
—for Fun and Profit

Sebastian Grottel*
Computer Graphics and

Visualization, TU Dresden

Guido Reina†

VISUS
University of Stuttgart

Michael Krone‡

VISUS
University of Stuttgart

Christoph Müller§

VISUS
University of Stuttgart

Thomas Ertl¶
VISUS

University of Stuttgart

ABSTRACT

Research in scientific visualization often utilizes small software
prototypes for proof-of-concept implementations, performance
evaluation, and image generation. In large-scale and particularly in
long-running research projects, especially aiming at big data, these
prototypes quickly reach their limitations, at least as soon as scien-
tists from application domains start using the software. In this posi-
tion paper we present our experience in creating MegaMol™ [3], an
open-source visualization framework for large particle-based data.
Having started as research prototype for high-performance com-
puter graphics, the framework has grown over more than nine years
and has become a software actively used by several Ph.D. students
and collaboration partners from physics, bio-chemistry, thermody-
namics and material science. We highlight aspects of the develop-
ment process and long-term software architecture decision-making,
which we identified to be critical to successfully deliver stable
software releases. We discuss the increased work load required
for defensive programming, error handling, testing, and software
maintenance. MegaMol™ is developed at a German university by
Ph.D. students and postdoctoral researchers, without the help of
dedicated programmers.

Index Terms: D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement—Extensibility; K.6.1 [Manage-
ment of Computing and Information Systems]: Project and People
Management—Life Cycle; J.2 [Computer Applications]: Physical
Sciences and Engineering—Chemistry/Physics

1 INTRODUCTION

The development of our open-source visualization system Mega-
Mol™ started in 2006. It originates from a joint research project
between biologists, physicists, material scientists and visualization
experts working with large, particle-based data. Within this project,
we faced the need for high-performance GPU-accelerated computer
graphics to achieve diverse interactive visualizations for our project
partners. We designed our software to be modular and to support
rapid visualization prototype development, that is, to provide the
necessary flexibility to visualization researchers. In addition, this
approach allows central parts of the software to reach a mature and
stable state. Such continuity enables the software to be usable by
application domain scientists, which is usually not the case for typi-
cal research prototypes illustrating one single concept or algorithm.
The figures in the appendix show various examples of visualizations
and application domains that are supported by MegaMol™.

*e-mail: sebastian.grottel@tu-dresden.de
†e-mail: guido.reina@visus.uni-stuttgart.de
‡e-mail: michael.krone@visus.uni-stuttgart.de
§e-mail: christoph.mueller@visus.uni-stuttgart.de
¶e-mail: ertl@vis.uni-stuttgart.de

2 DEVELOPMENT

MegaMol™ is written in C++, supporting Windows and Linux plat-
forms, and primarily uses OpenGL and CUDA. The framework is
strongly tailored towards fast rendering. As a consequence, the
software itself only provides a thin layer above OpenGL avoiding
overhead during rendering while exposing low-level functionality
required for cutting-edge graphics programming. Thus, a central
paradigm is that data management and layout on the CPU side has
to fit the requirements of the GPU and strictly follows a zero-copy
paradigm. Here MegaMol™ significantly differs from other visu-
alization frameworks existing when we started the development.

The architecture supports different front ends. For instance, there
are GUIs for specific application tasks using the MegaMol™ back
end as engine. The software itself also supports synchronized exe-
cution on clusters (e.g., for rendering on large displays). All func-
tionality in MegaMol™ is provided as so-called Modules. The
Modules can be arranged in arbitrary call graphs, where control
flow and data flow follow a pull paradigm. An in-depth description
of the architecture can be found in [3].

Modularization The Modules, encapsulating functionality in
MegaMol™, communicate via strongly typed channels dubbed
Calls. Each Module can have an arbitrary number of typed
user-adjustable parameters (e.g., numerical values, enumerations,
strings, or file names). Developers explicitly specify via which
Calls Modules communicate. This approach has several benefits:
Task-specific functionality can be composed from an ever-growing
set of operations and visualizations provided by existing Modules
(c.f. Fig. 1). The separation into Modules establishes strong code
ownership, thus minimizing the potential for conflicts. After defin-
ing the interfaces, Modules written by other developers can be
treated as black boxes. Specifically, the strongly-typed channels
allow for setup and runtime checks.

Further abstraction is provided by plugins, grouping related
Modules and Calls. This allows for removing more specialized
functionality or specific implementations from the framework’s
core library. For example, a dedicated plugin containing CUDA-
accelerated functionality can be removed if a computer with a
graphics card by AMD or Intel is used. This way, the core li-
brary retains as few dependencies as possible. Note that inter-
dependencies between plugins are allowed.

Defensive Programming & Client-site Debugging In-
complete error handling might be the most severe issue of research
prototypes. Reusable software requires defensive programming,
handling error states and exceptions where appropriate to ensure
consistent state and spot errors. MegaMol™ supports the devel-
oper with corresponding utilities as well. Developers can of course
use debuggers and standard mechanisms like assertions, tracing or
even low-level printf outputs to investigate and resolve issues.

However, this is neither feasible nor appropriate for an end user
working with the software. As such, MegaMol™ is designed to
not always run under the supervision of the developers in the con-
trolled environment of our lab. Access to the debugging and report-
ing features are thus limited. To compensate, MegaMol™ provides
a logging mechanism allowing non-expert users to provide detailed
feedback to the developers in an error case. The verbosity level can



be adapted not to clutter logs during normal operations, e.g., out-
put of info messages, warnings, or errors. Consequently, using this
mechanism in our code allows for client-site debugging by making
the log files available to the developer.

Run-time Configuration & Usability The graph of modules
determining the actual functionality of MegaMol™ can be created
using a graphical utility, the so-called MegaMol™ Configurator.
This is a stand-alone C# software, fully supported on Linux us-
ing Mono. It queries an actual MegaMol™ installation about the
available Modules and their interfaces. Using this information, the
Configurator allows the user to only construct valid module graphs.

The result is a project XML file, encompassing the module graph
as well as all parameter values provided for the Modules. All pa-
rameter values can be edited at runtime within MegaMol™, but can
also be set to initial values using the Configurator. During execu-
tion, the user can save changes to project files. This ensures repro-
ducibility and archiving of whole visualization states, even includ-
ing low-level parameters like camera settings. This provides a basic
level of provenance if states are stored in different files.

The default front end of MegaMol™ dynamically generates a
GUI from the active modules. GUI controls are chosen based on the
type of the parameters and are grouped hierarchically. The imple-
mentation uses AntTweakBar (http://anttweakbar.sourceforge.net).
While this gives the user full control over all parameters, no task-
based structure exists in this GUI. Therefore, we have created task-
specific GUIs for certain applications that present only the relevant
parameters to the user and offer higher-level widgets for more com-
plex tasks and interactions (cf. Fig. 2).

Besides a GUI, documentation is an important factor for usabil-
ity of software. The MegaMol™ project website provides a wiki
and manuals including instructions for building and using Mega-
Mol™, as well as tutorials and example files and projects.

3 DEPLOYMENT

MegaMol™ is primarily distributed via it’s project website
(http://www.megamol.org). On this website, we provide packaged
releases as well as direct access to the source code repositories.

Release Cycles vs. Continuous Integration MegaMol™
is under active development. Using continuous integration seems
like an obvious choice. However, this makes supporting external
users much harder, as they would use subtly different versions har-
boring vastly different issues. Additionally, forcing users to contin-
uously update to not entirely tested software is not an option either.

Therefore, we opted for release cycles of tested and stable ver-
sions. For example, project partners and students always use the
latest release. Of course, quick bug fixes can still easily applied
based on these releases, although not officially included in the re-
lease itself. This way we reduce the number of different versions
in active use, which also minimizes the effort for client-site de-
bugging. Close project partners who require features under active
development (e.g. for ongoing research projects) can still get direct
access to the current software version not released yet.

Build System, Binary Releases, and Open Source Al-
though MegaMol™ can run on Windows and Linux, the main de-
velopment takes place on Windows using Microsoft Visual Stu-
dio. For Linux, we opted for the widely-used CMake build sys-
tem (https://cmake.org/). Source code is available through our SVN
repository. Especially for end users, we provide binaries of the lat-
est release for Windows and Linux on our website. The Linux bina-
ries are always compiled on the latest Ubuntu LTS distribution. Of
course, since MegaMol™ is open source, our code can be re-used in
other software projects. For example, Jurcik et al. [5] extended our
Solvent Excluded Surface computation to support transparency, and
Guo et al. [4] implemented a hierarchical ray casting of biomolecu-
lar data, extending functionality that was available in MegaMol™.

Maintenance & Long-term Commitment A large software
framework like MegaMol™, aimed both at developers as well as
at end users, requires a substantial amount of maintenance. We
use bug tracking and feature request systems to organize tasks. The
main developers of MegaMol™ are Ph.D. students and postdoctoral
researchers, that is, scientists who are not intended to spend much
time on system development and maintenance. However, not fixing
bugs or adding new critical features will make a software project
lose users rapidly, all of them in the worst case. For many of our
visualization research projects, however, having users was hugely
beneficial or even crucial in the past. We, therefore, have to care-
fully balance how much work to put into research and how much
into maintenance. This can be seen as a long-term investment.

4 CONCLUSION

When we started developing MegaMol™ almost a decade ago, we
clearly underestimated the huge workload this would cause. Re-
peatedly, the question was raised whether a Ph.D. student could
afford this non-research-related workload. In hindsight, we believe
it is worth to develop and maintain your own code base for prob-
lems not yet solved satisfactorily. Given the range and complex-
ity of visualizations we can now create with MegaMol™, we find
our choice justified. All participating institutions and people are to-
day satisfied with the result, concerning both software and scientific
publications. What remains difficult is the acceptance and appreci-
ation of the scientific community. Most of the development work
invested in a software system cannot be published. We believe the
most important thing for a scientific software project is the contin-
uous commitment of the individual developers against all odds.

Acknowledgments This work was partially funded by
Deutsche Forschungsgemeinschaft (DFG) as part of SFB 716.

REFERENCES

[1] S. Grottel, P. Beck, C. Müller, G. Reina, J. Roth, H.-R. Trebin, and
T. Ertl. Visualization of Electrostatic Dipoles in Molecular Dynamics
of Metal Oxides. IEEE TVCG, 18(12):2061–2068, 2012.

[2] S. Grottel, J. Heinrich, D. Weiskopf, and S. Gumhold. Visual analysis
of trajectories in multi-dimensional state spaces. CGF, 33(6):310–
321, 2014.

[3] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. MegaMol - A
prototyping framework for particle-based visualization. IEEE TVCG,
21(2):201–214, 2015.

[4] D. Guo, J. Nie, M. Liang, Y. Wang, Y. Wang, and Z. Hu. View-
dependent level-of-detail abstraction for interactive atomistic visual-
ization of biological structures. Comput. Graph., 52:62–71, 2015.

[5] A. Jurcik, J. Parulek, J. Sochor, and B. Kozlikova. Accelerated visu-
alization of transparent molecular surfaces in molecular dynamics. In
IEEE PacificVis, pages 112–119, 2016.

[6] M. Krone, F. Frieß, K. Scharnowski, G. Reina, S. Fademrecht,
T. Kulschewski, J. Pleiss, and T. Ertl. Molecular surface maps. IEEE
TVCG, 23(1), 2017.

[7] M. Krone, M. Huber, K. Scharnowski, M. Hirschler, D. Kauker,
G. Reina, U. Nieken, D. Weiskopf, and T. Ertl. Evaluation of visu-
alizations for interface analysis of sph. In EuroVis - Short Papers,
pages 109–113, 2014.

[8] C. Müller, M. Krone, K. Scharnowski, G. Reina, and T. Ertl. On
the utility of large high-resolution displays for comparative scientific
visualisation. In VINCI, volume 8. ACM, 2015.

[9] K. Scharnowski, M. Krone, G. Reina, T. Kulschewski, J. Pleiss, and
T. Ertl. Comparative visualization of molecular surfaces using de-
formable models. CGF, 33(3):191–200, 2014.

[10] K. Scharnowski, M. Krone, F. Sadlo, P. Beck, J. Roth, H.-R. Trebin,
and T. Ertl. 2012 IEEE visualization contest winner: Visualizing po-
larization domains in barium titanate. IEEE CG&A, 33(5):9–17, 2013.

[11] J. Staib, S. Grottel, and S. Gumhold. Visualization of particle-based
data with transparency and ambient occlusion. CGF, 34(3):151–160,
2015.

http://anttweakbar.sourceforge.net
http://www.megamol.org
https://cmake.org/

	Introduction
	Development
	Deployment
	Conclusion

