional information (i.e. feature
matches), we now want to densely mark regions in the flow as unreliable and exclude
them from further steps. Moreover, we explicitly address illumination changes now, a
scenario where the brightness constancy assumption (BCA), which amongst others has
been used to compute the data energy so far, is not applicable anymore. This is due to
the fact that it is not invariant under any type of illumination changes. We, thus, need
a different constancy assumption to assess the flow quality. A possible candidate is the
data term of the baseline method. Since, however, this method or at least its data term
are assumed to be designed such that it models the occurring brightness changes, we
cannot rely on a specific type of data energy. Because of that, we should consider that
most data constancy assumptions discard information due to being invariant under
certain illumination changes and thus lead to sparse data energies, i.e. they usually are
not a dense indicator. As we will see in the following, this particularly holds for the
gradient constancy assumption (GCA) as a popular example for an invariant constancy
assumption. Hence, we compare different types of data energies that arise from different
types of data constancy assumptions regarding their usefulness to asses flow quality at
different levels of image structuredness. Our goal is to implement a general-purpose
strategy that is able to densely indicate unreliable regions based on common properties
of energies of common data constancy assumptions.

Comparison of Data Energy Types. Let us consider typical types of data constancy
assumptions (brightness-based, gradient-based and patch-based ones) and compare
properties of their respective energies for a given baseline flow in order to investigate
their usefulness as a quality measure for optical flow. This comparison consists of two
parts: (i) In Fig. 6.2, we have a visualization of an image sequence, an exemplary baseline
flow that contains mismatched regions and a visualization of such data energies. Here, a
feature constancy assumption based on the Geometric Blur feature serves as an example
for a patch-based constancy assumption. (ii) Tab. 6.1 roughly summarizes the orders
of magnitudes of the corresponding data energies. Having the aperture problem in
mind, we remember that the amount of information in image data corresponds to its
structuredness. Since different data constancy assumptions rely on different types of
information, we juxtapose in Tab. 6.1 the energies of good and poor matches in regions
of different structuredness. In this context, a high structuredness means that there is a
considerable structure at at least one side of the correspondence (origin or target of
a match) and a low structuredness means that no considerable structure is involved.
In general, we hereby assume that a match does not relate different objects with a too
similar appearance.
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Figure 6.2: Comparison of data term energies (with zoom-ins) for different constancy
assumptions evaluated on the same baseline flow for the Tennis sequence. Left column:

Overlayed input frames, baseline flow field. Right column: Data energies evaluated
using the BCA, GCA and Geometric Blur constancy. Higher intensity denotes a higher
data energy.

Structured vs. Homogeneous Regions. First of all, among all types of energies we
can see that poor matches generally lead to high data energies if there is sufficient
image structure. However, the first row of Tab. 6.1 (poor + low) shows that in flat
regions gradient-based and patch-based data terms may lead to low data energies even
if the match is poor. In case of gradient-based assumptions, this is not surprising, since
gradients discard essential information and vanish in flat regions. Hence, homogeneous
regions of different brightness levels are matched without cost. This can also be seen
at hand of the inner part of the tennis ball in the second row of Fig. 6.2 where the
homogeneous parts of the tennis ball are matched to the homogeneous tennis court
without cost. In case of the patch-based data terms, this problem is related to the use of
neighborhood information. High energies may happen if the neighborhood undergoes
changes in geometry or scale, or if it covers multiple objects (see Fig. 6.2, last row,
where the high energies are only roughly related to the corresponding mismatched
object). In contrast, the first column of the table (BCA) shows that the data energy with
brightness constancy is the most reliable indicator for the matching quality, since it
even makes use of the uniform brightness information that is present in homogeneous
regions. This, however, requires the absence of illumination changes, since, otherwise,
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Table 6.1: Data energy magnitude for matches of different quality in image regions of
different types (without illumination changes).

Match
quality

Structuredness Data Term Energy

BCA
Gradient-
based

Patch-based

poor low high low high/low
high high high high

good low low low high/low
high low low high/low

the conventional BCA is not of good use as an indicator for matching quality. Due to
our focus on illumination changes, however, we hence rely on the data energy at image
edges as a reliable indicator of the flow quality and transfer this indication also to the
homogeneous parts of the corresponding objects.

Masking Unreliable Matches

As said before, our approach shall work for any kind of baseline method. In the very
general setting, we thus neither know which data term is used nor which particular
types of illumination changes are present and to which degree or if there are any at all.
That means that we need to prepare for a very general setting.

Extracting Data Energy at Edges. Nevertheless, from Tab. 6.1 we know that for
any of the discussed types of data constancy assumptions we can rely on the order of
magnitude of the data energy at locations where structure is involved (at the source of
the match or at its target). If this data energy shows a high value, we have a mismatched
(part of an) object. The structure of an object either origins from its contours or from
its texture. It is, however, not sufficient to exclude only incorrect displacements at
image edges. Also the homogeneous parts of a mismatched object can deteriorate the
estimation of the illumination changes. So the question remains what to do with these
parts – where the flow quality cannot necessarily be assessed using the data energy.

Inpainting Data Energy to Flat Regions. At this stage of the pipeline, we start by
evaluating the data energy at locations that involve structure (either at the origin of
a flow vector in the first frame or at the corresponding end in the second frame) and
obtain a sparse map of scalar values where high values indicate bad flow quality. This
sparse map is then used as the starting point for a variational inpainting approach. This
approach is supposed to inpaint the energy from the edges to the remaining parts of



6.2 • IC-ContFusion: A Partially Decoupled Method 141

Figure 6.3: Exclusion of poor matches. From left to right: (a) Data term energy of
the baseline method. (b) Energy after inpainting. (c) Mask χill after thresholding.

an object. By thresholding the inpainted result, we obtain a dense binary map that
indicates reliable and unreliable regions of the given optical flow.

Required Accuracy of the Quality Measurement. Concerning the accuracy at this
stage, our assumption on the regularity of the illumination changes comes into play.
Since we do not assume them to be too local but rather regular, we do not necessarily
need all flow vectors to estimate the illumination changes within a region and can even
afford to locally mask more flow vectors as unreliable than necessary. It is, hence, no
problem if the inpainted energy spatially exceeds the concerned object a bit, since there
still remain enough unmasked pixels, i.e. reliable matches, to recover all illumination
changes. High spatial accuracy is thus not an issue here. Moreover, the accuracy of the
values is also not a big issue, since these values are only used for the binary decision
whether the respective location is likely to contain a reliable flow vector or not.

Variational Inpainting of the Reliability Mask. In order to obtain a reliable dense
quality indication map e , let us start with an evaluation of the baseline data energy in
terms of ebase := EData(wbase). Additionally, we define a simple edge indicator

χinp(x) = δ[|∇I (x)| > 10∨|∇I (x+wbase)| > 10] . (6.5)

Then, a variational model that inpaints the given energy ebase into the denser map e is
given by

Einp(e) =
∫

Ω

χinpDsim,e(e)+ (1−χinp+ǫinp)αinpSe(e) d x̃ , (6.6)

where the similarity term

Dsim,e(e) = (e −ebase)
2 (6.7)

enforces the solution to be similar to the data term energy ebase of the baseline and the
smoothness term

Se(e) =
2∑

i=1

ΨSi

(

|r⊤i ∇e|2
)

(6.8)
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Figure 6.4: Detailed schematic overview of the partially decoupled method at hand of
the Tennis sequence [27].

performs first-order anisotropic regularization [164] to align the energy with object
boundaries. Thereby, αinp is a smoothness weight, the functions ΨSi

are given by the
Perona-Malik- and the Charbonnier-functions, the direction vectors ri are derived from
the regularization tensor (see Chapter 2, Sect. 2.8.3) and the small constant ǫinp = 0.01

guarantees aminimum amount of regularization. The finalmask for excluding unreliable
regions is then computed via thresholding the inpainted energy, i.e.

χill(x) = δ[e < 0.1 ·max(e)] . (6.9)

An illustration of this procedure is given in Fig. 6.3.

Adaptive Estimation of Illumination Changes

After discussing the accuracy issues of the decoupled approach and proposing a gener-
alized procedure to mask regions that can deteriorate the estimation of the illumination
changes within the scene, we can now adapt the model from Eq. 6.2 to include the
reliability mask χill which reads

Eill(b) =
∫

Ω

χillDill(b)+αillSill(b) d x̃ . (6.10)

In this model, the data term is deactivated where χill(x) = 0. The corresponding re-
gions, where thus no correspondences are given, are assumed to undergo illumination
changes similar to their environment. Here, the smoothness term fulfills a role beyond
disambiguating the otherwise underdetermined equation system: It fills in missing
information by propagating it from the neighborhood.

6.2.5 Overview of the Pipeline

Before going on to the evaluation, let us shortly summarize the steps of our partially
decoupled method. After having computed an initial baseline flow, we determine the
illumination changes within the image pair using this flow. Since outliers in the baseline
flow might deteriorate the result, we first determine an inlier mask of the baseline flow
by thresholding an inpainted version of the baseline energy. This inlier mask is then
used in the estimation of the illumination coefficients. An overview of the pipeline is
given in Fig. 6.4.



6.2 • IC-ContFusion: A Partially Decoupled Method 143

Figure 6.5: Results for Tennis sequence with artificial illumination changes. From Left

To Right: (a) Gradient constancy assumption (GCA). (b) Geometric Blur constancy
assumption (GBCA). (c) Complete Rank Transform (CRT). (d) BCA and GCA after
illumination compensation.

6.2.6 Evaluation

We conduct both qualitative and quantitative experiments to evaluate the performance
of our partially decoupled method. They investigate the performance on benchmark
data as well as the ability to simultaneously handle illumination changes and large
displacements. We use our baseline, the method of Zimmer et al. (see Chapter 2,
Sect. 2.8), for the initial flow that is used as input for the illumination compensation
step. Please note that the parameters δ, γ and α for the data constancy assumptions
and the smoothness term appear twice in our pipeline, once for the computation of the
initial flow and once for the computation of the final flow (using ContFusion-Flow), and
they are optimized separately.

Large Displacements

In our first experiment, we investigate the benefits of our method in the context of
large displacements. To this end, we use a version of the Tennis sequence [27] which
we modified by adding artificial illumination changes. The chosen global additive
and multiplicative changes resulted in a significantly darker version of the second
image, such that the pure brightness constancy assumption (BCA) is not an appropriate
constancy assumption anymore. In Fig. 6.5 we juxtapose the results of our method with
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Table 6.2: Comparison of a pure ContFusion-Flow (no illumination compensation) and
our partially decoupled method on the subset of the Sintel training data (Sintel (sub.)).

ContFusion-Flow partially decoupled method

Baseline 6.375 -

Ncand = 1 6.365 6.121
Ncand = 2 6.028 5.998

Ncand = 3 5.808 5.895
Ncand = 4 5.832 5.948

different invariant data constancy assumptions but without illumination compensation
and the variant with BCA and GCA data terms and prior illumination compensation.
To this end, we used a variational model with the pure GCA as a data term, a model
with a constancy assumption based on the Geometric Blur feature [14] (GBCA) and a
model that applies the Complete Rank Transform (CRT) [40] in a constancy assumption.
All these underlying features have different degrees of illumination invariance, ranging
from an invariance under global additive changes (GCA and GBCA) up to a wide-
ranging invariance under any monotonic changes (CRT). However, for all of these
invariant constancy assumptions we notice many artifacts and for the GCA and the
CRT also a limited ability to capture large displacements. For the GBCA, which captures
large displacement motions, the flow is not very accurately localized due to the patch-
based nature of the constancy assumption. In contrast, our method with illumination
compensation is able to capture these motions while being sufficiently local and showing
comparably few artifacts, which, however, leave room for further improvements.

Quantitative Evaluation

Now let us have a look, how our modifications change the results on benchmark data.
To this end, we compare the pure ContFusion-Flow (no illumination compensation) with
our partially decoupled method that makes use of illumination compensation at hand
of our subset of the MPI Sintel training data [31]. We optimized the parameters for the
most promising amounts Ncand ≤ 4 of candidate models, since more candidates have
not improved results further in Chapter 4 (Sect. 4.4). From Tab. 6.2 we can observe
that the illumination compensation considerably improves results for the amounts of
candidates that only contain a higher degree of smoothness and thus are a little less
data dependent (Ncand < 3), while results deteriorate a bit when smoothness of the
additional candidates is further reduced and the data dependency increases (Ncand ≥ 3).
In this context, we do not achieve a quantitative improvement over ContFusion-Flow in
terms of the overall best result.
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6.2.7 Interim Conclusion

We have seen that our pipeline with a separate estimation of illumination changes and
a joint estimation of multiple motion patterns partially improves results, since it is able
to estimate large displacements even in the presence of severe illumination changes
as well as it is able to improve results quantitatively compared to the ContFusion-Flow
without illumination compensation for low values of Ncand. However, we have also
observed that deteriorations come into play when the data dependency is too strong,
which can be seen at hand of the slightly worse results quantitative results for Ncand ≥ 3

as well as at hand of the small artifacts that are visible in the Tennis sequence. In
the following, we will hence discuss advanced adaptations to the method in order to
prevent such deteriorations.

6.3 ICALD-Flow: A Completely Decoupled Method

One idea to prevent the deteriorations that we have seen so far is to extend our pipeline
with a selection strategy that incorporates information about locations where additional
guidance is promising and the local structuredness is high enough to allow for meaning-
ful flow vectors in a de-regularized setting (similar to the one in Chapter 3, Sect. 3.8.2).
This way, we include less regular candidate motion patterns only at locations where
the baseline flow is not appropriate, such that all remaining locations that have been
estimated accurately cannot be deteriorated by artifacts from less regularized flows.
The embedding of such a strategy is the most straightforward when it is applied to a set
of known matches within a sequential pipeline. Since we have already refrained from
a completely joint model and initiated a pipeline of separate steps, we may thus also
conduct our decoupling strategy to an even higher degree by decoupling the estimation
of candidates and their integration into a final flow field, which was done jointly so
far by relying on the ContFusion-Flow as final step. On the one hand, we can apply the
selection step directly after the estimation of the candidates in a straightforward way.
On the other hand, the decoupling allows for faster computations, since the workload
increases only linearly w.r.t. the value of Ncand due, since the number of equations
to solve increases, whereas coupling the models not only increases the number of
equations but also their sizes (due to a quadratic increase in the size of the motion
tensors). Moreover, it allows for some kind of black-boxing where an image sequence
and a baseline flow field are given as an input and a set of selected regularized and
reliable matches are provided as an output for further integration, whereby we employ
a selection strategy similar to the one of ALD-Flow (see Chapter 3, Sect. 3.8.2). We
call our method Illumination-Compensated Adaptive Large Displacement Optical Flow

(ICALD-Flow). It is based on our paper [128].
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Figure 6.6: Schematic overview of the completely decoupled method (ICALD) at hand
of the Tennis sequence [27].

6.3.1 Overview

Before detailing on the construction and integration of candidate matcheswP, let us first
give an overview of the overall pipeline approach; see Fig. 6.6. The first steps are the
same as before: after computing an initial flowwbase with our baseline, we use this flow
to explicitly estimate the illumination changes between both frames. Compensating the
first frame for these changes then allows us to rely on illumination-compensated image
data in the remaining pipeline. Our modified pipeline now continues with the following
steps: (i) Firstly, we identify candidate regions for the integration of flow proposals.
(ii) Secondly, we compute different flow proposals from dense variational methods via
de-regularization, i.e. by successively reducing the amount of smoothness. (iii) Thirdly,
we determine the best candidates from the previously generated flow proposals for
each location in the candidate regions.

Usage of Illumination Compensated Image Data. In Step (ii), the compensated
image data turns out to be particularly useful, since we can employ the illumination-
compensated brightness constancy and the illumination-compensated geometric blur
constancy as data terms of dense variational models to calculate the flow proposals.
Moreover, it can also be beneficial in the other steps where we need confidence functions
that make use of image data.

Confidence Measures. In those steps where we further need to assess the quality of
the flow field, we make use of confidence measures: In Step (i) we need a confidence
measure to assess the quality of the baseline flow in order to identify candidate regions.
In Step (iii) we need a confidence measure to assess the quality of different candidates
from the estimated flow proposals relative to each other in order to determine the best
candidates.
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6.3.2 Confidence Measures for the Optical Flow

In the complete pipeline, there are a lot more stages where we need to assess the quality
of flow vectors and each of these steps has different requirements w.r.t. accuracy of the
assessment and w.r.t. the ranges of values of the confidence measure in structured and
in homogeneous regions (see Fig. 6.2 and Tab. 6.1).

Requirements on Confidence Measures within the Pipeline

The requirements on the spatial as well as the quantitative accuracy of a confidence
measure highly depend on its application. While binary decisions between highly
distinctive classes require less accuracy in a quantitative sense, a selection among
potentially many, less distinctive, classes requires a higher quantitative accuracy. Some
stages in our pipeline are binary (when creating exclusion/inclusion maps) while the
selection step is n-ary due to selecting from multiple options. The spatial accuracy
particularly affects the creation of inclusion/exclusion maps in terms of thresholding
confidence values, like e.g. the exclusion of poor matches for estimating the illumination
changes or the definition of regions of interest for the integration of candidate flows. If
a high spatial locality is necessary in such a map, we need a high spatial accuracy in
the confidence measure.

(i) Excluding Poor Matches for Illumination Estimation. As in the partially
decoupled method, we need to identify poor matches in the baseline flow in order
not to deteriorate the estimation of the illumination changes. This is done in
the sense of a classification whether a flow vector is good enough to determine
illumination changes or not. This classification is binary and it does not require
the last bits of accuracy both spatially and quantitatively, since we can even
afford to exclude more matches than necessary. A few flow vectors per region
with constant illumination conditions are sufficient to determine the respective
illumination changes, as long as all harmful matches of mismatched or occluded
objects are densely prevented from deteriorating this estimation. Here, accuracy
is less important, but the confidence measure must clearly indicate poor matches
both in structured and in homogeneous regions to allow for their dense exclusion
via thresholding the confidence value.

(ii) Identification of Regions of Interest. We need to identify regions of interest
where additional guidance is necessary. To this end, we also make a binary
decision whether to integrate further flow proposals at some location or not. In
contrast to the former stage, however, spatial accuracy is an issue here, since we
do not want to integrate matches at locations where the baseline flow is already
sufficiently accurate. At such locations, there is no potential for improvement
but a potential for deterioration by erroneously considering bad flow proposals.
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However, a dense integration of flow proposals is not mandatory as long as each
object which has previously been mismatched in the baseline result is covered by
enough matches in the final steps. Even if confidence values in homogeneous
regions are low for poor matches and, thus, the thresholding step does not mark
them as regions of interest, this is typically not a big problem for small objects
since their more structured parts are marked as regions of interest which typically
is a sufficient covering. Hence, the quantitative accuracy at structured regions is
more important than at homogeneous regions.

(iii) Selection of the Best Candidates. Among a set of proposals that come from
flow fields with varying smoothness, it is our goal to select the most appropriate
flow candidate. Here, the decision is not binary anymore, since it becomes a
decision among multiple choices. In contrast to the steps before, that are based
on thresholding with global thresholds, here we need a local relative ordering
of flow proposals according to their quality. In this context, the requirements
w.r.t. accuracy are even higher, since the proposals may differ not much w.r.t.
their apparent matching quality. Although being substantially different in their
displacement due to different degrees of regularization, the aperture problem may
let them appear similarly well-suited as motion candidates for a given location.

We have seen that from stage to stage either the locality of the decision increases or the
available choices are less distinct. This increases the requirements w.r.t. accuracy on a
potential confidence measure that assesses the quality of a flow vector at each stage.

Restrictions on Confidence Measures

At stage (i), where we are about to densely mark unreliable flow regions and can not yet
rely on illumination-compensated image data, the inpainting of a (potentially) sparse
quality indicator for the baseline flow is the only reliable way for a clear identification
of poor matches that works under all circumstances, i.e. with and without illumination
changes. Without such an inpainting, the thresholding step could not reliably classify
poor matches in homogeneous regions, since the confidence values of poor and good
matches are not clearly distinguishable for those types of confidence measures that are
invariant under illumination changes (see Fig. 6.2 and Tab. 6.1). For the basic indicator
map, the baseline energy is the canonical choice. Compared to the partially decoupled
method, we hence do not alter the pipeline at this stage.

Extended Selection at Later Stages. In all later stages of the pipeline, where accuracy
is more important and where we can make use of both the original image data as well
as the compensated counterpart, there are a lot of choices for the confidence measure
that are applicable in the context of illumination changes.
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A Selection of Confidence Measures

Given typical constancy assumptions in data terms and the fact that we can access
illumination-compensated image data, the following examples are worth investigating
as choices for the confidence measure ρ(w):

• First of all, there is the baseline energy (in our case using the BCA and the GCA),
which respects the invariances of the underlying baseline model. In this case,
evaluating the original data term provides the confidence values. Since it typically
consists of a weighted sum of different constancy assumptions, it is beneficial to
normalize the energy by these weights γi . Hence, we set

ρorig(w) =
1

∑

i
γi

D(w) . (6.11)

• In order to be invariant under additive illumination changes, the evaluation of
the gradient constancy assumption (GCA) for the flow proposals is the simplest
confidence measure. It is given by

ρGCA(w) = ΨD

(
Nc∑

c=1

|∇I c
(x+w)−∇I c

(x)|2
)

. (6.12)

• An alternative way to using invariant constancy assumptions is to use the bright-
ness constancy assumption (BCA) on the compensated image data, which we
call photometrically-compensated brightness constancy assumption (BCA comp.). It
reads

ρBCA comp.(w) = ΨD

(
Nc∑

c=1

(I c
(x+w)− I c

comp(x))
2

)

, (6.13)

and needs illumination-compensated image data to work with illumination
changes. While it aims at ignoring the illumination changes, it still keeps the idea
of assessing the quality of flow fields by evaluating the matching error. Not only
is it illumination-invariant, it is also invariant under changes in geometry and
scale due to its locality and allows to detect mismatches in homogeneous regions.

Except for the last choice where using the compensated image data is essential to make
the confidence measure illumination-invariant, all other choices can be applied on both
the compensated and the uncompensated image data. While the former provides the
confidence measure with a higher degree of illumination-invariance, the latter is free
from errors that are due to mis-estimated illumination changes. Thus, for each of these
measures both variants are worth to be considered. Later on, we will evaluate each of
them and investigate their advantages and disadvantages in different contexts. In any
case, please note that, by construction, smaller values denote a higher reliability.
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Figure 6.7: Determining the regions of interest. From left to right: (a) Confidence
mask χreg. (b) Structurednessmask χstruct. (c) Intermediatemask χ beforemorphological
opening. (d) Final mask χ after opening.

6.3.3 Determining Candidate Regions

Following our method from Chapter 3 (Sect. 3.8), where we selected regions of interest
for the integration of feature matches, we will now present a similar scheme for the
integration of additional flow candidates. In contrast, however, we allow for different
choices of confidence measures as stated above and do not necessarily rely on the origi-
nal data energy. Nevertheless, for consistency reasons we refer to the corresponding
criterion as energy criterion, since the confidences are based on data energies. Further-
more, we make also use of a similar local structuredness criterion as in earlier sections,
such that the regions of interest are determined by both an energy and a structuredness
criterion, i.e. χ(x) =χreg(x) ·χstruct(x). An overview of this process is given in Fig. 6.7.

Energy Criterion

In order to determine the registration error mask χreg, we apply a double threshold-
ing strategy on the results of the chosen confidence measure, similarly to Chapter 3
(Sect. 3.8.4). Our goal is to isolate regions where the baseline flow is not appropriate, i.e.
where the confidence measure indicates a pronounced registration error. In Chapter
3 (Sect. 3.8.4), we built upon quantile-based thresholds that to some degree gave us
control over the relative number of feature matches that are to be integrated. This
makes sense, since the feature matches that we used, are known to be unreliable in
many cases. Hence, our goal was to keep the number of integrated matches as low as
possible by choosing high quantiles.

Thresholds. Now, the context changes and we are about to define regions that are
appropriate for the integration of more reliable matches. To this end, we consider
thresholds based on multiples of average-values which give more control on the respec-
tive properties that are thresholded than on the number of matches that are integrated,
i.e. we can define to which degree some energy must exceed the reference value to be
regarded as a region of interest. For the energy criterion, we determined the thresholds
θstrict = 5 · ρ̄(wbase) and θsoft = 1 · ρ̄(wbase) to be appropriate, where ρ̄(wbase) denotes the
average confidence of the entire flow field. The result is shown in Fig. 6.7 (a).
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Structuredness Criterion

In order to compute the structuredness mask, we follow [27] and apply a single thresh-
olding scheme on the smaller eigenvalue λ2 of the structure tensor [64] which is
integrated over a 7×7 region following [27]. Our goal is to find regions that have suffi-
cient structure for the estimation of flow candidates, such that we do not get trapped in
the aperture problem when we apply our de-regularization approach. In this context,
we chose θstruct = 0.5·λ̄2, where λ̄2 denotes the average smaller eigenvalue on the entire
image domain. The result of this thresholding step is depicted in Fig. 6.7 (b).

Final Mask

As can be seen from Fig. 6.7 (c), the final mask does not contain most of the irrelevant
regions that are present in the single masks of the involved criteria. On the one hand,
the structuredness mask contains a lot of regions that are structured but already well
matched. On the other hand, the energy mask clearly depicts effects that origin from
the symmetry of the data term involving source and target frames, as the small objects
that are not matched properly appear at different positions in both frames and hence
both positions lead to high energies. This can particularly be seen at hand of the tennis
racket and the right foot of the player, since both at least partially appear twice in this
mask. The combination of both criteria reduces the amount of irrelevant regions a lot.
Finally, we eliminate isolated pixels in χ by applying a morphological opening with a
squared structuring element of size 3×3 (see Fig. 6.7 (d) ).

6.3.4 Generating Flow Proposals

So far, we have computed well-localized regions of interest, which determine where flow
proposals are to be integrated in the final estimation. Nevertheless, the computation of
these proposals is not restricted to these regions but derived from dense variational
methods. Compared to sparse descriptor matching, this allows to incorporate a global
communication in terms of regularization into the estimation and thus to compute
reliable matches even in homogeneous areas. This in turn improves the robustness of
such matches. Indeed, as observed in Chapter 3 and in [44], outliers are the main source
of problems when integrating such matches. Moreover, small objects are more likely to
prevail in the final estimation, if they are covered by a sufficient amount of matches.

Problems of Coarse-to-fine Schemes. Before we detail on the generation of our flow
proposals, let us briefly recapitulate why common coarse-to-fine variational methods
have problems with relative large displacements. First of all, small objects smear
with their background on that coarse-to-fine level that is appropriate to estimate
their displacement. Secondly, large displacements induce large motion discontinuities,
severely violating the smoothness assumption. The corresponding penalizer functions
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are typically not sufficiently robust to handle such jumps – either for convexity reasons
or to avoid staircasing. Thus, even if there is enough information remaining to estimate
a large displacement, it is typically cheaper to violate the data constancy assumption
for a small object than to severely violate the smoothness assumption.

Applying a De-Regularization Strategy. In the following, we address both issues by
again relying on a de-regularization strategy, similar to the one in Chapter 4 (Sect. 4.4).
In this context, we consider two variational methods to generate the proposals – each
equipped with a different constancy assumption.

Large Displacements via De-Regularization

Similar to Chapter 4 (Sect. 4.4), we consider multiple instances of conventional energy
functionals consisting of a data term and a smoothness term each. They implement
the general concept of de-regularization by applying a separate smoothness weight for
each instance. In contrast to Chapter 4 (Sect. 4.4), where we used instances of a baseline
model and combined them into a single joint variational model (using an integrated
fusion model), we will now consider independent models for the generation of flow
proposals. To this end, let us consider a family of energy functionals of the form

Ecand(wPk ) =
∫

Ω

Dcand(wPk )+αk Scand(wPk ) d x̃ , (6.14)

with successively decreasing smoothness weights αk with k = 1, ..., Ncand. Evidently,
decreasing the amount of regularization eases the estimation of large displacements
as violating the smoothness term has less impact. Although this strategy deteriorates
the average performance, since flow fields typically become very noisy, it significantly
helps to improve the performance at locations with large displacements; see Fig. 6.8.
Hence, by computing one flow field wPk for each of the regularization parameters αk ,
we are able to generate a set of flow proposals wP1(x), ...,wPNcand

(x) per pixel from
which we determine the best candidate wP in a final selection step. While we use the
same smoothness term Scand as in our baseline method, we consider the following two
constancy assumptions for the data term Dcand when generating our proposals.

Brightness Constancy Assumption (BCA). By relying on the compensated first
frame, we can use pure brightness constancy in the data term:

Dcand, 1(w) = ΨD

(
Nc∑

c=1

(I c
(x+w)− I c

comp(x))
2

)

. (6.15)

Apart from being robust against illumination changes, it is also rotation and scale
invariant due to its locality. Realizing these properties in a feature descriptor requires
much effort. Also another property of the BCA is beneficial. In contrast to gradient-like
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Figure 6.8: Effects of de-regularization: a higher ability to capture large displacements
comes along with a higher level of noise. First row: BCA data term, candidate sets one
to five. Second row: BCA data term, candidate sets six to eight, and GBCA data term,
candidate sets one and two.

data terms, a potential violation is not only expensive at edges, but also in homogeneous
parts of small fast-moving objects. This resilience particularly complements the effect
of a decreasing regularization.

Geometric Blur Constancy Assumption (GBCA). At certain locations, however, it
may be more appropriate to estimate the motion using feature descriptors – in particular
if the local information is not sufficient at the respective coarse-to-fine level. In this
context, [120] proposed to expand the local intensity into separate intensity channels,
such that each channel is resampled separately and objects at different intensities are
not smeared. While this representation is more robust to resampling, it does not add
any descriptiveness. In contrast, enhanced descriptiveness can be obtained by regarding
neighborhood information such as in the SIFT [80], the HOG [36] and the GB descriptor
[14]. Although the latter has a higher descriptiveness compared to HOG as observed
in [27], so far only the HOG/SIFT descriptor has been used as data term in variational
methods; see [79, 109]. According to [27], the main problem of the GB descriptor is its
tendency to produce more false positives in sparse matching. This, however, is not an
issue when using it in a constancy assumption of a variational method. Consequently,
we propose to use GB descriptors in a feature-based data term:

Dcand, 2(w) = ΨD
(

|GB(x+w)−GBcomp(x)|2
)

, (6.16)

where GB and GBcomp denote stacks of image frames that are obtained by applying
Geometric Blur feature transforms on the original stack I and on the illumination-
compensated variant Icomp.

Hence, the GBCA assumes constancy on a feature (i) whose components are resampled
separately following the spirit of [120], (ii) which improves descriptiveness over [36],
and (iii) whose tendency of false positives as stated in [27] is overcome due to the
inherent regularization of the underlying variational model.
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Algorithm 6.1 Pseudocode for the fusion of flow candidates at some location x.

1: initialize state {wP,ρ5×5(wP)} ← {wbase,ρ5×5(wbase)}

2: for all candidate approaches j do

3: for all smoothness weights l do

4: if ρ5×5(wP j ,l ) ≤ ρ5×5(wP) //confidence improves (smaller value!)
5: and ρ5×5(wbase) > θbase //baseline worse than some lower bound
6: and λ2 > θstruct //enough structuredness
7: then

8: {wP,ρ5×5(wP)} ← {wP j ,l ,ρ5×5(wP j ,l )}

9: end if

10: end for

11: end for

6.3.5 Candidate Selection

In the previous section, we have generated a set of candidates that can improve the
flow estimation. Let us denote them by wPi ,k where i ∈ {1,2} refers to the model with
data term Dcand, i and k relates to the smoothness weight αk . For each pixel within the
candidate regions, it remains now to select the best candidate wP out of this set. To this
end, we make once again use of the same confidence measure as for the determination
of the regions of interest.

Discrete Fusion. During the fusion procedure, we locally keep a current candidate
state {wP,ρ(wP)} and successively update it when fusing candidates. It is initialized
with the corresponding values for the baseline flow. The updating procedure follows
rules that implement the following assumptions: (i) A flow candidate wP j ,l shall have a
better confidence than the currently chosen candidate wP. In any case, its confidence
must improve over the baseline confidence since false positives become more probable.
(ii) The baseline confidence must be worse than some lower bound in order to account
for noise and to make a significant improvement possible. (iii) A certain level of
structuredness (indicated by λ2) is necessary in order to avoid getting trapped in the
aperture problem. An algorithm that describes the process for a location x is given in
Alg. 6.1. Please note that we average the energy within a 5×5 window, similar to [140].

6.3.6 Final Estimation

Finally, the locally best proposal wP is integrated into the extended energy functional
and a final flow fieldwfinal is estimated. The mask χ guarantees that candidate proposals
are only integrated at regions of interest. In order to avoid that single bad proposals
deteriorate the result, we re-compute the mask χ by excluding locations where the
confidence of the final flow in a local neighborhood of size 5×5 became worse than
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the one of the baseline flow or where it exceeds a post-check threshold θpost-check =
4 · ρ̄(wfinal) based on the average energy of the final flow:

χfinal(x) = χ(x)

· δ
[

ρ5×5
(wfinal) ≤ ρ5×5

(wbase)
]

· δ
[

ρ5×5
(wfinal) ≤ θpost-check

]

. (6.17)

Using χfinal we then recompute the final flow field wfinal.

6.3.7 Final Variational Model

In this chapter, we will again make use of the method of Zimmer et al. [165, 164] as
presented in Chapter 2 (Sect. 2.8). Similarly to Chapter 3 (Sect. 3.7), we extend it by a
similarity term as proposed by Brox and Malik [27] (see also Chapter 2, Sect. 2.10.1):

E(w) = Ebase(w)+Esim(w,wP) (6.18)

where the additional similarity term Esim is given by

Esim(w,wP) = β

∫

Ω

χP(x)ΨP
(

|w−wP|2
)

d x̃ , (6.19)

whereβ is a balancingweight, χP(x) is a binary activation flag andΨP is the Charbonnier
penalizer [33]. In contrast to Chapter 3 (Sect. 3.7), a local confidence weight is not
required and β can be chosen quite large, since, in general, our candidates hardly
contain outliers.

6.3.8 Differences to Our Paper

Compared to our paper [128] there are some differences that improve different aspects
regarding the consistency and that allow for a deeper analysis of the components:
(i) We consider edges from both the reference frame and the successive frame in the
energy inpainting step (see Sect. 6.2.4), since edges of mismatched objects appear
symmetrically in both frames. (ii) In the estimation of the illumination changes (see
Sect. 6.2.2), we now apply complementary instead of homogeneous regularization to be
more consistent with our method BTFIllum (see Chapter 5, Sect. 5.6.2). (iii) We consider
different confidence measures (see Sect. 6.3.2) which allows for a deeper analysis of
the components. (iv) Our post-check (see Sect. 6.3.6) now additionally considers the
local level of the final data energy in comparison to a threshold that is based on that
energy itself (independently from the baseline energy), which improves the behavior at
occlusions which also tend to produce high data energies in general.
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6.3.9 Aspects of the Minimization

Similar to the methods before, we basically minimize the nonconvex and nonlinear
functional using concepts from Chapter 2 which includes the coarse-to-fine warping
strategy as described in Sect. 2.6.3 along with the lagged nonlinearity method as de-
scribed in Sect. 2.3.1. After discretization, the resulting sequence of linear equation
systems is solved with a successive overrelaxation scheme (SOR) as hinted in Sect. 2.3
using a multicolor variant [1] that can be parallelized and SIMD vectorized. Moreover,
we apply constraint normalization as described in Sect. 2.8.1.

6.3.10 Evaluation

In order to investigate the performance of our novel strategy for generating regular-
ized matches in the presence of illumination changes (ICALD), we conducted several
experiments, both on common benchmarks as well as on common large displacement
sequences. We furthermore tested our method on modified versions of the latter se-
quences that additionally include illumination changes to demonstrate the robustness
of our method against such changes.

Parameters

In order to determine the smoothness weightsαk of the candidate models, we first define
basic smoothness weights αcand,BCA and αcand,GBCA for both types of candidate models
and compute the smoothness weights of candidate number k as αk,(G)BCA = αcand,(G)BCA

2.5·k .
In each of the following experiments on training data from benchmarks, we optimized
the following parameters: the smoothness parameter α and the weight γ of the GCA
among the set of the baseline parameters as well as the basic smoothness weights
αcand,BCA and αcand,GBCA for the generation of the proposals. Details on parameters and
their retrieval can be found in Appendix A.8.

Analysis of Components

In order to show the impact of the different components of our method, we start by
analyzing them individually in terms of quantitative as well as qualitative experiments.

Confidence Measures. In our first experiment, we evaluate the performance of dif-
ferent confidence measures quantitatively on the subset of the clean pass of the Sintel
training data set. In this context, we consider the following measures: the weight-
normalized baseline energy (denoted as norm. orig.), which covers the BCA and the
partially illumination-invariant gradient constancy assumption (GCA), the pure BCA,
the pure GCA and the gradient magnitude constancy assumption (GMCA), which in
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Table 6.3: Selected results for different confidencemeasures for Sintel (sub.). Underlined
fonts indicate the best results for each value of Ncand,BC A while a bold font indicates
the overall best result.

Ncand,BC A

Confidence Measure 4 5 6

norm. orig. 5.553 5.541 5.546
norm. orig. (comp.) 5.565 5.521 5.529
GCA 5.552 5.565 5.544
GCA (comp.) 5.493 5.487 5.512
GMCA 5.636 5.672 5.659
GMCA (comp.) 5.598 5.621 5.602
BCA 5.812 5.816 5.814
BCA (comp.) 5.812 5.796 5.788

contrast to the GCA is invariant under rotations. We applied these measures both on
the original data and on illumination-compensated image data (denoted with (comp.)).
Please note that the BCA on the original data is not invariant under illumination changes.
For the comparison, we consider different sets of candidates from the BCA model and
evaluate the respective performances for each choice of confidence measure on this
data set. In Tab. 6.3, we display the results of three different numbers of candidates per
pixel (covering four to six differently smoothed matches per pixel) of the BCA-based
matches for each of the presented confidence measures.

We observe that the results of the invariance-based measures are rather close in general
while the versions based on illumination-compensated image data are consistently
superior to those on the original image data. Moreover, the BCA shows an inferior
performance compared to the invariance-based measures. Hence, we will build on the
GCA (comp.) as our confidence measure in the following quantitative experiments.

In our second experiment, we compare the best invariance-based confidence measure
GCA (comp.) with the information-preserving BCA (comp.) qualitatively at hand of
different large displacement sequences. To this end, we demonstrate results using both
the visualization of the flow field as well as the motion-compensated second frame,
which illustrates registration errors, in Fig. 6.9. For the Tennis sequence, which contains
large displacements of very small and structured objects, the results for both confidence
measures do not differ substantially. At hand of the Beanbags sequence, however,
we observe a weakness of invariance-based confidence measures: they are not very
discriminative at large homogeneous areas like the one of the right beanbag. In a good
result, we expect to see the following: (i) The motion of the right beanbag must be
visualized in yellow and (ii) a beanbag must be visible in the motion-compensated



158 Chapter 6 • Large Displacement Optical Flow and Illumination Changes

GCA (comp.) P-BCA (comp.)

Figure 6.9: Results for two large displacement sequences using different confidence
measures. From left to right: Flow using the GCA (comp.) measure, motion-
compensated second frame, flow using the using the BCA (comp.) measure, motion-
compensated second frame. From top to bottom: Tennis sequence (Frame 496) [27],
Beanbags sequence [9].

second frame at the corresponding position. Since there is no beanbag at this position
using the GCA (comp.) measure, we see that this measure is not able to provide enough
correct matches for the estimation of the beanbag, since it cannot judge the quality of
different matches well at the homogeneous regions of the ball. In contrast, the usage of
the BCA (comp.) measure clearly guides the estimation into the correct direction, since
there is a beanbag at the corresponding position in the motion-compensated image.

Candidate Models and De-Regularization. In our third experiment, we analyze
the effect of different numbers of candidates on the overall result. To this end, we
consider both types of candidate models (with BCA and with GBCA data terms), where
we computed up to nine candidates per pixel using the BCA model and up to five
candidates per pixel using the GBCA model. The results of these combinations are
given as amatrix in Tab. 6.4, where each row stands for a particular number of candidates
for the BCA model and each column stands for a particular amount of candidates for
the GBCA model. In this context, we make use of the GCA (comp.) measure.

From all these combinations of different candidates, we can see that both sets of propos-
als have their share on improving the results over the baseline. While it is possible to
significantly improve the result with each set independently resulting in improvements
of 0.775px (-12.2%) for the GBCA proposals (AEE: 5.600) and of 0.923px (-14.5%) for
the BCA proposals (AEE: 5.452), respectively, the combination of both gains another
0.080px (AEE: 5.372). Furthermore, this minimal AEE is embedded into a broad valley
of comparably low errors. Even with only three candidates of the BCA proposals per
pixel in combination with only two candidates of GBCA proposals, an AEE of 5.406
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Table 6.4: Results for de-regularization with BCA, GBCA and the combination on Sintel

(sub.) (AEE). Underlined fonts indicate the best results using only BCA and only GBCA
candidates, respectively, while a bold font indicates the overall best result.

Ncand,GBC A

Ncand,BC A 0 1 2 3 4 5

0 6.375 5.600 5.711 5.703 5.662 5.712
1 5.913 5.634 5.601 5.687 5.605 5.677
2 5.465 5.471 5.563 5.525 5.553 5.544
3 5.542 5.447 5.406 5.507 5.504 5.503
4 5.493 5.445 5.428 5.512 5.494 5.532
5 5.487 5.458 5.405 5.493 5.499 5.516
6 5.512 5.497 5.372 5.439 5.499 5.497
7 5.468 5.484 5.391 5.480 5.478 5.482
8 5.452 5.474 5.378 5.447 5.480 5.466
9 5.461 5.445 5.441 5.469 5.494 5.488

is achieved, which is hardly worse. Also the combinations (BCA: 8/GBCA: 2) with
an AEE of 5.378 and (BCA: 7/GBCA: 2) with an AEE of 5.391 yield results similar to
the top result. This shows that our method is quite robust in terms of the numbers of
candidates that are used as long as each type of proposals is represented.

Since the information-preserving BCA (comp.) confidence measure has been superior
in the qualitative second experiment, let us investigate its performance using all the
combinations of matches as given in this experiment. Indeed, the results (without table)
between both confidence measures are much closer than before: The best obtained
result for the BCA (comp.) measure is an AEE of 5.425 (BCA: 7/GBCA: 3). Even using a
comparable setting of six candidates per pixel for the BCA-matches and one candidate
for the GBCA-matches leads to an AEE of 5.443 which is hardly worse compared to the
best results of both measures.

In our fourth experiment, we investigate the influence of the proposals from each
of the candidate models on the final result at hand of the Tennis sequence. Fig. 6.10
shows results obtained using different sets of candidate proposals. On the one hand,
one can see that the Geometric Blur constancy assumption (GBCA) is able to capture
translational and slight rotational motion, i.e. the tennis ball, the tennis racket and the
arm. On the other hand, one can observe that the BCA data term is able to capture
the strong rotational motion of the right foot more accurately, which complements the
benefits of the GB constancy. Thus, not surprisingly, combining both proposal sets also
yields the best results here.
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Figure 6.10: Influence of the candidate flows. First row, from left to right: First
frame, second frame, baseline result. Second row, from left to right: Our result using
proposals from only the BCA data term, only the GBCA data term, both data terms.

Illumination Compensation. In our fifth experiment, we analyze the importance
of the illumination compensation on the overall result. In this context, we compare a
variant without illumination compensation, a variant where the illumination changes
have been computed on all vectors (including poor matches) of the baseline flow, and
several variants that excluded poor matches from the baseline flow before computing
the illumination changes.

The corresponding results are listed in Tab. 6.5. On the one hand, one can see that
omitting the illumination compensation (AEE: 5.533) deteriorates the accuracy of the
results by 0.161px (+3%). This demonstrates that using illumination compensation is
indeed useful when selecting and integrating feature matches. On the other hand, it
becomes evident that simply using the entire baseline flow for estimating the illumi-
nation changes is also not a good idea. In fact, in the this case, the result deteriorates
significantly (+422%) with an AEE of 28.019. In general, one can observe that, when
estimating the illumination changes, a moderate amount of regularization is beneficial
(αill = 4000). While a too small value for αill (Tab. 6.5, Rows 1 and 2) interprets all
registration errors as local illumination changes, a too large value (Tab. 6.5, Rows 4
and 5) only allows the estimation of global illumination changes. Please note that
the semi-local nature of the illumination changes is also reflected in the choice of the
inpainting weight when excluding poor matches before the illumination estimation
(αinp = 3000). Finally, when replacing the affine parametrization with its normalized
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Table 6.5: Impact of the illumination compensation on Sintel (sub.).

αill AEE

Illumination compensation 400 5.855
excluding poor matches 1600 5.536

4000 5.372

16000 5.486
40000 5.575

Illumination compensation 4000 28.019
using all flow vectors

No illumination compensation – 5.533

αill AEE

Illumination compensation 239 5.570
excluding poor matches
using a normalized basis

counterpart – which turned out to be beneficial in a joint model for the estimation of
optical flow and illumination changes (see Chapter 5, Sect. 5.10.4) – results slightly
deteriorate (AEE: 5.570). Hence, for the separate estimation of illumination changes on
a given optical flow field, the original affine parametrization is the better choice.

In our sixth experiment, let us have a look at the Tennis sequence [27] where we added
artificial global illumination changes containing both additive as well as multiplicative
changes. In Fig. 6.11, we provide the results of our method in two versions: first the
results of our complete method and second results obtained when deactivating the
illumination compensation. Obviously, the illumination compensation is necessary to
obtain meaningful results that contain the large displacements. While the flow vectors
of the Tennis ball spread widely, the motions of the right arm and of the tennis racket
are not covered correctly. A detailed depiction of the respective candidate flows is
given in Fig. 6.12. As one can see, the candidate flow fields using the BCA data term are
totally useless while the candidate flows using the GBCA term are still quite meaningful.
Nevertheless, the confidence measure using the original, uncompensated first frame
(which comes down to an uncompensated BCA confidence measure) is not able to
determine the quality of the flow vectors everywhere. Thus, one cannot rely on the
selection strategy without illumination compensation. In this context, one might rely
on invariance-based confidence measures to circumvent that problem. But as we have
seen before, they have problems in homogeneous areas.
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Figure 6.11: Tennis sequence with artificial illumination changes. From left to right:

First frame, second frame, our method, our method w/o illumination compensation.

Figure 6.12: Flow candidates for the Tennis sequence with artificial illumination
changes when illumination compensation is deactivated. First row: BCA data term,
candidate sets one to five. Second row: BCA data term, candidate sets six to eight, and
GBCA data term, candidate sets one and two.

Candidate Regions. In our seventh experiment, we investigate the importance of
selecting candidate regions on the final result. To this end, we evaluate a variant of
our method, where our selection strategy determines a flow proposal for each pixel
of the image instead of restricting the selection only to the candidate regions. In this
case, we achieve an overall AEE of 5.983 which deteriorates results by 0.611 (+11.4%).
This demonstrates that our strategy to determine candidate regions is beneficial when
integrating flow proposals.

Post-Check. In our eighth experiment, we evaluate the impact of the post-check on
the final flow field, i.e. the check that removes candidates that had a negative impact
on the result. By deactivating it, an AEE of 5.586 is achieved. Hence, it improves results
by 0.214 (-3.8%) which demonstrates that it has a considerable influence.

More Large Displacement Sequences

In our ninth experiment, we investigate the ability of our pipeline approach to handle
large displacements on different image sequences from the important literature on large
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Figure 6.13: Results for large displacement sequences. From Top to Bottom: Tennis
(Frame 496) [27], Baseball [160], Beanbags [9]. From Left to Right: First frame, second
frame, baseline, our method.

displacement optical flow [27, 160]. The results are depicted in Fig. 6.13 where they are
compared to the results of the baseline method. As one can clearly see when comparing
the corresponding results, our strategy allows us to reliably capture all the apparent
large displacements at the limbs, the racket, the tennis ball (in the Tennis sequence), the
bat (in the Baseball sequence) and the beanbags (in the Beanbags sequence). This ability
is also reflected in terms of a decrease of the average photometrically-compensated
registration errors for these sequences compared to the respective baseline flow fields
(see Tab. 6.6).

In Fig. 6.14, we depict the results of further image sequences that contain large displace-
ments together with the results of the baseline method. The advances are also clearly
visible for these sequences: the motion of the right foot (in the Football sequence), the
motion of the left arm (in the Tennis sequence, Frame 502) and the motions of the right
arm and the tennis ball (in the Tennis sequence, Frame 577) are covered correctly. This
demonstrates that our method is quite consistent in estimating large displacements.

Moreover, we evaluate the ability to handle large displacements in the context of
illumination changes. Hence, we change brightness and contrast settings for the same
sequences as shown in Fig. 6.13 and depict the adapted second frames as well as the
corresponding results in Fig. 6.15. As one can see, these results are only slightly worse
than without illumination changes, but the large motion is still recovered correctly.
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Figure 6.14: Results for further large displacement sequences. From Top to Bottom:

Football [160], Tennis (Frame 502) [27], Tennis (Frame 577) [27]. From Left to Right:

First frame, second frame, baseline, our method.

Table 6.6: Registration error for large displacement sequences.

Tennis Baseball Beanbags

Baseline 0.031 0.013 0.050
Our method 0.009 0.007 0.019

MPI Sintel Training Data

In our tenth experiment, we evaluate the performance of our strategy on the clean data
set of the MPI Sintel training benchmark data, using both the subset of 69 sequences
and the complete data set, by comparing our novel method with the baseline. In this
context, we also include a modified baseline without the illumination-invariant GCA
constancy assumption in this comparison in order to demonstrate the importance of
handling illumination changes of these data in general.

The outcome in Tab. 6.7 shows the superiority of our method compared to its baseline
(-15.7% for the subset, -11.4% for the complete data set). Moreover, the results for a
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Figure 6.15: Results for large displacement sequences with illumination changes.
From Top to Bottom: Tennis [27], Baseball [160], Beanbags [9]. From Left to Right:

first frame, second frame with illumination changes, our method.

Table 6.7: Overall results on MPI Sintel training data (AEE). This comprises the results
for the subset that we have chosen for parameter optimization and the complete data
set.

Data set Baseline Our method
(only BCA) (BCA + GCA) (full)

Subset (clean) 7.091 6.375 5.372

All (clean) 4.896 4.084 3.617

baseline with pure brightness constancy are even clearly inferior to the ones of the full
baseline (+11.2% / +19.9%). This shows that illumination changes are quite present in
the data and require proper handling.
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Figure 6.16: Exemplary results from the MPI Sintel final evaluation data [31]. From
top to bottom: First frame, baseline, our result, ground truth. Please note that these
results are obtained from the public webpage and thus use the corresponding color
code that is different from our usual color code.

MPI Sintel Evaluation Data

In our eleventh experiment, we compare our approach to similar methods from the
literature. To this end, we submitted our results to the MPI Sintel benchmark. Fig. 6.16
shows exemplary flow fields of that data set for our method and its baseline. Apparently,
the results of our method are less noisy without losing details.

As one can see from Tab. 6.9, on the clean data set, our method shows a performance
which is comparable to similar methods from the literature, which however comprise
external matches. On the final data set (see Tab. 6.8) it clearly outperforms comparable
approaches such as WLIF, MDP-Flow or LDOF. In this context, it is important to recall
that we purely consider matches from dense variational methods in contrast to using
sparse descriptor matches. This demonstrates that flow proposals from dense variational
methods can be a serious alternative to sparse descriptor matches and matches from
other large displacement methods like [34]. Moreover, our method shows results that
are consistently superior to our ContFusion-Flow from Chapter 4 (Sect. 4). To the best
of our knowledge, these are the leading variational methods that do not make use of
any external, non-variational methods for the generation of candidate matches.
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Table 6.8: Ranking on the MPI Sintel final evaluation data.

Method Feature Matches AEE

Deep+R [44] sparse, regularized 6.769

Deep Flow [154] sparse 7.212

Our Method dense, regularized 7.640

ContFusion (Chapter 4) none 7.857

WLIF [140] dense, regularized 8.049

Baseline none 8.065

MDP-Flow2 [160] sparse 8.445

LDOF [27] sparse 9.116

Table 6.9: Ranking on the MPI Sintel clean evaluation data.

Method Feature Matches AEE

Deep+R [44] sparse, regularized 5.041

Deep Flow [154] sparse 5.377

WLIF [140] dense, regularized 5.734

MDP-Flow2 [160] sparse 5.837

Our Method dense, regularized 5.851

Baseline none 6.171

ContFusion (Chapter 4) none 6.263

LDOF [27] sparse 7.563

6.3.11 Major Benchmarks

In our final experiments, we evaluate our method on all major benchmarks. Similar
to previous chapters, we use first-order regularization for the Middlebury and MPI
Sintel benchmarks and second-order regularization for the KITTI benchmarks. For the
latter cases, we also have the choice of using first- or second-order regularization for
the candidate models. First-order regularization typically leads to sufficiently accurate
results in structured areas where there is an actual correspondence within the image
plane (i.e. the displacement does not target outside the image) even for divergentmotions
as present in the KITTI benchmarks. Since our candidates origin in such areas, i.e.
they represent actual correspondences between pixels in both frames, and furthermore
guide the estimation only via a soft constraint, it is reasonable to consider first-order
regularization in the candidate models. Nonetheless, second-order regularization is
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Table 6.10: Results of ICALD-Flow and its baseline on training data from different
benchmarks. The additional (socr) indicates second-order regularization of the candidate
models.

Middlebury Sintel (sub.) Sintel KITTI ’12 KITTI ’15
(AAE) (AEE) (AEE) (AEE) (BP3) (BP3)

Baseline 2.73 0.229 6.375 4.084 10.68% 24.25%
ContFusion 2.72 0.231 5.808 3.974 10.47% 24.18%

ICALD-Flow 2.65 0.219 5.372 3.617 10.38% 24.00%

ICALD-Flow (socr) – – – – 10.67% 23.69%

more consistent with the baseline regularization strategy in these cases. In Tab. 6.10,
we provide the results for all benchmarks, whereby the results of a second-order
regularization of the candidates for the KITTI benchmarks can be found in the last row.

Comparison to the Baseline. When comparing ICALD-Flow to the baseline method, we
achieve a consistent improvement. For the Middlebury benchmark, the AAE improves
by 0.08 (2.9%) while the AEE improves by 0.010 (4.4%). For theMPI Sintel benchmark, the
errors decrease by 1.003 (15.7%) on the subset as well as by 0.467 (11.4%) on the complete
data set. For the KITTI benchmarks, the first-order regularized candidates drop the
error on 2012’s edition by 0.3 (2.8%) and on 2015’s edition by 0.25 (1%). Regarding the
second-order regularized candidates – denoted as ICALD-Flow (socr) –, the results for
ICALD and the baseline are similar on KITTI 2012 with a drop by 0.01 (0.09%) while on
KITTI 2015 we have a drop of 0.56 (2.3%).

Comparison to ContFusion-Flow. When comparing ICALD-Flow to ContFusion-Flow (see
Chapter 4), we also observe an improvement in almost all cases. For the Middlebury
benchmark, the AAE improves by 0.07 (2.6%) while the AEE improves by 0.012 (5.2%).
For the MPI Sintel benchmark, the errors decrease by 0.357 (9%) on the subset as well
as by 0.436 (7.5%) on the complete data set. For the KITTI benchmarks, the first-order
regularized candidates drop the errors on 2012’s edition by 0.09 (0.9%) and on 2015’s
edition by 0.18 (0.7%). Regarding the second-order regularized candidates (socr), there
are ambivalent observations: While the results deteriorate on KITTI 2012 by 0.2 (1.9%),
the results on KITTI 2015 show an improvement of 0.49 (2%). Hence, we see that
adapting the order of regularization may improve results in some cases but leaving a
first-order regularization on the candidates provides a lot of helpful matches.

Please note, that for all benchmarks we consistently used six candidates per pixel from
the BCA-matches and two candidates from the GBCA-matches and did not optimize
these numbers separately per benchmark (in contrast to the results of ContFusion-Flow).
Furthermore, we even kept the initial smoothness weightαcand,BCA for the BCA-matches
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Figure 6.17: Limitations of our method at hand of the Bird sequence [160]. From left

to right, top to bottom: First frame, second frame, baseline, our method, MDP-Flow
without occlusion handling, MDP-Flow with occlusion handling [160].

and the weight β for the similarity term fixed for all settings, the latter one at a very
large value (see A.8.2). Even the optimized initial smoothness weights αcand,GBCA lie in
the same order of magnitude for all benchmarks and could likely be fixed as well. This
shows that our regularized matches consistently improve results on all benchmarks
without adapting the numbers of candidates, changing the order of their regularization
or optimizing overly many parameters.

Limitations

Finally, we show an example that illustrates the limitations of our method. To this end,
we consider the Bird sequence [160] (see Fig. 6.17) which is particularly challenging,
since it contains large and complex motion of the bird’s head. While the motion of
the body is recovered correctly, the motion of the nib is not recovered well using our
approach. In contrast, the MDP-Flow [160] method which is based on feature matching
is able to handle this motion better. This, however, is only the case when its particular
capabilities to handle occlusions are enabled (Fig. 6.17, bottom right). Otherwise, the
results (Fig. 6.17, bottom center) are similar to our method (Fig. 6.17, bottom left).
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6.4 Summary

In this chapter, we developed a pipeline of variational methods that is able to handle
large displacements using regularized matches even in the context of illumination
changes. To this end, we combined the best concepts from the previous chapters which
comprise the match generation procedure using variational methods (see Chapter 4),
the estimation of illumination changes and their compensation to make this estimation
possible in the context of illumination changes (see Chapter 5) and a pipelined approach
using an adaptive sparsification strategy to determine promising locations for their
integration (see Chapter 3). Simply combining only the first two of these concepts,
i.e. directly using the joint model for match generation and fusion from Chapter 4 on
illumination compensated image data, did not scale well with increasing numbers of
candidates, both in terms of workload and in terms of results.

In contrast, embedding all ideas into a sequential pipeline of variational approaches
led to a superior performance. To this end, we first computed an initial flow using the
baseline method, which serves as the basis to estimate the illumination changes within
the sequence. As an intermediate step, we computed a coarse mask that identifies
unreliable regions of that initial flow in order to not deteriorate the estimation of the
illumination changes. After having estimated these changes, we compensated the first
frame of the image sequence for them. Based on the modified image sequence, we then
computed several candidate flow fields using a de-regularization strategy to capture
different scales of displacements. In this context, it allowed us to include variational
models with selected data terms that are specifically tailored for the generation of
matches which can capture particular motion patterns like large translations or fine-
grained rotations. Adaptive sparsification and selection strategies extracted a field of
small regions with candidate flows that guided the final estimation to achieve accurate
results with moderately large displacements.

Our method showed convincing results both in quantitative experiments on benchmarks
as well as in qualitative evaluations on large displacement sequences, with and without
illumination changes. An in-depth analysis of the involved components demonstrated
their individual effectiveness on the overall result.
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7

Tensors for Point Constraints

This chapter is dedicated to an extended tensor notation for linear and linearized data
constraints and other point constraints. It comprises the motion tensors as proposed
by [28, 47, 30] and tensors for all presented pointwise constraints in this thesis. We
will show how powerful this tensor notation is, since it allows for a widely generalized
variational framework that can find minimizers for different models without much
implementation effort. In order to extend such a framework to handle another lin-
ear(ized) point constraint, it is sufficient to make the corresponding tensor known to
the framework. In particular, it is even sufficient to only implement the corresponding
constraint vector(s), since the tensor can derived from them automatically.

To make this possible, we provide an overview of the so far presented data constraints
and of some other terms from recent literature with their corresponding tensor notation.

7.1 Structure of Linear(ized) Data Terms

We can basically formulate any linear oder linearized data term that consists of one or
more data constraints as

D(w) =
∑

i

(w⊤pi )
2

, (7.1)

where w denotes the unknown flow and pi are the generating constraint vectors.
Thereby, often a (subquadratic) penalizer function Ψ is applied in order to make the
constraint robust against outliers, such that the final constraint is given by

D(w) = Ψ

(

∑

i

(w⊤pi )
2

)

. (7.2)
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From Chapter 2 (Sect. 2.5.4) we know that such a data term can be rewritten in terms
of motion tensor J via

D(w) = Ψ
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In the following, we will derive a broad variety of tensors J from different linear(ized)
data terms and other point constraints that can be formulated in terms of such tensors.
In this context, we consider a constraint to be (spatially) pointwise, if it does not include
any spatial neighborhood information. This guarantees that the constraints keep their
pointwise properties after discretization.

We will consider all tensors both in a non-incremental version, which can be used to
express linear data terms, and in an incremental version, which can be used in contexts
where linearizations are postponed to the numerics (coarse-to-fine warping schemes).

7.2 Organization

First of all, in Sect. 7.3 we will start by recapitulating the motion tensors [30] that
describe the linearized versions of the BCA and the GCA, since they are used in our
baseline method, the approach of Zimmer et al. [165, 164]. These tensors furthermore
provide the foundations for the extended motion tensors that in the context of a joint
estimation of optical flow and illumination changes (see Chapter 5) define the constraints
on both the unknown flow and the unknown illumination coefficients. In Sect. 7.4, we
move on to tensors for similarity constraints between a prior and the unknown functions.
These tensors are helpful to integrate pre-computed feature matches or candidate flows
into the estimation of the flow (see Chapter 3 and Chapter 6). In this context, we do
not only derive a tensor that seeks a 1:1 correspondence between the prior and the
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unknown functions but also two variants that only aim at steering the unknowns to
have a direction similar to the one of the prior. In Sect. 7.5, we derive tensors that are
related to similarity tensors but implement a coupling between unknowns instead of a
similarity between a prior and an unknown function. Such tensors easily allow for a
fusion of candidates within a variational model for the joint estimation and fusion of
candidate flows (see Chapter 4). Moreover, they allow for a trajectorial regularization
as proposed in the work of Volz et al. [148]. In this context, a first-order coupling
tensor aims at a 1:1 correspondence between two unknowns by penalizing a first-order
derivative in trajectorial direction while a second-order coupling tensor couples three
unknowns in order to implement a second-order derivative in trajectorial direction. In
the context of trajectorial regularization, we also present tensors for two variants of a
directional constraint that restrict the coupling to aiming at a similar direction of the
flows along a trajectory as proposed in our paper [88].

7.3 Motion Tensors

Let us start by briefly recapitulating the motion tensors for our baseline method from
Chapter 2 (Sect. 2.8.4). These comprise formulations for the linearized versions of the
brightness constancy assumption (BCA) and of the gradient constancy assumption
(GCA). Both tensors have been proposed in [30].

7.3.1 BCA Motion Tensor

The linearized version of the BCA as already used by [68] reads

DBCA(w) =
(

Ixu + Iy v + It

)2
, (7.4)

such that the corresponding constraint vector reads pBCA := (Ix , Iy , It )⊤. Via the relation
J :=pp⊤ the motion tensor for the BCA is given by

JBCA := pBCAp
⊤
BCA =





Ix Ix Ix Iy Ix It

Iy Ix Iy Iy Iy It

It Ix It Iy It It



 , (7.5)

as we have already seen in Chapter 2 (Sect. 2.5.4).

Incremental Formulation

Within the incremental formulationwk+1 =wk+dwk , the tensor has the same structure.
We only need to define Ix = I (x+wk )x , Iy = I (x+wk )y and It = I (x+wk )− I (x).
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7.3.2 GCA Motion Tensor

Similarly to the BCA case, we start by stating the linearized version of the GCA as
proposed by [26] which reads

DGCA(w) =
(

Ixxu + Ix y v + Ixt

)2+
(

Iy xu + Iy y v + Iy t

)2
. (7.6)

Here, we have two constraint vectors, one for the constraint on Ix given by pGCA,x =
(Ixx , Ix y , Ixt )⊤ and one for the constraint on Iy given by pGCA,y = (Iy x , Iy y , Iy t )⊤. Hence,
the motion tensor is given as the sum of the motion tensors for the two constraints
which reads

JGCA = JGCA,x + JGCA,y

= pGCA,x p
⊤
GCA,x +pGCA,y p

⊤
GCA,y

=





Ixx Ixx Ixx Ix y Ixx Ixt

Ix y Ixx Ix y Ix y Ix y Ixt

Ixt Ixx Ixt Ix y Ixt Ixt



+





Iy x Iy x Iy x Iy y Iy x Iy t

Iy y Iy x Iy y Iy y Iy y Iy t

Iy t Iy x Iy t Iy y Iy t Iy t





=





Ixx Ixx + Iy x Iy x Ixx Ix y + Iy x Iy y Ixx Ixt + Iy x Iy t

Ix y Ixx + Iy y Iy x Ix y Ix y + Iy y Iy y Ix y Ixt + Iy y Iy t

Ixt Ixx + Iy t Iy x Ixt Ix y + Iy t Iy y Ixt Ixt + Iy t Iy t



 , (7.7)

as we have already seen in Chapter 2 (Sect. 2.6.2).

Incremental Formulation

For the GCA and the BCA, the relations between the incremental version and the
non-incremental version of the motion tensor are similar. Here, we need to define
Ix = I (x+wk )x and Iy = I (x+wk )y as before. The temporal derivatives are given by
Ixt = It x and Iy t = It y with It = I (x+wk )− I (x).

7.3.3 Tensors with Illumination Compensation

When deriving the extended motion tensors for both data constraints that involve
components for illumination compensation, we will for the sake of simplicity resort to
the case of grey value images (i.e. Nc = 1) and hence define b(x) := b0

(x). The motion
tensors for the color case can then be derived analogously.

7.3.4 BCA Motion Tensor with Illumination Compensation

The linearized version of the BCA with illumination compensation is given by

DBCA(w,b) =
(

I + Ixu + Iy v + It − φ̄(I )−
NcIll∑

j=1

b j ·φ j (I )

)2

. (7.8)
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Given a unified solution vector wuni = (u, v,b1, . . . ,bNcIll
,1)⊤ that includes all sought

functions and allows us to represent this term as DBCA(w,b) =
(

p⊤
BCA,ill

wuni

)2
, the

corresponding constraint vector is given by

pBCA,ill =
(

Ix , Iy ,−φ1, . . . ,−φNcIll
, I t̃

)⊤
, (7.9)

with I t̃ = It + I − φ̄(I ). Hence, the corresponding motion tensor reads

JBCA,ill = pBCA,illp
⊤
BCA,ill

=













I2
x Ix Iy −Ixφ1 . . . −IxφNcIll

Ix I t̃

Iy Ix I2
y −Iyφ1 . . . −IyφNcIll

Iy I t̃

−φ1Ix −φ1Iy φ2
1 . . . φ1φNcIll

−φ1I t̃
...

...
...

. . .
...

...
−φNcIll

Ix −φNcIll
Iy φNcIll

φ1 . . . φ2
NcIll

−φNcIll
I t̃

I t̃ Ix I t̃ Iy −I t̃φ1 . . . −I t̃φNcIll
I2

t̃













.(7.10)

Incremental Formulation

For the incremental version, we consider all sought functions in an incremental version,
i.e. wk+1 =wk +dwk and bk+1 = bk +dbk , or wk+1

uni
=wk

uni
+dwk

uni, respectively. Given
a warped image I2 = I (x+wk ) and a non-warped image I1 = I (x), the corresponding
constraint reads

DBCA(dwk
,dbk

) =
(

I2+ I2,xduk + I2,y d vk − φ̄(I1)−
NcIll∑

j=1

(bk
j +dbk

j ) ·φ j (I1)

)2
, (7.11)

such that the corresponding constraint vector on a unified incremental solution vector
dwuni = (du,d v,db1, . . . ,dbNcIll

,1)⊤ is given by

pBCA,ill =
(

I2,x , I2,y ,−φ1, . . . ,−φNcIll
, I t̃

)⊤
, (7.12)

with I t̃ = I2−φ̄(I1)−
NcIll∑

j=1
b j ·φ j (I1). The incremental version of the motion tensor hence

reads

JBCA,ill = pBCA,illp
⊤
BCA,ill (7.13)

=













I2
2,x I2,x I2,y −I2,xφ1 . . . −I2,xφNcIll

I2,x I t̃

I2,y I2,x I2
2,y −I2,yφ1 . . . −I2,yφNcIll

I2,y I t̃

−φ1I2,x −φ1I2,y φ2
1 . . . φ1φNcIll

−φ1I t̃
...

...
...

. . .
...

...
−φNcIll

I2,x −φNcIll
I2,y φNcIll

φ1 . . . φ2
NcIll

−φNcIll
I t̃

I t̃ I2,x I t̃ I2,y −I t̃φ1 . . . −I t̃φNcIll
I2

t̃













.
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7.3.5 GCA Motion Tensor with Illumination Compensation

The linearized version of the GCA with illumination compensation is given by

DGCA(w,b) =
∣
∣∇I +∇Ixu +∇Iy v +∇It −∇Φ(b, I )

∣
∣2

=
∣
∣
∣
∣

(
Ix + Ixxu + Ix y v + Ixt −

(

Φ(b, I )
)

x

Iy + Iy xu + Iy y v + Iy t −
(

Φ(b, I )
)

y

)∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣









Ix + Ixxu + Ix y v + Ixt −
(

φ̄(I )+
NcIll∑

j=1
b j ·φ j (I )

)

x

Iy + Iy xu + Iy y v + Iy t −
(

φ̄(I )+
NcIll∑

j=1
b j ·φ j (I )

)

y









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


















Ix + Ixxu + Ix y v + Ixt −
NcIll∑

j=1
b j ,x ·φ j (I ) . . .

. . . −
(

φ̄′(I )+
NcIll∑

j=1
b j ·φ′

j
(I )

)

· Ix

Iy + Iy xu + Iy y v + Iy t −
NcIll∑

j=1
b j ,y ·φ j (I ) . . .

. . . −
(

φ̄′(I )+
NcIll∑

j=1
b j ·φ′

j
(I )

)

· Iy


















∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

. (7.14)

Due to the apparent gradient ∇b which is present in terms of the expressions b j ,x and
b j ,y , the data term comprises constraints on the neighborhood of b. This raises problems
w.r.t. the motion tensor notation both in the continuous as well as in the discrete domain.
In the continuous case, we know from the Euler-Lagrange equations that b and ∇b are
treated separately whereby gradient-expressions are not a direct part of the solution
vectorw but serve as a regularizer on the solution. In the discrete case, such constraints
are not pointwise anymore due to the finite difference discretizations of the derivatives
while the solution vector only contains the unknowns of the current point. Without all
unknowns being part of the solution vector w, we cannot directly formulate a motion
tensor notation for this constraint and must resort to the incremental formulation.

Incremental Formulation

In the incremental formulation wk+1 =wk +dwk and bk+1 = bk +dbk , we can get rid
of the gradients of the sought functions by considering different time steps for the
flow w and the illumination coefficients b. That means that we consider the flow w at
the current time step k +1 (via wk+1 =wk +dwk ) while we consider the illumination
coefficients at the old time step k (using only bk instead of bk+1 = bk +dbk ). This way,
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the incremental version of the constraint reads

DGCA(dwk
,dbk

) =
∣
∣
∣∇I2+∇I2,xduk +∇I2,y d vk −∇Φ(bk

, I1)

∣
∣
∣

2
(7.15)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣


















I2,x + I2,xxduk + I2,x y d vk −
NcIll∑

j=1
bk

j ,x
·φ j (I1) . . .

. . . −
(

φ̄′(I1)+
NcIll∑

j=1
bk

j
·φ′

j
(I1)

)

· I1,x

I2,y + I2,y xduk + I2,y y d vk −
NcIll∑

j=1
bk

j ,y
·φ j (I1) . . .

. . . −
(

φ̄′(I1)+
NcIll∑

j=1
bk

j
·φ′

j
(I1)

)

· I1,y


















∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

.

Within this formulation, all the parts that affect the illumination coefficients are ab-
sorbed by those weights of the constraint vectors pGCA,ill,x and pGCA,ill,y that corre-
spond to the temporal (and thus constant) part of the solution vector dwuni. Due to the
application of the chain rule, these weights become even more complicated. We hence
define the abbreviations

I t̃ ,x = I2,x −
NcIll∑

j=1

bk
j ,x ·φ j (I1)−

(

φ̄′
(I1)+

NcIll∑

j=1

bk
j ·φ

′
j (I1)

)

· I1,x (7.16)

and

I t̃ ,y = I2,y −
NcIll∑

j=1

bk
j ,y ·φ j (I1)−

(

φ̄′
(I1)+

NcIll∑

j=1

bk
j ·φ

′
j (I1)

)

· I1,y , (7.17)

such that the constraint vectors are given by

pGCA,ill,x =
(

I2,xx , I2,x y ,0, . . . ,0, I t̃ ,x

)⊤
, (7.18)

pGCA,ill,y =
(

I2,y x , I2,y y ,0, . . . ,0, I t̃ ,y

)⊤
, (7.19)

where the zero-weights at the positions of the basis functions indicate our choice to
not consider the illumination coefficients at the latest time step.

The final motion tensor for the incremental GCA constraint with illumination compen-
sation hence reads

JGCA,ill = pGCA,ill,xp
⊤
GCA,ill,x+pGCA,ill,yp

⊤
GCA,ill,y (7.20)

=













I2
2,xx I2,xx I2,x y 0 . . . 0 I2,xx I t̃ ,x

I2,x y I2,xx I2
2,x y 0 . . . 0 I2,x y I t̃ ,x

0 0 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0

I t̃ ,x I2,xx I t̃ ,x I2,x y 0 . . . 0 I2
t̃ ,x
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+














I2
2,y x I2,y x I2,y y 0 . . . 0 I2,y x I t̃ ,y

I2,y y I2,y x I2
2,y y 0 . . . 0 I2,y y I t̃ ,y

0 0 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0

I t̃ ,y I2,y x I t̃ ,y I2,y y 0 . . . 0 I2
t̃ ,y














=

















∑

l∈{x,y}

I2
2,l x

∑

l∈{x,y}

I2,l x I2,l y 0 . . . 0
∑

l∈{x,y}

I2,l x I t̃ ,l

∑

l∈{x,y}

I2,l y I2,l x
∑

l∈{x,y}

I2
2,l y

0 . . . 0
∑

l∈{x,y}

I2,l y I t̃ ,l

0 0 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0
∑

l∈{x,y}

I t̃ ,l I2,l x
∑

l∈{x,y}

I t̃ ,l I2,l y 0 . . . 0
∑

l∈{x,y}

I2
t̃ ,l

















.

7.3.6 Further Motion Tensors

The work of Papenberg et al. [103] provides an overview of further data constancy
assumptions that are similar in spirit to the ones that we have seen so far. All of them
can similarly be formulated in terms of motion tensors both with and without the
incremental formulation. Please note that such tensors can encode arbitrary numbers
of constraints per pixel: While the BCA provides one constraint per pixel and the
GCA provides two constraints per pixel – one on the x-derivative and one on the
y-derivative of the image –, higher order constancy assumptions (like the Hessian
constancy assumption from [103]) can even provide more constraints whereby the
corresponding individual tensors are summed up to form the final motion tensor.

7.4 Similarity Tensors

Another instance of linear tensors are similarity tensors. They allow for a direct
integration of candidate solutions or for an information flow between different solution
candidates. They can implement a variety of similarity constraints such as similarities to
feature matches (see Chapter 3 and Chapter 6), similarities between auxiliary solutions
in alternating optimizations [126] or between jointly estimated solution candidates (see
Chapter 4), or (higher-order) similarities between solutions at subsequent times t [148].
While the former can be considered as special data terms with candidate solutions
as given data, the latter two are considered as coupling terms that couple different
unknowns and will be presented later.
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7.4.1 Candidate Similarity Tensor

A similarity tensor defines a constraint that couples the final solution w= (u, v,1)⊤ to
an already given candidate solution wP = (uP, vP,1)⊤. It is derived from the similarity
assumption [27] which reads

Dsim(w) = |w−wP|2 = (u −uP)
2+ (v − vP)

2
. (7.21)

Since this term involves two quadratic expressions, we need two constraint vectors
that constrain the flow vector w= (u, v,1)⊤. The constraint can be rewritten in terms
of such vectors as

Dsim(w) = (u −uP)
2+ (v − vP)

2

=
(

p⊤
sim,uw

)2
+

(

p⊤
sim,vw

)2
, (7.22)

where the constraint vectors are given by

psim,u = (1,0,−uP)
⊤

, (7.23)

psim,v = (0,1,−vP)
⊤

. (7.24)

Using these constraint vectors, the similarity tensor Jsim is then given by

Jsim = Jsim,u+ Jsim,v

= psim,up
⊤
sim,u+psim,vp

⊤
sim,v

=





1 0 −uP

0 0 0

−uP 0 u2
P



+





0 0 0

0 1 −vP
0 −vP v2

P





=





1 0 −uP

0 1 −vP
−uP −vP u2

P+ v2
P



 . (7.25)

Incremental Formulation

Within the incremental formulation wk+1 =wk +dwk , the corresponding assumption
reads

Dsim(dwk
) = (uk +duk −uP)

2+ (vk +d vk − vP)
2

, (7.26)



180 Chapter 7 • Tensors for Point Constraints

and thus the constraint vectors are given by psim,u = (1,0,uk − uP)⊤ and

psim,v = (0,1, vk − vP)⊤. The incremental similarity tensor hence reads

J k
sim = J k

sim,u + J k
sim,v

= pk
sim,up

k
sim,u

⊤+pk
sim,vp

k
sim,v

⊤

=





1 0 uk −uP

0 0 0

uk −uP 0 (uk −uP)2



+





0 0 0

0 1 vk − vP
0 vk − vP (vk − vP)2





=





1 0 uk −uP

0 1 vk − vP
uk −uP vk − vP (uk −uP)2+ (vk − vP)2



 . (7.27)

7.4.2 Directional Similarity Tensor

In this thesis, seeking a 1:1 correspondence between a prior wP and the final flow w

was the goal in Chapter 3 and Chapter 6. In some cases which are not present in this
thesis, however, it may be helpful to only enforce a correspondence w.r.t. direction but
not w.r.t. velocity. Inspired by our paper [88] that proposes a directional coupling term,
we will, hence, also propose two variants of a directional similarity term and derive the
corresponding tensor notations.

In general, a directional similarity can be achieved by minimizing a term that involves
the scalar product of a normalized prior vector and a normalized version of the estimated
w. This comes down to minimizing a term that contains the cosine of the angle between
both vectors.

Orientation-Variant Directional Similarity. A first variant of such a directional
similarity term that respects the orientations of the prior wP and w directly involves
the cosine cos(∠wP,w). Using the auxiliary vector s1 = wP

|wP| as the normalized prior, it is
given by

DsimDir1(w) =
(

1−cos(∠wP,w)
)2 =

(

1−s⊤1
w

|w|

)2

, (7.28)

which respects the orientations of all involved vectors and evaluates to a range between
0 (if both wP and w have the same direction) and 4 (if both vectors have opposite
directions).

Orientation-Invariant Directional Similarity. For the case that the orientation
does not matter, we can deduce a second variant of a directional similarity term. It is
possible to resort to the sine of the corresponding angle and penalize

(

sin(∠wP,w)
)2

instead, which evaluates to 0 if both vectors are parallel and to 1 if they are orthogonal.
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However, since we eventually want to obtain a tensor notation for such a constraint,
we need a formulation in terms of a scalar product of the flow w. In contrast to the
cosine-function, the sine-function does not have a direct formulation in terms of a
scalar product of the normalized vectors that span the angle. We hence seek for an
equivalent constraint that involves a cosine-expression that can be expressed in terms
of a scalar product of w.

By considering the relation sin(α) = cos(90
◦−α) =−cos(90

◦+α) , we see that (sin(α))2 =
(cos(α±90

◦))
2 holds. It is hence possible to replace the sine-expression involving wP

and w by a cosine-expression of an auxiliary vector s2 = wP
|wP|

⊥ (that is orthogonal to
wP) and w. Hence, the orientation-invariant constraint reads

DsimDir2(w) =
(

sin(∠wP,w)
)2

=
(

cos(∠wP,w±90
◦
)
)2

=
(

cos(∠s2,w)
)2

=
(

s⊤2
w

|w|

)2

, (7.29)

which evaluates to a range between 0 (if wP and w are parallel) and 1 (if both are
orthogonal).

Motion Tensor Notation. Since both versions are not linear (due to the vector nor-
malizations), we will directly consider the incremental formulations.

Incremental Formulation

In the incremental formulation, we can resort to the flow at an old time step in the vector
normalization which comes down to a lagged nonlinearity strategy for this constraint.
Please note that we also introduce a small constant ǫvecNorm to avoid divisions by zero
(similar to those in Chapter 2, Sect. 2.8.1). Hence, within the incremental formulation
wk+1 =wk +dwk , the corresponding assumptions read

DsimDir1(dwk
) =

(

1−
w⊤

P

|wP|
wk+1

|wk |

)2

(7.30)

=
(

1−
w⊤

P

|wP|
wk +dwk

|wk |

)2

≈









1−
1

|wP||wk |+ǫvecNorm
︸ ︷︷ ︸

=:θproj1

w⊤
P (wk +dwk

)









2
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=
(

1−θproj1w
⊤
Pw

k −θproj1w
⊤
P dw

k
)2

=
(

1−θproj1(uP ·uk + vP · vk
)−θproj1(uP ·duk + vP ·d vk

)

)2

and

DsimDir2(dwk
) =

(

s⊤
wk+1

|wk |

)2

(7.31)

=
(

s⊤
wk +dwk

|wk |

)2

≈









1

|wk |+ǫvecNorm
︸ ︷︷ ︸

=:θproj2

s⊤(wk +dwk
)









2

=
(

θproj2s
⊤wk +θproj2s

⊤dwk
)2

=
(

θproj2(s1 ·uk + s2 · vk
)+θproj2(s1 ·duk + s2 ·d vk

)

)2
,

such that the corresponding constraint vectors are given as

psimDir1 = (−θproj1uP,−θproj1vP,1−θproj1(uP ·uk + vP · vk
))
⊤ (7.32)

and

psimDir2 = (θproj2s1,θproj2s2,θproj2(s1 ·uk + s2 · vk
))
⊤

. (7.33)

The incremental directional candidate similarity tensors hence read

J k
simDir1 = psimDir1p

⊤
simDir1 (7.34)

=





(θproj1uP)2 (θproj1)2uP · vP −θproj1uP ·psimDir1,3

(θproj1)2uP · vP (θproj1vP)2 −θproj1vP ·psimDir1,3

−θproj1uP ·psimDir1,3 −θproj1vP ·psimDir1,3 (psimDir1,3)2





and

J k
simDir2 = psimDir2p

⊤
simDir2 (7.35)

=





(θproj2s1)2 (θproj2)2s1 · s2 θproj2s1 ·psimDir2,3

(θproj2)2s1 · s2 (θproj2s2)2 θproj2s2 ·psimDir2,3

θproj2s1 ·psimDir2,3 θproj2s2 ·psimDir2,3 (psimDir2,3)2



 .
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7.5 Coupling Tensors

Another concept that can be formulated in terms of point constraints are pointwise
coupling terms. They share similarities in spirit to the previously presented similarity
assumptions. Now, we also formulate some kind of similarity, but in contrast to the
previous similarity assumptions the similarity now is not formulated between an
estimated function and a given solution but between two functions that are estimated
simultaneously. In our thesis, such a coupling term is used in Chapter 4 to couple
competing flow candidates with a final solution in a joint estimation where all use the
same data. In a different context, coupling terms have been proposed by Volz et al.
[148] in order to regularize the estimation in trajectorial direction by coupling solutions
for data from subsequent time steps. For the definition of the coupling terms and the
derivation of the corresponding coupling tensors, we will now consider flow vectors
w= (u1, v1,u2, v2, ...,1)⊤ that contain multiple related displacement vectors (ui , vi )⊤.

7.5.1 First-Order Coupling Tensor

A first-order coupling intends two displacement vectors to be equal. A direct manifes-
tation of it has been introduced in terms of the coupling term in Chapter 4 (Sect. 4.5.2).
Moreover, it has found application as a first-order trajectorial regularization term in
[148]. W.l.o.g. we assume to have w= (u1, v1,u2, v2,1)⊤ such that the corresponding
coupling assumption is given by

Dcpl,1st(w) = |w2−w1|2 = (u2−u1)
2+ (v2− v1)

2
, (7.36)

which can be interpreted as a first-order derivative in direction of the unknowns (e.g.
the direction of a trajectory) with the stencil (−1,1).

Since this term involves two quadratic expressions, we need two constraint vectors that
constrain the flow vectorw. The constraint can be rewritten in terms of such vectors as

Dcpl,1st(w) =
(

p⊤
cpl,1st,uw

)2
+

(

p⊤
cpl,1st,vw

)2
, (7.37)

where the constraint vectors are given by

pcpl,1st,u = (−1,0,1,0,0)
⊤

, (7.38)

pcpl,1st,v = (0,−1,0,1,0)
⊤

. (7.39)

Using these constraint vectors, the final first-order coupling tensor is then given by

Jcpl,1st = Jcpl,1st,u+ Jcpl,1st,v

= pcpl,1st,up
⊤
cpl,1st,u+pcpl,1st,vp

⊤
cpl,1st,v
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=










1 0 −1 0 0

0 0 0 0 0

−1 0 1 0 0

0 0 0 0 0

0 0 0 0 0










+










0 0 0 0 0

0 1 0 −1 0

0 0 0 0 0

0 −1 0 1 0

0 0 0 0 0










=










1 0 −1 0 0

0 1 0 −1 0

−1 0 1 0 0

0 −1 0 1 0

0 0 0 0 0










. (7.40)

Compared to the corresponding similarity constraint, we see the similar structure in
the individual constraints whereby −uP and −vP are replaced by −1.

Incremental Formulation

Within the incremental formulation wk+1 =wk +dwk , the corresponding assumption
reads

Dcpl,1st(dw
k

) = (uk
2 +duk

2 − (uk
1 +duk

1 ))
2+ (vk

2 +d vk
2 − (vk

1 +d vk
1 ))

2
, (7.41)

and thus the constraint vectors are given by pcpl,1st,u = (−1,0,1,0,uk
2 − uk

1 )⊤ and

pcpl,1st,v = (0,−1,0,1, vk
2 − vk

1 )⊤. For the sake of readability, let us define r k
u = uk

2 −uk
1

and r k
v = vk

2 − vk
1 as the accumulated remainders of the constraint from the previous

scale k . The incremental version of the first-order coupling tensor is then given by

J k
cpl,1st = J k

cpl,1st,u+ J k
cpl,1st,v

= pk
cpl,1st,up

k
cpl,1st,u

⊤+pk
cpl,1st,vp

k
cpl,1st,v

⊤

=










1 0 −1 0 −r k
u

0 0 0 0 0

−1 0 1 0 r k
u

0 0 0 0 0

−r k
u 0 r k

u 0 (r k
u )2










+










0 0 0 0 0

0 1 0 −1 −r k
v

0 0 0 0 0

0 −1 0 1 r k
v

0 −r k
v 0 r k

v (r k
v )2










=










1 0 −1 0 −r k
u

0 1 0 −1 −r k
v

−1 0 1 0 r k
u

0 −1 0 1 r k
v

−r k
u −r k

v r k
u r k

v (r k
u )2+ (r k

v )2










. (7.42)
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7.5.2 Second-Order Coupling Tensor

A second-order coupling intents two changes between pairs of displacement vectors to
be equal, which has been particularly useful in the context of trajectorial regularization
[148]. Here, we need at least three displacement vectors i = 1, ...,3 and w.l.o.g. we
assume to have w= (u1, v1,u2, v2,u3, v3,1)⊤. The corresponding coupling assumption
is then given by

Dcpl,2nd(w) = (u3−2u2+u1)
2+ (v3−2v2+ v1)

2
, (7.43)

which can be interpreted as a second-order derivative in direction of the unknowns
(e.g. the direction of a trajectory) with the stencil (1,−2,1).

Since again this term involves two quadratic expressions, we need two constraint
vectors that constrain the flow vector w. The constraint can be rewritten in terms of
such vectors as

Dcpl,2nd(w) =
(

p⊤
cpl,2nd,uw

)2
+

(

p⊤
cpl,2nd,vw

)2
, (7.44)

where the constraint vectors are given by

pcpl,2nd,u = (1,0,−2,0,1,0,0)
⊤

, (7.45)

pcpl,2nd,v = (0,1,0,−2,0,1,0)
⊤

. (7.46)

Using these constraint vectors, the final second-order coupling tensor is then given by

Jcpl,2nd = Jcpl,2nd,u+ Jcpl,2nd,v

= pcpl,2nd,up
⊤
cpl,2nd,u+pcpl,2nd,vp

⊤
cpl,2nd,v

=














1 0 −2 0 1 0 0

0 0 0 0 0 0 0

−2 0 4 0 −2 0 0

0 0 0 0 0 0 0

1 0 −2 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0














+














0 0 0 0 0 0 0

0 1 0 −2 0 1 0

0 0 0 0 0 0 0

0 −2 0 4 0 −2 0

0 0 0 0 0 0 0

0 1 0 −2 0 1 0

0 0 0 0 0 0 0














=














1 0 −2 0 1 0 0

0 1 0 −2 0 1 0

−2 0 4 0 −2 0 0

0 −2 0 4 0 −2 0

1 0 −2 0 1 0 0

0 1 0 −2 0 1 0

0 0 0 0 0 0 0














. (7.47)
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Incremental Formulation

Within the incremental formulation wk+1 =wk +dwk , the corresponding assumption
reads

Dcpl,2nd(dwk
) = (uk

3 +duk
3 −2(uk

2 +duk
2 )+uk

1 +duk
2 )

2

+(vk
3 +d vk

3 −2(vk
2 +d vk

2 )+ vk
1 +d vk

1 )
2

, (7.48)

and thus the constraint vectors are given by pcpl,2nd,u = (1,0,−2,0,1,0,uk
3 −2uk

2 +uk
1 )⊤

and pcpl,2nd,v = (0,1,0,−2,0,1, vk
3 −2vk

2 + vk
1 )⊤. Again, for the sake of readability, let

us define r k
u = uk

3 −2uk
2 +uk

1 and r k
v = vk

3 −2vk
2 + vk

1 as the accumulated remainders of
the constraint from the previous scale k . Using them, the incremental version of the
second-order coupling tensor is then given by

J k
cpl,2nd = J k

cpl,2nd,u+ J k
cpl,2nd,v

= pk
cpl,2nd,up

k
cpl,2nd,u

⊤+pk
cpl,2nd,vp

k
cpl,2nd,v

⊤

=














1 0 −2 0 1 0 r k
u

0 0 0 0 0 0 0

−2 0 4 0 −2 0 −2r k
u

0 0 0 0 0 0 0

1 0 −2 0 1 0 r k
u

0 0 0 0 0 0 0

r k
u 0 −2r k

u 0 r k
u 0 (r k

u )2














+














0 0 0 0 0 0 0

0 1 0 −2 0 1 r k
v

0 0 0 0 0 0 0

0 −2 0 4 0 −2 −2r k
v

0 0 0 0 0 0 0

0 1 0 −2 0 1 r k
v

0 r k
v 0 −2r k

v 0 r k
v (r k

v )2














=














1 0 −2 0 1 0 r k
u

0 1 0 −2 0 1 r k
v

−2 0 4 0 −2 0 −2r k
u

0 −2 0 4 0 −2 −2r k
v

1 0 −2 0 1 0 r k
u

0 1 0 −2 0 1 r k
v

r k
u r k

v −2r k
u −2r k

v r k
u r k

v (r k
u )2+ (r k

v )2














. (7.49)
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7.6 Directional Regularization Tensors

The previously introduced coupling tensors are particularly helpful in the estimation
of large displacements when they directly couple competing candidates with a final
solution in a joint estimation, or for a trajectorial regularization if the underlying motion
actually undergoes a trajectorially constant or affine motion. In this context, however,
having such trajectories is not a realistic assumption in many cases and thus, such terms
unnecessarily constrain the velocity of moving objects. A less restrictive soft constraint
has been proposed in our work [88] which only enforces a consistent direction along the
trajectory. Again, there are two different ways to formulate such a constraint. W.l.o.g.
we assume to have w = (u1, v1,u2, v2,1)⊤, i.e. we consider trajectories involving the
flows w1 and w2.

A constraint that directly involves both vectors is given by

RdirCons1(w) = (1−cos(∠w1,w2
))

2 =
(

1−
w⊤

1

|w1|
w2

|w2|

)2

, (7.50)

which evaluates to a range between 0 (if both w1 and w2 have the same direction) and
4 (if both vectors have opposite directions).

Indirect Variant. Similar to the case of Sect. 7.4.2, there is also a variant that involves
the sine of the corresponding angle between both parts w1 and w2 of the trajectory
[88]. Since in this case, however, there is no pre-defined target direction which serves
as the basis for an orthogonal vector s, we have to design a meaningful one. Since
the focus is on designing a constraint that is based on directions and should not favor
one of the two involved directions, s should be normal and orthogonal to a vector that
shows in the average direction of w1 and w2. By defining n1 = w1

|w1| and n2 = w2

|w2| as the

normalized versions of the involved vectors, we define a prior direction wP = n1+n2

|n1+n2|
and the auxiliary vector s is given by s=w⊥

P . Due to the symmetry of the constraint
among both flows w1 and w2, it actually involves two terms for the regularization of
each of the flows. Instead of each covering the full angle ∠w1,w2

, each term only covers
the angle between the involved flow vector and the prior direction wP. Hence, the
constraint reads

RdirCons2(w) =
(

sin(∠wP,w1
)
)2+

(

sin(∠wP,w2
)
)2

=
(

cos(∠wP,w1
±90

◦
)
)2+

(

cos(∠wP,w2
∓90

◦
)
)2

=
(

cos(∠s,w1
)
)2+

(

cos(∠s,w2
)
)2

=
(

s⊤
w1

|w1|

)2

+
(

s⊤
w2

|w2|

)2

, (7.51)

which evaluates to a range between 0 (if w1 and w2 have equal direction) and 2 (if they
have opposite directions).
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7.6.1 Relation between Both Variants

By construction of wP as the normalized mean vector of w1 and w2, the relation
∠wP,w1

=−∠wP,w2
= 1

2∠w1,w2
holds. We can thus reformulate RdirCons2(w) as

RdirCons2(w) =
(

sin(∠wP,w1
)
)2+

(

sin(∠wP,w2
)
)2

=
(

sin(
1

2
∠w1,w2

)

)2

+
(

−sin(
1

2
∠w1,w2

)

)2

= 2

(

sin(
1

2
∠w1,w2

)

)2

. (7.52)

Since this formulation now contains a fraction of the original angle ∠w1,w2
between

the flows w1 and w2 as in the directional constraint RdirCons1(w), we can elaborate the
relation between both constraints by applying trigonometric addition theorems:

RdirCons2(w) = 2

(

sin(
1

2
∠w1,w2

)

)2

= 2

√

1−cos(∠w1,w2
)

2

2

= 2 ·
1−cos(∠w1,w2

)

2

= 1−cos(∠w1,w2
)

=
√

RdirCons1(w) . (7.53)

This shows that both variants are equally expressive w.r.t. the orientation between the
involved flows. This is not surprising, since the constraint RdirCons2 applies the sine-
function on half-angles and thus maps the range of angles from the interval [0,360

◦] to
[0,180◦], such that the sine-function only evaluates to zero if ∠w1,w2

= 0
◦ = 360

◦ i.e. if
w1 and w2 have the same direction and the same orientation. In contrast to that, the
comparable directional candidate similarity constraint DsimDir2 from Sect. 7.4.2 operates
on full angles and is thus orientation-invariant.

7.6.2 Tensors

Since both variants are highly non-linear, we will directly consider the incremental
formulations, where we use appropriate time steps for the involved unknowns to make
the problem linearly tractable (similar to the case in Sect. 7.4.2). Please note that we
also introduce a small constant ǫvecNorm to avoid divisions by zero (similar to those in
Chapter 2, Sect. 2.8.1). Hence, within the incremental formulation wk+1 =wk +dwk ,



7.6 • Directional Regularization Tensors 189

the corresponding assumptions read

RdirCons1(dwk
) =

(

1−
1

2

(

wk⊤
2

|wk
2 |
wk+1

1

|wk
1 |

+
wk⊤

1

|wk
1 |
wk+1

2

|wk
2 |

))2

(7.54)

≈










1−
1

2(|wk
1 ||w

k
2 |+ǫvecNorm)

︸ ︷︷ ︸

=:θproj1

(

wk⊤
2 wk+1

1 +wk⊤
1 wk+1

2

)










2

=
(

1−θproj1

(

wk⊤
2 wk+1

1 +wk⊤
1 wk+1

2

))2

=
(

1−θproj1

(

wk⊤
2

(

wk
1 +dwk

1

)

+wk⊤
1

(

wk
2 +dwk

2

)))2

= (1−θproj1(2 · (uk
2 ·uk

1 + vk
2 · vk

1 )

+uk
2 ·duk

1 + vk
2 ·d vk

1 +uk
1 ·duk

2 + vk
1 ·d vk

2 ))
2

and

RdirCons2(dwk
) =

(

sk⊤w
k+1
1

|wk
1 |

)2

+
(

sk⊤w
k+1
2

|wk
2 |

)2

(7.55)

=










1

|wk
1 |+ǫvecNorm

︸ ︷︷ ︸

=:θproj2,1

sk⊤wk+1
1










2

+










1

|wk
2 |+ǫvecNorm

︸ ︷︷ ︸

=:θproj2,2

sk⊤wk+1
2










2

=
(

θproj2,1s
k⊤

(

wk
1 +dwk

1

))2
+

(

θproj2,2s
k⊤

(

wk
2 +dwk

2

))2

=
(

θproj2,1(s1 ·uk
1 + s2 · vk

1 )+θproj2,1(s1 ·duk
1 + s2 ·d vk

1 )

)2

+
(

θproj2,2(s1 ·uk
2 + s2 · vk

2 )+θproj2,2(s1 ·duk
2 + s2 ·d vk

2 )

)2
,

such that the corresponding constraint vectors are given as

pdirCons1 =
(

−θproj1uk
2 ,−θproj1vk

2 ,−θproj1uk
1 ,−θproj1vk

1 , pdirCons1,3

)⊤
(7.56)

with

pdirCons1,3 = 1−2θproj1 · (uk
2 ·uk

1 + vk
2 · vk

1 ) (7.57)

and

pdirCons21 =
(

θproj2,1s1,θproj2,1s2,0,0, pdirCons21,3

)⊤
, (7.58)

pdirCons22 =
(

0,0,θproj2,2s1,θproj2,2s2, pdirCons22,3

)⊤ (7.59)
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with

pdirCons21,3 = θproj2,1(s1 ·uk
1 + s2 · vk

1 ) , (7.60)

pdirCons22,3 = θproj2,2(s1 ·uk
2 + s2 · vk

2 ) . (7.61)

The incremental directional regularization tensors hence read

JdirCons1 = pdirCons1p
⊤
dirCons1 (7.62)

=
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1 ξvk
2

θ2
proj1uk

1uk
2 θ2

proj1uk
1 vk

2 (θproj1uk
1 )2 θ2

proj1uk
1 vk

1 ξuk
1

θ2
proj1vk

1 uk
2 θ2

proj1vk
1 vk

2 θ2
proj1vk

1 uk
1 (θproj1vk

1 )2 ξvk
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with

ξ := −θproj1 ·pdirCons1,3 (7.63)

and

JdirCons2 = pdirCons21p
⊤
dirCons21+pdirCons22p

⊤
dirCons22 (7.64)

=
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with

ξ1 := θproj2,1 ·pdirCons21,3 , (7.65)

ξ2 := θproj2,2 ·pdirCons22,3 , (7.66)

rdirCons2 := p2
dirCons21,3+p2

dirCons22,3 . (7.67)
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7.7 Summary

In this chapter, we derived motion tensors for all data constraints that have been
introduced in this thesis. This shows that it is straightforward to implement these
constraints within a generalized variational framework. Moreover, we embedded recent
concepts from the literature like trajectorial regularization or directional trajectorial
regularization into this notational framework. In this context, we also investigated
different variants of the directional regularization constraints and provided a detailed
background on their derivation and properties. The same holds for the novel directional
similarity constraints whose development was inspired by directional regularization
constraints, since such similarity and coupling constraints are close in spirit. In both
cases, we furthermore elaborated to which degree these variants respect the orientations
between the involved vectors.

Summarizing, we have seen that the motion tensor notation [28, 30, 47] can be extended
to a larger family of tensor notations that can express a wide family of point constraints.





Chapter

8

Summary & Outlook

8.1 Summary

In this thesis, we focused on improving variational optical flow methods regarding
their handling of relative large displacements and illumination changes. We started
by devoting separate chapters to each of these data challenges and ended up in a
chapter about handling large displacements in the context of illumination changes.
Since handling these data challenges required additional or modified data terms, we
embedded each of these data terms within a common notational framework based on
the motion tensor notation which allows for an easy integration into variational optical
flow frameworks.

8.1.1 Large Displacements

We started with a deep analysis what large displacements are and why they are so
difficult to be handled. This analysis allowed us to further sub-categorize them into
moderately large displacements and arbitrarily large displacements. For each of these
categories, we demonstrated how to adapt variational methods to achieve a robust
handling that does not suffer from the negative impact of unregularized false matches.

Arbitrarily Large Displacements

In order to estimate arbitrarily large displacements (as a sub-category of relative large
displacements), variational methods need guidance by external feature matches. Feature
matching does not comprise restrictions due to downsampled image data or regulariza-
tion steps in the estimation, since it solely focuses on the uniqueness of image features
of an object. This allows to estimate an unrestricted displacement size, which, however,
comes at the cost of (arbitrarily large) false positive matches due to lacking uniqueness
at some locations. Thus, we developed a strategy of determining promising locations for
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the integration of feature matches into variational optical flow methods. This strategy
does not only respect the structuredness of the image data with the goal to assemble a
descriptive and unique feature but also considers deficiencies of the baseline flow with
the goal to not deteriorate regions with an already accurate flow. Restricting both the
computation and the adaptive integration of such matches to these locations improved
the estimation quality while decreasing the workload of the matching step at the same
time. This procedure did not only show improvements using conventional features
such as Histogram of Oriented Gradients (HOG) or Geometric Blur (GB) which have
originally been introduced in contexts other than optical flow but also on the more
modern Deep Features that are dedicated to assist the estimation of optical flow and
that were published after our paper in [129].

Moderately Large Displacements

We dedicate the (sub-)category of moderately large displacements to those relative large
displacements that can actually be handled by variational methods with appropriate
modifications. We analyzed that the reason why relative large displacements can
not be handled with conventional variational optical flow methods can not only be
found in a lack of descriptive data on coarse levels within the coarse-to-fine warping
scheme. Additionally, there is a local balancing problem between the data term and the
smoothness term at these coarse levels where the small objects are indistinguishable
from noise. We resolved this problem using an extended variational model that couples
several instances of a baseline variational method, each with a different balance between
both terms. This allowed us to estimate multiple flow candidates among all levels of
the coarse-to-fine scheme from which the correct displacement is drawn at a level
where the data is descriptive enough, i.e. the respective object is unique enough and
not mixed up with noise, to reliably conduct such a selection. This procedure allowed
to handle many of the large displacement cases from the literature without omitting
regularization which is a good way to prevent false matches while at the same time
improving results on benchmark data.

8.1.2 Illumination Changes

In the context of illumination changes, we refrained from making the estimation of the
optical flow depending on illumination-invariant image features. Invariances always
come along with a loss of valuable information. An alternative to the usage of invari-
ances is the estimation of the illumination changes along with the optical flow. This
allows to keep the brightness constancy assumption (BCA), which uses the complete
spectrum of the available information, valid. To this end, on the one hand, we developed
an offline learning strategy to find a suitable parametrization of the brightness transfer
functions within the data which can appropriately describe the types of illumination
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changes that are present in a data set in terms of basis functions. On the other hand, we
extended our variational method such that it can make use of such a parametrization
and is able to determine the magnitudes of each type of illumination changes online in
terms of illumination coefficients that correspond to the basis functions. This method
did not only show improvements on benchmark data, it is also an essential part when
estimating relative large displacements in the context of illumination changes in a
regularized way.

8.1.3 Large Displacements in the Context of Illumination

Changes

It is quite likely that large displacements and illumination changes come together within
an image sequence, since both can be consequences of temporal undersampling of the
scene. A straightforward, direct combination of the joint estimation of optical flow and
illumination changes with a de-regularization strategy, however, is not a good solution
in this case, since the de-regularization would break the important balance between the
regularizers for the optical flow and the illumination coefficients which is necessary to
distinguish motion-induced from illumination-induced brightness variations. In this
difficult context, it has proven valuable to combine the main concepts from the previous
methods within a sequential pipeline: the estimation of illumination changes (using a
pre-computed baseline flow) to account for illumination changes without losing image
information, the de-regularization strategy on top of illumination-compensated data
to obtain reliable flow candidates for different types of motion patterns and a careful
selection strategy to make the integration of these candidates as robust as possible.
This strategy has shown consistent improvements on all benchmarks and lead to one
of the best variational methods for large displacement optical flow that does not make
use of external, non-variational algorithms to obtain flow candidates.

8.2 Future Work

Every step forward in research answers one question but gives birth to several more.
We have pushed the limits of variational methods w.r.t. both handling illumination
changes and estimating relative large displacements. Recent literature on optical flow
has moved away from purely relying on variational methods in order to estimate
complex motion patterns – this, however, before having a deep understanding about
the potential that such methods have. Nonetheless, variational methods still fulfill an
important role as a refinement step in pipeline methods [111] where particularly the
estimation of illumination changes is still successfully applied [86, 84, 85, 88]. While,
hence, improvements in this aspect could lead to further improvements in state-of-the-
art methods, there are also other steps in such pipelines, like e.g. the matching step,
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that leave room for improvements. It, hence, also remains an interesting question if
flow candidates from variational methods can improve results at this matching step
(e.g. in the presence of repetitive patterns where regularization is a crucial concept).

8.2.1 Large Displacements

Relative large displacements remain a tough problem in general. Some ideas for their
improved handling apply tomethods for handling relative large displacements in general
while others affect methods that are particularly dedicated to the handling of one of
the sub-categories arbitrarily large displacements or moderately large displacements.

Relative Large Displacements in General

While handling occlusions is always an important topic as recognized by many works
in the literature where different more or less complex methods have been proposed,
it is particularly important in the context of relative large displacements. Any object
whose relative motion exceeds its size, leads to an occlusion-/disocclusion effect that
is maximal w.r.t. that object. Since there is no overlap between the old and the new
position relative to its background, an area of the size of the fast-moving object is
occluded in one frame and disoccluded in the other. Moreover, occlusions lead to high
data energies due to missing visual correspondences. Since the level of the data energy
is the basis for many methods from this thesis, it could help a lot to know whether a
high data energy is the result of a mismatched object or the result of an occlusion.

Arbitrarily Large Displacements

Since our strategy to handle arbitrarily large displacement can be considered as kind
of an add-on that matches a sparse set of objects, it could be interesting to not only
select locations based on high data energies and do the matching in the image space,
but to also do the feature matching on sparser image data that might be derived from
or weighted by the data energy, since in such a representation mismatched objects are
highly amplified in terms of high energies.

Such an amplification of certain positions in the image data could also be transferred
to the coarse-to-fine warping scheme. As soon as some high data energy is detected
when going up to fine levels, data could be amplified according to the data energy,
downsampled again and the scheme turns to coarser levels again in order to find better
estimates at the mismatched parts of the image sequence. This could be considered
as some kind of W-cycle (known from numerical multigrid methods [28]) within the
coarse-to-fine warping scheme.
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Moderately Large Displacements

In the context of a de-regularization scheme, it could also be possible to refrain from
the estimation of multiple candidates using a conventional coarse-to-fine scheme but
to replace the global smoothness weights by local counterparts α(x) and to also use
this kind of a W-cycle as described before. In this context, a detected mismatch could
(additionally) lead to an adaptation of the local smoothness weight (potentially including
some neighborhood around the mismatched object). This might lead to multiple flow
candidates on particular coarse-to-fine levels which need an appropriate fusion scheme
at this part of the optimization.

Since relative large displacements introduce a high uncertainty w.r.t. the velocity of
objects (e.g. due to missing regularity in general or due to deceleration effects by air
resistance as a physical consequence of fast motions), it might be interesting to transfer
the estimation of large displacements to the multi-frame domain and measure the
consistency of the estimations with directional priors as introduced in [88]. In such a
multi-instance model, it could be interesting to compare the directions within potential
trajectories for each level of regularization and to additionally consider directional
consistency of a flow candidate in the fusion term.

8.2.2 Illumination Changes

Interesting questions arise when estimating illumination changes for color images. On
the one hand, this concerns the joint or separate handling of the different channels
where we already presented some aspects w.r.t. the learning step, the amount of channels
of the estimated illumination coefficients as well as the robustification of the data term
and the smoothness term. These aspects require a deeper analysis using more data,
maybe considering camera information or the recording environments in general.

Moreover, it is also the representation of color information that raises interesting
questions. There are several different color spaces besides the straightforward RGB
representation that we have used so far. Alternative color spaces like e.g. the HSV
color space carry some types of illumination invariances in their channels whereby
the combination of all channels does not discard any image information. It is, hence,
an interesting question how to learn parametrizations based on such alternative color
spaces and which effect the estimation of illumination coefficients for each of the
very different color channels has. In many contexts, it might e.g. make sense to only
compensate the value channel (and maybe the saturation channel) within the HSV
representation. The far-reaching illumination-invariance of the hue channel could
help reducing the computational effort within the estimation without losing too many
capabilities w.r.t. illumination compensation.
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8.2.3 Large Displacements in the Context of Illumination

Changes

It is possible to cut-off the pipeline of our last approach after the matching- or the
selection-step resulting in a set of variational flow candidates. These could be the
basis for a sophisticated combination with matches from external algorithms like Deep
Matching [112], Coarse-to-fine PatchMatch [70] or Discrete Flow [93]. Using e.g. our
or another sophisticated fusion scheme, it may be possible to select the best matches
from these algorithms and combine their strengths such as the potential of external
matching steps to estimate arbitrarily large displacements and the inherent sub-pixel
accuracy and the robustness at repetitive patterns of variational methods.
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Appendix

A

Evaluation Details

In this appendix, we provide details on the parameters and the runtimes of the methods
that are presented in this thesis. We will start by stating the runtimes of each of the
methods and afterwards, we provide the crucial parameters for the final settings of
each method for each data set it is applied to.

A.1 Runtimes

In order to compare the runtimes of the methods, we all applied them on the Tennis
sequence (Frame 496) of size 530×380. The system uses an Intel Core i7-6950X CPU
@ 3.00GHz, the application is written in C++ using SIMD vectorization and OpenMP
parallelization where possible and it is executed in a virtual machine with a Xubuntu
18.04 OS. For each setting, we conduct a purely sequential run on a single core and a
parallelized run using four cores.

#Cores Version ALD-Flow ContFusion-Flow BTFIllum ICALD-Flow

1
Full Method 00:40 02:31 01:05 03:04
Baseline 00:09 00:06 00:09 00:06

4
Full Method 00:31 01:05 00:31 01:52
Baseline 00:06 00:04 00:06 00:04

A.2 Numerical Parameters

For the different methods, we used the following important numerical parameters. They
influence the runtime of the methods and have thus been also adapted to the complexity
of the respective variational models to achieve reasonable results without the need of
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too much runtime. Please note that we use a cascadic initialization [21] of the SOR
solver whenever we employ second-order regularization.

Parameter ALD-Flow ContFusion-Flow BTFIllum ICALD-Flow

Coarse-to-fine η 0.95 0.95 0.95 0.95

Lag.-NonLin. Iterations 10 3 5 3

SOR ω 1.95 1.85 1.85 1.85

Solver Iterations 5 10 10 10

Here, η is the rescaling factor for the image data within the coarse-to-fine warping
scheme.

A.3 General Model Parameters

A lot of the model parameters are present in all of the presented methods, since they
build upon the same baseline method. There are the following weights in the model:

Name Parameter Introduction Remarks

Weight of the BCA δ Sect. 2.8.4 δ= 1, if not stated explicitly
Weight of the GCA γ Sect. 2.8.4
Smoothness weight α Sect. 2.8.4
Differentiability constant ǫD Sect. 2.6.1
Normalization constant ǫcNorm Sect. 2.8.1
Differentiability constant ǫS1 Sect. 2.8.3
Differentiability constant ǫS2 Sect. 2.8.3

When using the isotropic second-order regularizer from Sect. 2.9 for the KITTI bench-
marks, we set ǫS := ǫS1.

A.4 Parameter Optimization

There are a lot of different ways to find good parameters for optical flow methods.
Besides manual tuning, there are many automatic parameter optimization strategies,
some of them are described and implemented in our work [131]. These include the
Downhill Simplex method (DS) [99], the Covariance Matrix Adaptation Evolution
Strategy (CMAeS) [63] and the Logarithmic Cascadic Sampling method (LC) [39]. In
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general, we follow the methods that have been used when optimizing the parameters
for the paper versions of our methods. Since these have changed over time, we apply
different strategies in different sections. However, when comparing different methods
or different variants of a method on a particular data set within a particular experiment,
we consistently used the same parameter optimization method. As a general rule of
thumb, we used CMAeS if there are more than three parameters to be optimized, since
Downhill Simplex (DS) gets trapped in local minima too easily while the computational
effort of Logarithmic Cascadic Sampling (LC) would be intractable.

A.5 ALD-Flow

Our method ALD-Flow introduces an additional similarity term which is weighted by
the parameter β.

A.5.1 Large Displacement Sequences

For the large displacement sequences, we used anisotropic first-order regularization
and obtained the following parameters:

Setting Optimization γ α β ǫD ǫcNorm ǫS1 ǫS2

Tennis manual 1.5 0.01 140 3 ·10
−5

0.01 0.05 0.05

others manual 5 0.06 140 3 ·10
−5

0.01 0.02 0.02

A.5.2 Major Benchmarks

For the major benchmarks, we consider both the results for the standard variant of
ALD-Flow using HOG- and GB- descriptors as well as the variant using DeepMatches.

HOG- and GB-Features

Using HOG- and GB-Features, we obtained the following parameters:

Setting Optimization γ α β ǫD ǫcNorm ǫS1 ǫS2

Middlebury manual 15 0.08 28 3 ·10
−5

0.1 0.02 0.02

Sintel LC 2.638 0.01 4.028 3 ·10
−5

0.1 0.02 0.02

KITTI ’12 DS 521 0.431 28 3 ·10
−5

0.1 0.5 −
KITTI ’15 DS 628 0.324 28 3 ·10

−5
0.1 0.5 −
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Deep Matches

Using Deep Matches and a common set of thresholds for all benchmarks, we obtained
the following parameters:

Setting Optimization γ α β ǫD ǫcNorm ǫS1 ǫS2

Middlebury CMAeS 1.25 0.0115 1.664 3 ·10
−5

0.1 0.02 0.02

Sintel CMAeS 1.10 0.321 2.68 3 ·10
−5

0.1 0.02 0.02

KITTI ’12 CMAeS 3083 7.32 20.08 3 ·10
−5

0.1 0.5 −
KITTI ’15 CMAeS 908 0.337 51.84 3 ·10

−5
0.1 0.5 −

A.6 ContFusion-Flow

In the experiments, we optimized only the following parameters: the number Ncand of
candidates, the data weights δ and γ and the smoothness weight α1. The remaining
parameters are kept fixed throughout all experiments. They are given by βi =α f =α1,
L = 5, λcand = 1000, λcpl = 1, κs = 0.3, κd = 5, ǫD = 0.01, ǫcNorm = 0.01.

A.6.1 Large Displacement Sequences

For the large displacement sequences, we used anisotropic first-order regularization
and intentionally chose the data term weights in a way such that δ+γ= 1 holds in order
to have a convex combination of both data constraints. This made it easy to evaluate
the influence of each data constraint on the ability to estimate large displacements. We
finally obtained the following parameters:

Setting Optimization Ncand δ γ α1 ǫS1 ǫS2

All manual 7 0.5 0.5 2 0.02 0.03

A.6.2 Major Benchmarks

For the major benchmarks, we iterated through different choices of the number of
candidates Ncand and for each choice, we optimized the parameters γ and α1 providing
the following outcome:
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Setting Optimization Ncand δ γ α1 ǫS1 ǫS2

Middlebury DS 2 1 67.1 166 0.02 0.03

Sintel DS 3 1 7.72 24 0.02 0.03

KITTI ’12 DS 5 1 31.54 79.77 0.5 −
KITTI ’15 DS 1 1 112.32 60.26 0.5 −

Optimization of More Parameters

In this setting, we additionally optimized the weight of the candidate estimations λcand

and the weight of the coupling term λcpl. In this context, we consider the best results
from a joint optimization of γ, α1, λcand and λcpl, a separate optimization of λcand

and λcpl using the previously determined values for γ and α1 and the results from
the previous experiment. Since the optimization of four parameters heavily increases
the dimensionality of the optimization, we switched to CMAeS for the parameter
optimization when optimizing all parameters jointly. The best parameters are then
given by:

Setting Optimiz. Ncand δ γ α1 λcand λcpl ǫS1 ǫS2

Middlebury CMAeS 7 1 7.39 16.71 0.858 0.0255 0.02 0.03

Sintel DS 3 1 7.72 24 891 0.523 0.02 0.03

KITTI ’12 CMAeS 5 1 24.9 65.1 0.294 0.280 0.5 −
KITTI ’15 DS 1 1 112.32 60.26 1000 1 0.5 −

A.7 BTFIllum

Our method BTFIllum contains an additional parameter αill that weights the first-
order anisotropic smoothness constraint on the illumination coefficients with fixed
differentiability constants ǫill,S1 = 0.01 and ǫill,S2 = 0.01. Moreover, the other constants
ǫD = 0.01 and ǫcNorm = 0.01 are fixed as well.

A.7.1 Major Benchmarks

For each the major benchmarks, we state the results of the best setting where illumina-
tion compensation is active (for the Sintel benchmark, we choose the setting for the
best result for the complete data set). In these contexts, we obtained the following set
of parameters:
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Setting Optimization γ α αill ǫS1 ǫS2

Middlebury LC 2.08 4.67 1.38 0.02 0.03

Sintel LC 4.13 9.53 24.04 0.02 0.03

KITTI ’12 LC 6.96 5.72 1.60 0.5 −
KITTI ’15 LC 0.162 0.147 0.215 0.5 −

A.8 ICALD-Flow

Our method ICALD-Flow contains an additional parameter β for the similarity term
(similar to ALD-Flow). Similar to ContFusion-Flow, it contains parameters Ncand,BC A

and Ncand,GBC A to determine the numbers of candidates for both the BCA candidate
model and the GBCA candidate model, respectively. For each of these models, there
is also a base smoothness weight αcand. In all settings, the weights αill = 4000 and
αinp = 3000 and the constants ǫD = 0.01 and ǫcNorm = 0.01 are fixed.

A.8.1 Large Displacement Sequences

For the large displacement sequences, we used anisotropic first-order regularization
and obtained the following parameters:

Setting Optimization γ α β αcand Ncand ǫS1 ǫS2

BCA GBCA BCA GBCA

All manual 20 40 900 8 8 8 2 0.02 0.03

A.8.2 Major Benchmarks

For the major benchmarks, we obtained the following set of parameters when using a
first-order regularizer on the candidates (non-socr settings):

Setting Optimiz. γ α β αcand Ncand ǫS1 ǫS2

BCA GBCA BCA GBCA

Middlebury CMAeS 18.28 37.52 900 8 18.86 6 2 0.02 0.03

Sintel CMAeS 17.22 51.35 900 8 19.75 6 2 0.02 0.03

KITTI ’12 CMAeS 42.58 63.72 900 8 15.97 6 2 0.5 −
KITTI ’15 CMAeS 180.91 39.44 900 8 13.48 6 2 0.5 −
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B

Using Color Images in the

Estimation of Illumination

Changes

In this appendix, we provide the results of an exhaustive evaluation on handling color
channels within a joint estimation of optical flow and illumination changes as presented
in Chapter 5. To this end, we explain the design choices that can be made both in the
learning stage (of the basis functions) and in the estimation stage (of the flow and the
illumination coefficients) and provide the results for each combination of choices on
the KITTI 2015 benchmark [92].

B.1 Handling of Color Channels

When colors come into play, there are a lot of decisions to be made how to handle the
different image channels at different stages.

Learning Stage. In the learning stage, we can learn the basis functions on grey value
versions of the images or on the color images where this can be done either jointly or
separately for all channels. If learned separately, there still is the sub-decision to be
made whether the clustering of the BTFs shall be conducted jointly or separately for
the channels. The latter case comes down to treating each of the color channels of the
images as grey value images and having a completely independent learning process for
each channel.

Estimation Stage. In the stage of optical flow estimation, there again is the option
to either use grey value versions of the images or to use the full color spectrum of
the original images. When using color images, there is the option to estimate a joint
set of illumination coefficients for all image channels or to have separate coefficients
for each of the image channels. In the latter case, both the data terms (DT) as well



226 Chapter B • Using Color Images in the Estimation of Illumination Changes

as the smoothness term of the coefficients (ST) offer the options for either a joint
robustification (jt) over all channels or a separate one (sp).

B.2 Results on the KITTI 2015 Benchmark

At hand of the KITTI 2015 benchmark [92], which in contrast to the edition of 2012
makes use of color images, we can show the effects of these decisions on the results.
Tab. 1 provides an overview of the results obtained using all possible combinations of
decisions from both the learning stage as well as the estimation stage. To this end, we
compared the baseline results (both for grey value as well as for color images) to results
from BTFIllum using the normalized affine basis, the basis learned for KITTI 2012 –
as a representative of a basis learned from grey value data – and different variants of
bases learned from the KITTI 2015 color images. We group our conclusions according
to each aspect that is of interest. The overall best results are marked using a bold font
while the best results for each basis are underlined. Since this is the basis to derive
the right options when estimating results for the other benchmarks that contain color
images (Middlebury and MPI Sintel), we do not only state the thresholded bad pixel
error values (BP3) but also the more continuous average endpoint errors (AEE).



B.2 • Results on the KITTI 2015 Benchmark 227

Table 1: Comparison of different strategies to handle colors for different parametriza-
tions, both at the learning stage as well as on the estimation stage. At the learning
stage we can learn joint or separate basis functions for the color channels (Column 3).
If learning them separate, we can still employ a joint or a separate K-Means clustering
among the channels (Column 4). At the estimation stage, we can use color or grey value
images (Column 5). If using color images, we can estimate a joint or a separate set of
coefficients for each channel (Column 6). If estimating a separate set, we can decide
whether to employ a joint or a separate robustification for the data term (Column 7) and
the smoothness term (Column 8), respectively. Please note that there is no meaningful
way to use separately learned basis functions for grey value images.

Method Basis Estimation Error
Learning Image Coefficients Robustif.

Type Bases Clust. Channels Channels DT ST BP3 AEE

Baseline – – –
3 – jt jt 23.99% 9.642
1 – – – 23.73% 10.137

BTFIllum

affine (norm.) – –

3 3 jt jt 24.89% 10.698
3 3 sp jt 24.86% 10.652
3 3 jt sp 24.84% 10.695
3 3 sp sp 24.82% 10.654

3 1 jt jt 24.70% 10.583
1 1 – – 24.23% 11.100

KITTI ’12 – –

3 3 jt jt 23.87% 9.504
3 3 sp jt 24.09% 9.836
3 3 jt sp 23.85% 9.526
3 3 sp sp 24.09% 9.848

3 1 jt jt 23.72% 9.208

1 1 – – 23.55% 9.866

KITTI ’15

jt jt

3 3 jt jt 24.06% 9.651
3 3 sp jt 24.11% 9.626
3 3 jt sp 23.94% 9.559
3 3 sp sp 24.10% 9.643

3 1 jt jt 23.87% 9.442
1 1 – – 23.73% 10.216

sp jt

3 3 jt jt 24.03% 9.486
3 3 sp jt 24.08% 9.523
3 3 jt sp 24.01% 9.450
3 3 sp sp 24.07% 9.469

3 1 jt jt 23.86% 9.576

sp sp

3 3 jt jt 24.08% 9.576
3 3 sp jt 24.14% 10.143
3 3 jt sp 24.10% 9.942
3 3 sp sp 24.16% 10.272

3 1 jt jt 23.91% 9.445
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