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1 Minimization

In this section we give additional information on the minimization of the energy
of our ALD-method.

1.1 Original Energy

Let us now deduce the Euler-Lagrange equations that have to be solved on
each level of the incremental coarse-to-fine warping scheme. We begin with the
original energy functional, that reads
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1.2 Euler-Lagrange Equations

Obviously, the contribution of the data term is not convex with respect to the es-
timates u and v. Following [4], one could linearize the data term directly, leading
to a convex term. However, the linearization is only valid for small displacements.
Thus, the authors of [2] propose to postpone the linearization and compute the
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Euler-Lagrange equations first. Follwing this idea, we obtain
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1.3 Incremental Multi-Scale Strategy

In analogy to [2], we refrain from linearizations in the data term and compute
the estimates u, v by a fixed point iteration combined with an incremental multi-
scale strategy. Splitting the unknown flow wk+1 on each scale k into a known
part wk from the previous scale and an unknown increment dwk from the current
scale, we only have to estimate the increment. This allows to linearize the data
term with respect to the increments and thus to make use of the motion tensor
notation [3]. Similarly, we can use the diffusion tensor notation from [5] for the
smoothness term.
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1.4 Incremental Euler-Lagrange Equations

Now, we can write the equations that have to be solved on each scale as
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1.5 Similarity Tensor

As a by-product, we also introduce a tensor notation for the similarity term. To
understand this, we rewrite the expressions involved in (1) as vector products:

(u− ū)
2

=
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0
−ū

>u
v
1




2

=
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v
1
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Similar, we can compute

Sv =

 0 0 0
0 1 −v̄
0 −v̄ v̄2

 (16)

Combining the two tensors via S = Su + Sv, we can rewrite the similarity term
as

Ep = χp · cp · Ψp
(
w>Sw

)
(17)
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Within the incremental formulation of the multi-scale scheme, we do not impose
similarity of u and ū, but of duk and ū− uk; see corresponding Euler-Lagrange
equations in (10)– (11). Thus, on each scale, we obtain Sk = Sku + Skv , with

Sku =

 1 0 uk − ū
0 0 0

uk − ū 0 (uk − ū)2

 Skv =

 0 0 0
0 1 vk − v̄
0 vk − v̄ (̄vk − v̄)2

 (18)

1.6 Incremental Euler-Lagrange Equations with Similarity Tensor

Using the similarity tensor deduced above, we can rewrite the Euler-Lagrange
equations (10)– (11) as
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1.7 Differential Energy

Summarizing, the deduced equations can be shown to be the Euler-Lagrange
equations of the energy
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2 Additional Results

In this section we show additional results of ALD-Flow. In particular, we show
additional flow fields, intermediate steps of our adaptive sparsification strategy
and further tables from the Middlebury benchmark [1]. In all cases we show
the overlayed input frames, the results of the baseline method, the descriptor
matches which are computed within the regions of interest and the final result
of our method.
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We start with Table 1 listing the average endpoint error (AEE) for our
method and its baseline method for the sequences of the Middlebury training
dataset. Note, that the corresponding table presenting the average angular error
(AAE) is contained in our main paper.

Next, Figure 1 illustrates the different steps to compute the final result for
frame 496 of the tennis sequence. Compared to our paper, we show even more
intermediate steps concerning the selection of the different candidate sets. Anal-
ogously, we show these steps and our result for the Human Eva II sequence in
Figure 2.

These illustrations are followed by Figure 3 in which all results for the Mid-
dlebury training sequences with ground truth are depicted. The results for the
additional real-world sequences without ground truth are shown in Figure 4.
Furthermore, in Figure 5, we present the results for those sequences of the Mid-
dlebury evaluation dataset that are considered for the rankings with respect to
the AAE and the AEE. Figure 6 shows the additional sequences which are used
for the interpolation error rankings.

Finally, we show the ranking of our method in the Middlebury benchmark
with respect to the AEE, the interpolation error (IE) and the normalized in-
terpolation error (NIE) in Figures 7, 8 and 9, respectively. As one can see, we
achieve consistently good results, in particular with respect to the NIE. Note,
that the corresponding table presenting the ranking with respect to the average
angular error (AAE) is contained in our main paper.
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Table 1. The AEE of ALD-Flow and its baseline method.

Method Avg. RubW. Hydra. Grove2 Grove3 Urban2 Urban3 Dime. Venus

Baseline 0.218 0.068 0.135 0.118 0.521 0.214 0.336 0.096 0.256
ALD-Flow 0.212 0.069 0.135 0.118 0.513 0.202 0.309 0.096 0.255

Fig. 1. Detailed illustration of flow estimation for frame 496 of the tennis sequence (best
viewed in electronic version). From left to right, top to bottom: (a) Overlayed
input frames, (b) baseline result, (c) energy of data term in frame 1, (d)-(f) double
thresholding to compute candidate set s1: first thresholding, regions of interest, second
thresholding, (g) energy of data term in frame 2, (h) candidate set s2. (i) relaxed
candidate set s1b, (j) distribution of HOG (red) and GB (green) descriptors, (k) feature
matches within regions of interest, (l) ALD-flow result.
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Fig. 2. Detailed illustration of flow estimation of the Human Eva II dataset (best
viewed in electronic version). From left to right, top to bottom: (a) Overlayed
input frames, (b) baseline result, (c) energy of data term in frame 1, (d)-(f) double
thresholding to compute candidate set s1: first thresholding, regions of interest, second
thresholding, (g) energy of data term in frame 2, (h) candidate set s2. (i) relaxed
candidate set s1b, (j) distribution of HOG (red) and GB (green) descriptors, (k) feature
matches within regions of interest, (l) ALD-flow result.
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Fig. 3. Middlebury training sequences: RubberWhale, Hydrangea, Grove2, Grove3,
Urban2, Urban3, Dimetrodon, Venus. From left to right: Overlayed input frames,
baseline result, feature matches within regions of interest, ALD-flow result.
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Fig. 4. Middlebury training sequences (real-world): DogDance, Walking, MiniCooper
and Beanbags. From left to right: Overlayed input frames, baseline result, feature
matches within regions of interest, ALD-flow result.
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Fig. 5. Middlebury evaluation sequences: Army, Mequon, Schefflera, Wooden, Grove,
Urban, Yosemite and Teddy. From left to right: Overlayed input frames, baseline
result, feature matches within regions of interest, ALD-flow result.
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Fig. 6. Middlebury evaluation sequences (real-world): Backyard, Basketball,
Dumptruck and Evergreen. From left to right: Overlayed input frames, baseline
result, feature matches within regions of interest, ALD-flow result.

Fig. 7. Middlebury ranking with respect to average endpoint error (AEE).
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Fig. 8. Middlebury ranking with respect to interpolation error.

Fig. 9. Middlebury ranking with respect to normalized interpolation error.


