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Abstract

When studying protein-ligand interactions, many different factors can influence the behaviour of the protein as well as the
ligands. Molecular visualisation tools typically concentrate on the movement of single ligand molecules; however, viewing only
one molecule can merely provide a hint of the overall behaviour of the system. To tackle this issue, we do not focus on the
visualisation of the local actions of individual ligand molecules but on the influence of a protein and their overall movement. Since
the simulations required to study these problems can have millions of time steps, our presented system decouples visualisation
and data preprocessing: our preprocessing pipeline aggregates the movement of ligand molecules relative to a receptor protein.
For data analysis, we present a web-based visualisation application that combines multiple linked 2D and 3D views that display
the previously calculated data The central view, a novel enhanced sequence diagram that shows the calculated values, is linked
to a traditional surface visualisation of the protein. This results in an interactive visualisation that is independent of the size of
the underlying data, since the memory footprint of the aggregated data for visualisation is constant and very low, even if the raw

input consisted of several terabytes.

Keywords: scientific visualisation, visualisation, protein-ligand interaction
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1. Introduction

Protein-ligand interactions are a vast and diverse field. Different
techniques and approaches have been developed so far for un-
derstanding the complex and specific interactions between ligand
molecules and protein surfaces. Simulations that are performed
to study this kind of interactions tend to comprise terabytes of
data or even more. While existing approaches for the visuali-
sation of protein-ligand interactions, like the one by Vizquez
et al. [VHG*18], typically concentrate on single ligand molecules,
global approaches to analyse ligand movement are rare. As a di-
rect visualisation of the complete data sets is normally impossible

due to their size, approaches that employ streaming or aggrega-
tion of the data are the most viable options. Streaming approaches
typically use animation and are often preferred by domain sci-
entists as they are easy to understand. However, since it is well
known that the analysis of animations, especially when they are
long, is more difficult to humans than the analysis of static im-
ages [TMBO02], an aggregated representation of the simulations
can be more beneficial for an adequate visualisation. Unfortunately,
systems that use aggregated data keep track of a limited number
of represented parameters. Moreover, they do not calculate infor-
mation such as contact counts, that are highly relevant for our
collaborators.
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CLISD

Surface View

Figure 1: Information shown in the three main views of our protein-ligand interaction visualisation: The x-axes denote the amino acids of
the protein. The bars above the x-axes show the number of time steps near a ligand molecule, the bars below show the number of close ligand
atoms. The width of the bars in the stackable CLISD (Compressed Ligand Interaction Sequence Diagram) is scaled according to the value,
thus emphasizing higher, more important values. De-emphasised values can be inspected in the detail view, alongside additional bond counts.
The surface view can be coloured by different aggregated quantities using the Viridis colour map ( wmmmmm: ; purple corresponds to 0 and
yellow to the maximum value). Here, the amount of time steps close to a ligand atom is depicted (lower green bars of the diagram).

Our collaborators want to understand how and where ligand
molecules approach the active site of an enzyme. To do so, they
generate extremely large simulations that cannot be tackled by al-
most any existing software directly. For example, packages such as
MegaMol [GKM*15] would be able to reproduce the animation,
but do not provide tools for the analysis. Other packages with a
scriptable interface would of course support any dataset indirectly,
but they require upfront work by the user and visual programming
expertise which cannot be expected from domain scientists. To ef-
fectively inspect those simulations, domain experts are interested in
the interactions/contacts between the enzyme and the ligand. There-
fore, in collaboration with the co-authoring domain experts, we
formulated seven design requirements for our software that tackles
this problem. We have developed a system that facilitates the visual
analysis of protein-ligand interactions from whole Molecular Dy-
namics (MD) simulation trajectory ensembles. Prior to the visuali-
sation, we aggregate the relevant values of the simulation data. This
way, we can provide a meaningful overview of the whole simulation
that allows scientists to further investigate interesting steps. For the
subsequent data analysis, we developed a web-based multi-view vi-
sualisation application that is specifically designed to show these ag-
gregated results. We introduce the Compressed Ligand-Interaction
Sequence Diagram (CLISD) that provides an overview of the amino
acids of the protein that interact with the ligands (cf. Figure 1).
Our sequence diagram is enhanced by the aggregated values and is
designed to draw the attention of the user to the relevant parts. The
two-dimensional CLISD is linked to a traditional, three-dimensional
surface visualisation of the protein, which can be coloured accord-
ing to the aggregated values. This molecular surface visualisation
enables users to analyse the spatial structure of the depicted
molecule.

Our contributions can be summarised as follows: We propose a
preprocessing pipeline for several specific values to aggregate and
derive the movement of ligand molecules relative to a receptor pro-
tein (e.g. during a simulation) and present a web-based visualisa-

tion application that consists of multiple linked 2D and 3D views
that facilitate the visual analysis of the previously aggregated data.
Specifically, we introduce the CLISD that shows which amino acids
of the protein interact with the ligand. Our interactive visualisation is
specifically designed for the exploratory analysis of protein-ligand
interactions from MD simulation data, but it can also be used to anal-
yse docking results and the interaction of the protein with substrate
and solvent molecules. We believe our system could additionally be
used to improve biochemical properties of the enzymes such as sub-
strate affinity and catalytic activity by targeted mutation of amino
acids. We demonstrate the capabilities of our approach in two use
cases that were investigated in tight collaboration with our project
partners from biology.

2. Structural Biology Background

This section introduces the biological background of our work that
targets the interaction of proteins with small molecules. Proteins are
biological macromolecules that consist of one or more chains of
amino acids (or residues). The folding of these chains into the ener-
getically most stable conformation determines the spatial structure
of the protein.

Proteins serve many tasks; may it be in the bodies of living be-
ings or for biotechnological applications like biofuel production.
The most important proteins for our work are enzymes, which can
trigger or accelerate chemical reactions of other smaller molecules.
Molecules that are able to specifically bind to the proteins are called
ligands, or more enzyme-specific, substrate molecules. Ligands may
alter the behaviour of the protein or undergo a chemical reaction
when reaching a specific part of the protein called the active site.
The surrounding surface geometry and dynamics of the protein in-
fluence the types of ligands that can reach that active site. Often,
only few selected ligands are actually able to reach the active site.
In literature, this specificity for docking ligands is often described
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as lock-and-key model [Fis94]. Another important factor, especially
for enzymes, is the reaction rate of the protein-ligand system. Sur-
face properties of the protein as well as the ligand geometry may
influence this rate.

One major field of research is the engineering of enzymes to in-
crease their reaction rates. To reach this goal, specific amino acids
of the protein chains are inserted, deleted, or replaced by other ones.
This may alter the behaviour of the protein as these modifications
can change the stability or influence the accessibility to the active
site. Typically, a simulation of the altered protein is performed to
assess changes in its behaviour (in silico). Real-life experiments (in
vivo) with artificially produced proteins are ideally only carried out
if the simulation results were positive. The goal of our work is not
only to ease the analysis of the simulation results but also to pro-
vide a tool able to support the work of protein engineers by making
the understanding of simulations more clear and accessible. Apart
from the physico-chemical surface properties, the access of a ligand
to the active site is, to a significant amount, a geometrical problem.
Thus, our tool supports the visual inspection of protein geometry.

Since ligand interactions happen at the protein surface, good
surface representations are necessary. The most commonly used
and simple molecular surface is the van der Waals (vdW) sur-
face [vdW73]. It represents each atom by a sphere of fixed radius
that depends on the element of the atom. Based on this method, two
closely related molecular surfaces can be derived: the Solvent Ac-
cessible Surface (SAS) [LR71] and the Solvent Excluded Surface
(SES) [Con83, Ric77]. Both are defined by rolling a spherical probe
around the vdW surface. The radius of the probe sphere corresponds
to the size of the assumed ligand. The area described by the cen-
tre of the probe is called the SAS, the area the probe is not able
to reach without intersecting the vdW surface is called the SES.
A survey of molecular surfaces was recently given by Kozlikova
et al. [KKF*16]. We use the SES in our work since it does not hide
a ligand docked to the surface.

3. Related Work

Since its inception several decades ago, visualisation techniques
purposely designed for biomolecular structures have played a key
role in the understanding and discovery of chemical phenomena.
The extension and depth of this research area is illustrated by the
number of recent surveys [KKF*16, KKL*16, AAM*17, SKPE19]
that deal with different subtopics. The improvements in simula-
tion algorithms and computational power continuously challenge
previously developed visualisation techniques. On the one hand,
the models are increasing in size and complexity. The number
of elements—for example atoms or cells—to represent visually
surpassed the order of millions quite some time ago [GKM*15,
LMAPV15]. On the other hand, the (non-geometric) information
researchers need to explore is also continuously increasing, for
example, the ever growing time step count in molecular simula-
tions [DHR*19], or the large number of properties to represent
(such as water trajectories [VBJ*17], factorised energy compo-
nents [VHG*18] or the chemical properties and interactions within
protein cavities [FIB*17, BLMG*16, BJG*15]). Hence, on top of
the geometric complexity, it is necessary to find room and compu-

tational power to deal with such complex data sets in order to make
them useful and understandable for researchers.

Traditional visualisation research often focuses on using GPUs
to accelerate the rendering of complex 3D structures using differ-
ent strategies, such as Level-of-Detail [[IWR*18] or highly parallel
architectures [RHI*15, KWN*14]. However, if we analyse recent
visualisation approaches that address the data complexity problem,
smart data abstractions and aggregation techniques to explain more
in smaller space can be found increasingly. Thus, we focus on two
different areas: the aggregation of the massive input data to extract
meaningful information, and the design of a multi-view visualisa-
tion system that enables the exploration of a large number of vari-
ables at once.

Data Aggregation. Visual analysis is at the core of all visualisa-
tion techniques [HS12]. When the data becomes very large, for ex-
ample when visualising whole ensembles, several strategies can be
employed to reduce the required space. Animation, for instance,
reuses the same space by modifying the visual depictions with
the time. However, for large sequences, animation can be less ef-
fective than static graphs [TMBO2], as it relies on the short-term
memory of viewer [WHLS19]. The opposite approach is to ag-
gregate the information so that it can be digested and facilitate
detailed exploration of elements of interest. In molecular visuali-
sation, abstraction and level-of-detail techniques have been used
extensively (e.g. [MDLI*18]), since they facilitate the reduction
of clutter when the size or density of elements requires a sizable
screen footprint. Other methods have been developed to represent
full molecules [PRV 13, PIR*14], as well as other information such
as solvent pathlines near protein cavities [BGB*08]. Data aggrega-
tion has also been used for non-geometric properties, such as energy
plots. For instance, Duran et al. [DHR*19] presented simplified en-
ergy charts using a hierarchical exploration tool that supports the
exploration of detailed parts with few clicks. Data aggregation can
be very useful if it adequately provides an informative overview of
the whole data set. Vazquez et al. [VHG*18] aggregate energy data
from a whole Monte Carlo-based molecular simulation to facilitate
the quick exploration of interaction areas. However, their approach
deals with relatively short trajectories (several hundreds of steps)
and does not include other interesting information such as contacts.
Bidmon et al. [BGB*08] cluster the paths of solvent molecules near
the active site of a protein to simplify the exploration of complex sol-
vent movement patterns. Skanberg et al. [SKL*18], on the contrary,
facilitate the exploration of large MD data with an extensive use of
semantic filtering operations. Byska et al. [BTM*19] detect inter-
esting spatio-temporal events in very large simulations so that the
users can concentrate on these potentially interesting parts and filter
out uninteresting portions of the simulations. Alharbi et al. [ALC16]
facilitate the exploration of MD simulations by path filtering based
on geometric properties of the paths, such as edge lengths or curva-
tures. In a subsequent work [AKCL19], they presented a tool that ex-
tracts and visualises protein-protein interactions as well as protein-
lipid ones from MD simulations. However, their method is tailored
to membrane simulations and cannot be applied directly to protein-
ligand interactions.

Visualisation of Multiple Variables. Most visualisation systems
use multi-view and overlaying techniques to increase the number
of variables that are shown at once. In molecular visualisation, for
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example, Vazquez et al. [VHG*18] create a compact visualisation
for the depiction of protein-ligand binding simulations. They over-
lay up multiple variables at once: molecular backbone, per-residue
energy, minimum and maximum energies, h-bonds, etc. They
combine both single step and aggregated information. Hermosilla
et al. [HEG*17] display multiple energy-related information and
make extensive use of filtering operations to display the interac-
tions between the ligands and the proteins in a simulation on a
step-by-step basis. However, this method does not give an overview
of the whole simulation. Lichtenberg et al. [LMA*18] propose the
Residue Surface Proximity map, which allows users to visually
analyse the closeness of each amino acid of a protein to the surface
throughout a simulation. This corresponds to the potential exposure
to ligands, it is contrasting to our approach, which focuses on
the actual behaviour of the ligand molecules. Furmanova et al.
[FJK*19] facilitate the exploration of protein-protein contacts
through a combination of charts and a 3D view. However, they
concentrate on the analysis of contacts and provide views for
illustrating the individual residues’ interaction in a node-link view.
In our case, we are more interested in showing the whole path in
an exploratory way and providing information such as the number
of steps in contact. Mostly, we define a contact as spatial proximity
without the forming of covalent bonds.

Our strategy for coping with large amounts of data, we use aggre-
gation. As a result, we are able to generate informative overviews
of the whole simulation, and the resulting visualisation tool can also
run on commodity hardware. Exploratory visualisation is achieved
through data superposition, filtering, and compaction to maximise
the amount of information that can be displayed at the same time.

4. Design Requirements

Our goal was to create a visual analysis application for protein-
ligand interactions that is able to visualise even the largest biomolec-
ular data sets (e.g. ensembles of MD simulation data). In order to be
effectively usable by biologists and to integrate smoothly into their
everyday analysis workflow, it is important to listen to the needs of
the actual target users. In close cooperation after numerous refining
iterations, we identified seven requirements that shall be fulfiled by
the resulting application.

The first requirement R1 stems from the sheer size of the data our
collaboration partners are working with. Although they are typically
used to animations, we quickly realised that this is nearly impossible
for the current data at hand. Even with filtering approaches, tens of
thousands of time steps would remain relevant. Animations of solely
those parts alone move too fast for a human to enable the observer
to analyse the presented data in full detail without jumping back
and forth, especially when also the subsequent requirements have
to be considered. In aggregated visualisations always some part of
the original information is lost. While the following four require-
ments mostly specify what our domain scientist would like to see in
a visualisation, they also restrict which information we are allowed
to omit in the aggregation process. R2 therefore enforces the inclu-
sion of the location, duration, and frequency of contacts between
residues of the proteins and ligand molecules. As the sequence, as
well as the folding of its underlying amino acid chain, influences

the behaviour of a protein, the requirement also enforces the usage
of certain visual representations.

The most interesting part for our domain scientists were the actual
paths of the ligands on the surface of the protein, as all other tools
they knew either did not work or produced too much visual clutter.
To investigate the hypothesis that ligands crawl along the surface,
the landing spots were of keen interest to them, followed by the ac-
tual path taken (RS and R3). However, as different kinds of ligands
form different kinds of bonds, R4 becomes important. Most ligand
types are able to form hydrogen bonds, for example, but other con-
tact definitions are possible. Although pure distance-based contact
definitions still stay relevant in the general case, specialised defini-
tions should be allowed and usable.

Two further requirements stem from the workflow of the domain
scientists. Although they can obtain some of the analysis data with
existing tools such as GROMACS [AMS*15] or the MDAnalysis li-
brary [MDWBI11, GLB*16] by analyzing distances and interactions
from the simulation trajectory, it is currently not possible to extract
all of the information presented by us. To the best of our knowl-
edge, all the available tools either require to load the full trajectory
into memory, which is only possible on dedicated hardware with
high memory, or they require extensive coding efforts. Dedicated
solutions to reduce the memory requirement are currently not avail-
able in the existing analysis libraries. Furthermore, dedicated tools
to aggregate and visualise the analysed data are not available which
makes the systematic analysis of large simulation data complex and
time consuming.

In addition, a graphical representation of aggregated data is miss-
ing in the available tools that are typically tailored towards comput-
ing clusters. For visualisation, the domain scientists typically use
PyMol [SD] or VMD [HDS96]. While both programs provide many
options for surface visualisations, features for sequence diagrams
are limited or not present at all. Furthermore, both programs have
neither a dedicated way to input aggregated data, nor are they able
to depict longer trajectories without loading them completely into
RAM. As it is mostly impossible for the domain scientists to oc-
cupy a special machine for visualisation tasks, requirement R6 was
formulated. This, of course, leads to longer waiting periods for the
precalculations. For them, this is no issue, as they are already used
to waiting periods for their MD simulations, for example. As long
as these calculations are not necessary each time one starts the visu-
alisation application, they are acceptable (R7). To sum up, the seven
found requirements are:

R1 The visualisation should give an overview of the whole simula-
tion, instead of showing the whole simulation as an animation.

R2 Areas where contacts are most common should be identifiable
in a surface representation as well as in the amino acid sequence.

R3 Ligand paths on the surface of the protein should be identifiable.

R4 Depending on the use case, different kinds of contact defi-
nitions need to be considered (e.g. distance-based, or hydrogen
bonds).

RS Identification of areas/amino acids where ligands get initially
into contact with the protein (“landing spots”).
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Figure 2: Overview of the data pipeline of our system. First, the input data, given as Protein Data Bank or GROMACS files alongside with a
XTC trajectory is analysed and accumulated step by step. After the accumulation is finished, three types of files are written: Human-readable
Json-files that contain the measured results, a representative surface mesh containing colour values for each of the accumulated quantities, and
a Protein Data Bank file providing atom position data fitting to the surface mesh. These files can either be directly shown with our web-based
visualisation framework, or further calculations can be performed using other programs. The Polygon File Format meshes, for example, can
be read by standard mesh viewers (e.g. MeshLab). The inlay on the right is a screenshot of the whole web-based application.

R6 The preprocessing as well as the visualisation should be possible
on a commodity machine.

R7 It should be possible to present visualisation results to collabo-
rators without having to wait more than a few seconds.

The first five design requirements formulate requests for the out-
come of the visualisation, the last two restrict the technical imple-
mentation. Please note that R3 and RS are not applicable to protein
docking data, as they were formulated with the more complex use
case of simulation data in mind.

5. Overall Approach and Application Overview

In the light of the self-given requirements, especially R1, we de-
cided to use an aggregation approach, instead of pure filtering (e.g.
Alharbi et al. [ALC16], cf. Section 3). Showing such temporally ag-
gregated values in a static visualisation eases the analysis since no
animation is required. It also has the benefit that it can reduce the
amount of data required for the visualisation tremendously com-
pared to the original simulation data set size, as detailed below. Ad-
ditionally, it allows us to completely decouple the aggregation in a
preprocessing step from the visualisation.

For the actual visualisation, we decided to implement a web-
based application since this is most convenient for the domain sci-
entists, as it will be accessed via a browser from all devices without
any installation (requirement R6). The final application should pri-
marily incorporate visualisation methods that are familiar to users
from the field of biology to further reduce the barriers to usage and
facilitate an intuitive and fast analysis process. This includes com-
monly used three-dimensional visualisations of protein structures as
well as abstract, two-dimensional representations, such as sequence
diagrams that depict the linear chain of amino acids. Both types of
representations can be enhanced by incorporating the values that
are relevant for protein-ligand interactions (e.g. by colour-mapping
them onto the representation). As the interactions between a protein
and ligands highly depend on surface geometry, presenting only an
enhanced sequence diagram would not be sufficient. A molecular
surface visualisation such as the SES is more suitable to show the
spatial relations between molecules and depicts the conformation

of the protein. However, as some amino acids are not part of a pro-
tein’s surface all the time, a surface visualisation alone is also not
sufficient. Furthermore, exact numeric values can be assessed bet-
ter in a 2D plot than in a 3D visualisation. Therefore, we use both
representations by showing the SES of the protein from a represen-
tative time step alongside an enhanced sequence diagram. This is
also represented by requirement R2. Our web-based visualisation
tool thus combines the advantages of both depictions and links both
views with suitable interaction techniques. A detailed description
of the visualisation capabilities of our application—especially the
enhanced sequence diagram—is given in Section 7.

An overview of our proposed pipeline, including both the data
processing and the visualisation, is shown in Figure 2. We start with
input data coming from MD simulations or docking experiments. In
the following, we will refer to the first kind as simulation data and
for the latter one as non-simulation data. Our data processing appli-
cation loads the data step by step. Only after the current time step is
processed, the next one is loaded. As a result, the memory footprint
of the preprocessing application always stays constant and does not
increase with input simulation length. As demanded by requirement
R6, this allows commodity machines to perform the aggregation and
especially to store and visualise the results. The main idea of the
proposed preprocessing is that the values are temporally aggregated
per amino acid so that the output is independent of the number of
input time steps. After the accumulation is performed, three kinds
of data are available: the aggregated values per amino acid (con-
sisting of aggregated raw and newly derived data), an aggregated
SES mesh containing colours for each variable, and the protein data,
which contains basic information about the protein structure such as
atom types and positions. This information can then be loaded by
the web-based visualisation application for an exploratory analysis
of the aggregated values. Section 8 describes the implementation
details of both applications as well as the file formats chosen for
data exchange.

6. Data Processing

The first step of our pipeline is to process and aggregate the input
data, which summarises the data and makes it small enough to be
stored and transferred to our web-based visualisation described in
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Section 8.2. It consists of three sub-steps: first, the data preparation
that brings all given time steps into the same reference frame. Sec-
ond, deriving required quantities from each time step. Third, and
finally, aggregating all read and derived data to produce a visual-
isable result. The main focus lies on single or multiple simulation
runs, but we also support ligand docking results. Since simulation
trajectories can be very large, most of the properties for aggregation
were chosen in a way that allows continuous accumulation of val-
ues. That is, the statistics of a simulation always require the same
amount of memory, regardless of the number of time steps.

6.1. Data preparation

During simulation, the receptor protein will typically exhibit trans-
lational and rotational motion. Prior to the aggregation, we there-
fore have to align each time step—or snapshot—based on the posi-
tion and orientation of the protein with respect to a reference snap-
shot. We apply the commonly used Root Mean Square Deviation
(RMSD)-minimization-based alignment [Kab76]. The alignment is
executed using the simulation framework GROMACS [AMS*15],
which was also used by our project partners to conduct the simu-
lations. It tries to minimise the positional deviation of each atom
to a reference position, that is, in our case, the average position of
the atom over time. This is done by globally generating a rotation
and a translation matrix that is applied to each atom position of a
snapshot. For docking data, each found conformation of the ligand
is taken as one snapshot.

6.2. Data derivation

After data preparation, all snapshots are loaded incrementally and,
for each of them, several values are derived.

Distances. The most important interactions typically happen at pro-
tein atoms that are in contact with ligands for a longer time, as they
might block or hinder the ligand’s path to the active site. Thus, we
calculate the distances between protein and ligand atoms which we
can use to derive the number of close ligand atoms for each protein
atom. Two atoms are close to each other if the distance between the
spheres defined by their respective van-der-Waals radii is below a
certain threshold value r.. We use a default value of 3.5 A for Te
which was recommended by our project partners. The value deliv-
ers a good compromise, as it roughly marks the distance at which
attraction between atoms induced by van-der-Waals forces becomes
relevant. As the definition of closeness can depend on the use case,
the threshold value can be adjusted by the user. For example, if the
user wants to detect only the stronger ionic or covalent bonds, a
value of 1.0 A or even lower would be feasible. In contrast, a higher
value than the default would also include atoms that may be close
but do not exert attracting forces.

Bonds. Atoms of the ligand and the protein that are close to each
other may form hydrogen bonds. These bonds could be either re-
sponsible for holding back a ligand or for pulling it forward. Hydro-
gen bonds can be estimated based on the element, the distance, and
the bonding angle between possible bonding atoms [Jef97]. How-
ever, nonpolar ligands do not tend to form hydrogen bonds. Thus, we
also incorporated carbon-carbon interactions, which are possible for

most organic molecules. This also satisfies requirement R4. These
interactions are not as strong as hydrogen bonds but can still influ-
ence the movement of the ligand relative to the protein. If the dis-
tance between two carbon atoms is below the threshold r;, ~ 3.2 A,
a carbon-carbon interaction is assumed [ABE*09].

Landing Spots. A current hypothesis by domain scientists is that a
ligand could either move directly from the surrounding medium in
the active site or it could /and on the protein surface and then crawl
towards the active site. So-called long-range-effects of the protein
surface have already been observed [LA95]. The source of those ef-
fects is unclear, may it be a protein side chain that blocks the move-
ment of the ligand or a hydrogen bond holding it back. To provide
more detailed insights into the behaviour of the ligand and to satisfy
requirement RS, we extract the number of ligand landing spots on
the surface of the protein. We estimate the occurrence of a landing
as follows: for each ligand molecule, a counter is incremented for
each snapshot if the ligand is in contact with the protein surface. If
there is no contact, it is reset to zero. If one of the counters reaches
the landing threshold /;, a landing spot is registered for the currently
viewed snapshot. The reason for this delayed landing spot detection
is the typical behaviour of ligands, which might often only be near
the protein briefly and quickly drift away again. Thus, only ligands
that stay in contact for a certain time count as landed. As a good
value for /; depends on the time difference between the snapshots,
it is a user-defined variable. In our case, a default value of 10 ps
delivered the best results.

Other Values. For each protein atom, the number of different
ligand molecules that contact it is calculated (n,,). In case of
time-dependent simulation data, the Root Mean Square Fluctuation
(RMSF) is also calculated. The RMSF describes the internal per-
atom movement of the protein during a simulation and is closely
related to the aforementioned RMSD. It is computed by aggregat-
ing the difference between the position p; of protein atoms i for each
time step ¢ and the corresponding atom position in a reference con-
figuration at time step ¢,., [VHG*18]:

1 T
Vs () = | 7 D (Pi0) = piliny))’ (1
=1

Again, analogous to the RMSD minimization, instead of taking a
reference configuration at a certain time step t,.s, we use the aver-
age position of each atom as a reference. Calculating the RMSF was
specifically requested by our domain experts as it provides insight
into the movement of the protein that gets lost due to the aggrega-
tion.

6.3. Data aggregation

All of the derived per-snapshot data is continuously aggregated to
avoid the need for later re-calculations. Please be referred to Fig-
ure 3 for further details. This leads to the values listed in Table 1.
The first four values listed (Fconract> Retimes Mbonds ANd Rppie ), as well
as the landing spot count n,,, can be directly derived by summing
up the calculated contacts and bonds. For the number of different
contacted molecules 7,,,, the ids of all contacted molecules have
to be stored and summed up after all snapshots have been visited.
Analogously, the continuous aggregation only calculates a part of
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Figure 3: Aggregation of contacted atoms and time steps. In time
step t = 0 (left), two ligands (red and orange) are in the vicinity of
the protein (green). For each of the protein atoms, a radius search
is performed (light blue background). For the topmost protein atom,
five different ligand atoms are in the vicinity (dashed black cir-
cle). Thus, the time step counter is set to 1 (lower value) and the
atom counter to 5 (upper value). Subsequently, the next simulation
step t = 1 is loaded (right) and the same calculation is performed,
adding the new values to the previously calculated ones. Note that
the atoms of the protein could also be moving (not depicted).

the RMSF, namely the sum shown in Equation 1. The division by T’
and the taking of the root are performed after all snapshot informa-
tion is known.

In addition to all of the aforementioned values, we determine the
first and last time steps where contacts or bonds happen. Please note
that all aggregated values divide into two categories: while mem-
bers of the first category can be calculated for all considered data
set types, members of the second one are only relevant for time-
dependent simulation data. The members of the second category are
the landing spot count, the RMSF, and the first/last time step data.

7. Visualisation of Protein-Ligand Interaction

In this chapter, we cover the design process of the developed visu-
alisation application. It was developed in close collaboration with
our domain project partners in an iterative process. The aggregation
data files serve as input to the CLISD diagram (see Section 7.1), the
zoomed-in view, as well as the molecular surface visualisation (see
Section 7.3). The surface mesh and the protein data are only needed
for the surface visualisation. As those files are small compared to
the size of the actual data set and are fast to load, this enables us to
satisfy requirement R7.

7.1. Compressed Ligand Interaction Sequence Diagram

The main goal of the 2D view is to give an overview of the protein-
ligand interactions in line with requirement R1. However, this is
challenging since we have many variables to represent: time steps
in contact, time steps bonded, contacted atoms, bonded atoms, and
RMSF (cf. Table 1). Besides, we also want to depict individual
residues and provide information on bonds that occurred during the
simulation. This amounts to a total of seven variables to depict in
the Compressed Ligand Interaction Sequence Diagram (CLISD).

We considered different approaches, and our initial take was us-
ing a circular representation, similar to the method of Vizquez
et al. [VHG*18]. However, the high number of variables rapidly
saturates the central part of the plot. As a result, we decided to use a

Table 1: Overview of all values accumulated during data processing.

Value description Parameter name

Number of contacted atoms Rcontact
Number of time steps in contact Netime
Number of bonded atoms Npond
Number of time steps bonded Nptime
Number of different contacted molecules Mol
Landing spot count Nspots
Root Mean Square Fluctuation (RMSF) Vrmsf
First contacted time step tre
Last contacted time step e
First bonded time step )
Last bonded time step tp

The upper five values can be calculated for all targeted data sets. The lower
ones only apply to time-dependent simulation data.

rectangular diagram and apply some strategies to save space. First,
we noted that several variables have only positive values since these
are counts. As a result, we can use both the positive and negative
y-axis to encode the number of time steps in contact and contacted
atoms, respectively, as bars. Second, we place visual representations
of the residues on the horizontal axis, similar to a classical sequence
diagram. The residues are shown as small circles, colour-coded by
amino acid type. We use colours that communicate their polarity,
with red tones for negatively charged amino acids and blue tones for
positively charged ones. Although the circles can overlap the bars,
it is not a problem, since we are mostly interested in regions with
high values for n.ourqer and neime, where this overlap will not mat-
ter. In a second step, we use superposition to add more variables.
Thinner bars with an elliptic cap encode the bonded time steps and
bonded atoms in the positive and negative areas, respectively. Fi-
nally, we draw the RMSF as a line chart in the positive area, leading
to six additional variables encoded besides the sequence itself. The
complete map is shown in Figure 4.

By using larger thickness and less saturated colours for the bars in
the background, and more saturated colours and opacity for the ele-
ments in the foreground, we are able to generate an information-rich
view, as shown in Figure 4. Note that all values have vastly different
ranges, therefore, we do not show a y-axis with unit markers. Due
to these range differences, bringing them on the same scale would
make many bars unreadable small. Even under the consideration to
scale some bars logarithmically where needed, it would require at
least two different logarithmic scales. Multiple logarithmic scales,
however, could be even more confusing to the viewer than scaling
all values separately. Therefore, the CLISD only gives a qualitative
overview of the value distribution. However, if the user hovers over
aresidue, a tooltip-like text box with the quantitative values appears,
enabling a detailed analysis. If the user selects a residue, the values
are shown in the top centre view (cf. Figure 5).

Since not all residues are equally important for researchers (e.g.
residues that exhibit a high number of ligand contacts have a more
prominent effect on the interaction), we filter based on this data.
However, instead of completely erasing non-contacting residues,
they are assigned a smaller amount of space in horizontal direction.
This way, we avoid producing false impressions of the positions
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Figure 4: The variables represented in the CLISD. Bars in the up-
per half represent counted time steps, bars in the lower half counted
atoms. When bonds are detected, a narrower bar is used as repre-
sentation. Where applicable, the RMSF is displayed as gray line in
the upper half. Areas where only few contacts are detected, are de-
emphasised by shrinking them in x-direction.

of the residues in the sequence. Since the majority of residues will
never be in contact with ligands during the simulation, this makes
our diagram also more scalable than a simple equally-spaced dis-
tribution of all the elements. This is shown on the left-hand side of
Figure 4.

Although we designed the CLISD in a way that it should be easily
readable, there could be situations in which it could appear too clut-
tered. Therefore, we decided to stack multiple instances of a CLISD,
enabling the user to switch off certain variables arbitrarily. As we
worked with a default 16:9 aspect ratio, we typically used two dia-
grams. For other ratios, more diagrams can be ideal.

7.2. Sequence detail view

In addition to the?? main view showing the CLISD, we added a de-
tail view. An example of this detail view is shown in the top right
of Figure 5. The detail view does not de-emphasise low-contacted
residues and shows only a window of a few residues. Please note
the small width of the scroll bar in Figure 5, indicating that a com-
plete display of this diagram would easily exceed the available
screen space. This zoomed in view is added since the de-emphasised
residues might directly influence the emphasised ones, for exam-
ple by performing large movements indicated by high RMSF val-
ues. The detail view is linked to the main view: if the user selects
a residue, the zoomed-in detail view is able to centre on the same
residue, allowing for an in-depth analysis of this section of the pro-
tein even if the residues are de-emphasised in the main view.

7.3. Molecular surface visualisation

The SES of the protein received from the preprocessing step is
stored as a triangle mesh. Each mesh vertex has multiple prop-
erties (e.g. colours, normals for lighting) required for rendering.

Contact Density
Dashboard

Figure 5: Screenshot of the complete application. In the upper lefft,
the surface visualisation can be seen. In top central, general infor-
mation about the visualised protein is displayed, alongside with the
selection for the data set as well as the currently displayed variable.
Below that, the exact calculated values for the currently selected
amino acid can be inspected. The lower half shows the CLISD with a
mouseover text. In the upper right, the zoomed in view of the CLISD
is displayed. Besides the 3D view and the zoomed in view a legend
is displayed.

Eight different colouring modes are available that either highlight
the individual elements (amino acids) of the protein or to colour-
map the aggregated values of the protein-ligand interaction onto
the surface. The colouring modes show the values ncouacrs Rerimes
Mponds Mitimes Mool > Mspors» ANd 1y p. Additionally, an eighth colouring
mode depicts the hydrophobicity of the underlying amino acids. The
first seven modes have their colour scale in common. This reaches
from violet for zero over green for the mid value to yellow for the
maximum value: s (see Figure 1 or Figure 5). This sequen-
tial colour map is also known as the Viridis colour map, which is
one of the default colour maps of the Python plotting library Mat-
plotlib [Hun07]. Liu and Heer [LH18] showed that this colour map
is superior to several other sequential colour maps in terms of er-
ror rates and response times. The hydrophobicity colouring mode
depicts hydrophilic amino acids in blue and hydrophobic ones in
yellow. In contrast to the sequence diagram, the surface visualisa-
tion uses the aggregated per-atom values instead of the values per
amino acid. These values are more detailed and allow for a better
perimeter of the relevant surface areas.

7.4. Linked interaction

As mentioned above, all views of our web-based visualisation ap-
plication are linked. If a user selects an atom in the 3D view,
the whole residue will be selected on the mesh and will also be
marked in the CLISD as well as in the zoomed-in view. The oppo-
site direction—selecting a residue in any of the diagrams and high-
lighting it in the mesh—is also possible. Selections on the mesh are
shown via a semi-transparent orange overlay. In the CLISD, a ver-
tical line is put above the x-axis at the location of the corresponding
residue. Hovering over the diagram or the surface has a similar ef-
fect, but we use another colour to show hovering interactions. With
multiple CLISD diagrams, these marks are also propagated to the
additional instances. Additionally, as requested by our domain ex-
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perts, the user is allowed to enter multiple amino acid identifiers that
get marked separately. With this feature, e.g. marking the active site
permanently for further orientation becomes possible. The neces-
sary identifiers can be found out by using the mouse-over texts, but
they are typically known by the domain experts beforehand.

8. Implementation Details

As mentioned above, our proposed framework consists of two sep-
arate applications for data processing and visualisation. In this sec-
tion, we briefly describe how these applications were implemented
and which existing libraries and frameworks were used for the de-
velopment.

8.1. Data processing application

The application for value aggregation was written in C++ using
the visualisation framework MegaMol [GKM*15]. For the fixed-
radius neighbour search, we use the KD-tree implementation of
nanoflann [BR14]. The KD-tree construction has to be performed
for each snapshot. Since there are usually much fewer ligand atoms
than protein atoms, we store the ligand atoms in the tree. This is
also beneficial for the parallelization of the aggregation process, as
it enables a lock-free parallel computation for all protein atoms. A
parallelization over all frames would also be possible, but as we
restricted ourselves only to commodity machines, our approach is
mostly IO-capped (cf. Section 9.3). This means that such a paral-
lelization strategy could even harm the data throughput as the data
is not read continuously.

The input data is given in the Protein Data Bank (PDB) file for-
mat [BWF*00]. As this format is text-based and not designed to
represent trajectory data, most simulation programs implement their
own file format to store the individual time steps of the simulation.
In case of the MD simulation framework GROMACS [VDSLH*05],
this is the binary XTC trajectory file format.

The aforementioned calculations are performed for each atom of
the protein and each amino acid. The amino acid values cannot be
simply obtained by aggregating the already aggregated per-atom
values, as this would lead to erroneous values due to multiple count-
ing of contacts. All results of the aggregation calculations are writ-
ten to a structured json file, which is later used for visualisation. The
Jjson file contains an entry for each amino acid, listing the identifier,
the amino acid type, and all aggregated values.

The 3D visualisation requires a protein configuration. While this
is simple for docking data (as there is only one configuration of
the protein), a simulation of n time steps also offers n plausible
choices for a displayable configuration. To retrieve the most rep-
resentative configuration, we first compute the average structure of
all atom positions and then find the time step that has the smallest
RMSD [Kab76] to that average. Additionally, our visualisation re-
quires a SES mesh, which is calculated via the MSMS tool [SOS96]
and stored as Polygon File Format (PLY) file, allowing an arbitrary
number of vertex attributes. Thus, we store all aggregated values
alongside with atom identifiers for each vertex. As the visualisa-
tion additionally requires a PDB file, one is generated by copying

the input PDB file and interchanging the atom coordinates with the
coordinates of the representative time step.

We intentionally chose popular, standardised formats (PDB,
JSON, PLY) as it makes the calculated data easy to read, even with-
out our visualisation application. This enables domain scientists to
use the data more freely and increases reproducibility.

8.2. Web-based visualisation application

As mentioned above, our visualisation application is purely web-
based. A screenshot of the application is depicted in Figure 5. It uses
a server-client architecture, is written in typescript, and uses WebGL
for 3D visualisation, whereas the CLISD is written in JavaScript
using D3 [BOH11]. All views are linked with each other, allowing
the user to select an amino acid in any of them. This selection is
propagated to all other views.

To load different data sets, a drop-down menu above the CLISD
was chosen. If a new set is selected the diagram will update au-
tomatically and the corresponding PLY and PDB files are loaded.
The PDB file is needed to assign the atom IDs from the mesh to the
amino acids. In another drop-down menu, the different aggregated
variables for the surface colouring can be selected. By request of our
domain scientists, a colour legend, as well as legend for the CLISD,
is rendered to provide more orientation.

8.2.1. Sequence diagram layout

To improve the usage of space, we de-emphasise residues with a low
number of contacts by assigning them less space. Instead of fixing a
constant size for those, we calculate it dynamically for each model.
This way, we ensure that most of the horizontal sequence space is
devoted to important residues. Thus, we fix a parameter W € [0, 1]
that determines the total width for all emphasised residues, and the
remaining space is dedicated to the remaining residues. The first task
is to count the number of residues to emphasise (#,). Given a contact
threshold n, defined by the user, all amino acids with a g, < n.
are de-emphasised. Then, given the space we want to devote to the
important residues Wgg, the size of each emphasised residue w,, will
be:

Wy, = width « Wgg/n, (2)

After some experimentation, we empirically found that a value of
Wer = 0.7 of the total available space was suitable in most cases.
This produces the result shown in Figure 4. Larger values for Wgg
would not visually filter the residues effectively, while much lower
values would make them imperceptible.

8.2.2. Molecular surface mesh rendering

To display the generated acSES mesh, we build upon the Mol* li-
brary (http://molstar.org), a collaborative project by the PDB in Eu-
rope and the RCSB PDB. It provides a technology stack for data de-
livery and analysis tools for macromolecules. Apart from file load-
ing for many biomolecular file formats, it offers various common
molecular visualisations such as ball-and-stick. To properly incor-
porate our precalculated data, we extended the library to support
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reading PLY files (see Section 7.3), including all embedded vertex
properties for colouring and grouping. This results in the surface vi-
sualisation depicted in the top left of Figure 5. Note that the probe
radius for the shown SES is already determined by the user during
the precalculation step. It should typically correspond to the size of
the ligands. The rendered mesh supports picking of vertex groups,
which is used to identify the corresponding residues upon hover-
ing over them or selecting them with the mouse. Due to the use of
Mol* it is possible for the user to interactively change the lighting
conditions and add effects like ambient occlusion or the marking
of outlines.

9. Results and Discussion

To evaluate our aggregation and visualisation system, we present
two different application cases. We received the presented data sets
from different collaboration partners working in the fields of bio-
chemistry and bioinformatics. The first data set (Section 9.1) is a
simulation ensemble consisting of 10 independent runs. We eval-
uated both the whole ensemble as well as all runs separately. The
second data set (Section 9.2) is a much smaller ligand docking set.
While the creators of the first data set just provided the data, the
creators of the first one actively collaborated in the design process
of the visualisation. In Section 9.3, we describe the performance as-
pects of our approach.

9.1. Application case I: MD-simulation

Goal. One of the goals of the MD-simulation ensemble was to
study the pathways of substrate molecules under realistic condi-
tions. This especially includes a study of the pathways of the sub-
strate molecules on the surface of the receptor protein, as already
mentioned in Section 6. So researchers want to find out whether
molecules interacting with the active site have landed there from
the solvent, or after previous contact(s) on the surface, and if so,
how the interactions happen. With current techniques, such as the
filtering approach proposed by Vad et al. [VBJ*17], some of this
information can be obtained, but the spatial inspection would have
been particularly difficult due to the size of the data set. Especially
for the complete ensemble, millions of line segments would have
to be rendered, even after filtering. This quickly becomes unfeasi-
ble performance-wise, as well as in terms of visual clutter. There-
fore, we decided against a direct visualisation approach to satisty
requirement R3. And other advanced features we provide, like the
identification of landing spots would be even more difficult with
other methods.

Input Data. The simulation data set contains an ensemble simula-
tion of a mutated variant of the enzyme Candida antarctica lipase
B (CALB) [UHPJ94], comprising 10 independent runs of 160 ns
each. With a time step size of 1 ps, the total number of simulation
time steps over all runs is 1.6 million. The simulated region is a
cubic space (side length 32 nm) containing one CALB protein in
water, alongside with 20 realistically distributed 4-paranitrophenol
substrate molecules. The simulation was performed using GRO-
MACS [AMS*15], resulting in a final binary data set size of ~2 TB,
consisting mostly of water. Water molecules in the input data were

filtered out during the data preprocessing step as it was only required
to create a realistic environment.

Analysis and Results. On a commodity machine (cf. requirement
R6), the precomputation/aggregation step takes roughly 4.2 hours
for all ten runs (see Section 9.3 for more details). Our project part-
ners appreciated this, as the actual simulation, in comparison, took
several days. As their goal was to study general ligand pathways,
the precalculated landing spot values were of immense importance
to them as they provide hints where the ligand molecules come in
contact first. Setting the landing threshold value /; to 10 ps (see Sec-
tion 6) was a request by them. This value provides a good compro-
mise between a stable contact and a good spatial correlation between
measured and actual landing spots. When checking their hypothesis
that ligand molecules do not directly access the active site but crawl
along the surface, it quickly became clear that this is mostly the
case. One example of this behaviour is shown in Figure 6. It depicts
the molecular surface of the fourth ensemble run. Viewing the num-
ber of contacted atoms 72 uacr, @ lot of movement seems to happen
around the cavity containing the active site, indicating that it was
indeed accessed. The hypothesis that the molecules moving there
did not directly fly in from the surrounding medium can be tested
by switching to the 7y, colouring scheme (requirement R5), which
affirms the hypothesis, as no landing spots seem to be detected at the
active site. The exact values can be checked in the linked CLISD.
By inspecting the surface, one can clearly identify two ligand path-
ways to or from the active site which also satisfies requirement R3
in an implicit manner. Such phenomena can be observed in most
of the simulation runs, although the active site is not reached in all
of them. The 7n.oyae; and 1. view of the complete simulation en-
semble even shows that the path marked with the number 3 in Fig-
ure 6(a) is a common path across all runs. By checking the propor-
tions between the 7.onae, and gy value and comparing them with
the values of other amino acids, one can derive the directness of
the contacts. Where n.y,qc; 15 approximately the same as 7., only
slight contact is made, meaning that only few atoms of the ligand
are close to the surface. If n.ouqc 1s far larger than n.;y., more di-
rect contact can be assumed, as more atoms of the ligand are closer
to the viewed protein atom. Further inspection of other colouring
modes leads to the insight that these movements were performed by
multiple ligand molecules.

In addition to the pathways, another observation can be made. Our
project partners specifically requested the calculation of carbon-
carbon interactions, as the inspected ligand is nonpolar (cf. R4).
When checking the bond variables 1;,,s and 7., it becomes ob-
vious that most of the carbon-carbon interactions happen while the
ligand resides in a valley of the surface. In conjunction with 7.,
the conclusion is obvious that some valleys seem to hold the ligand
molecules in by forming bonds. With that knowledge, it is a possi-
bility to engineer another mutant of the protein that does not contain
such valleys.

Discussion. When confronted with the visualisation framework, our
project partners who conducted the simulation were especially fond
of the interaction possibilities. However, to understand the visualisa-
tion fully, it was necessary to explain that the x-axis of the sequence
diagram indeed depicts the amino acid sequence. After their feed-
back, we added legends to our visualisation and included the pos-
sibility to permanently mark certain amino acids. Additionally, we
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(a) Number of contacted atoms n¢onracr side view

(b) Landing spot count npers side view

(c) Landing spot count 7yp,s top view

Figure 6: Surface visualisation of the fourth run of the ensemble data set. The cavity containing the active site is marked with a yellow circle.
Images (b) and (c) show the same surface but from different angles. All of the detected landing spots (marks 1 and 2) are not inside or at the
border of the active site cavity. The Ncopae mesh (a) reveals that there was indeed ligand movement towards and from the active site (mark 3).
Additionally, it can be seen that ligands tend to stay rather long in the valley at mark 2.

tweaked the wording shown in the GUI to better meet their expecta-
tions. They also noted one minor drawback: As not all residues are
part of the surface all the time, no area may be marked in the surface
visualisation when clicking on a residue in the sequence view. This
behaviour is mitigated by the de-emphasis of residues without con-
tact. Additionally, our collaboration partners liked the fact that they
did not need to use additional software and could share the visuali-
sation with colleagues by simply sending them a link. Unexpected
by us, they also appreciated that the rotation of the surface visual-
isation stayed the same when switching colouring modes, helping
them to maintain orientation.

9.2. Application case II: Molecular docking experiment

Goal. Besides simulation data, our tool can also be used to anal-
yse docking results. Molecular docking experiments try to evaluate
possible and energetically favourable ligand orientations and posi-
tions on the protein’s surface. It is a frequently used method in drug
design, where the applicability of a newly developed drug (the lig-
and) is tested for a target protein (the receptor). The aim is to pre-
dict locations on the surface where the ligand will bind most prob-
ably. However, the opposite way is also possible. For computation-
ally modeled proteins, the active sites for given ligands are not al-
ways known beforehand or are not experimentally verified. Dock-
ing can help to discover all available active sites of the modeled
protein. Other existing systems for the investigation of molecular
docking, like the one of Seeliger and de Groot [SdG10], predomi-
nantly show only single ligands at a time. This does not allow for
the detection of general tendencies and may even be misleading, as
the most energetically favourable ligand position might be an out-
lier. To our knowledge, our tool is currently the only one to give a
protein-centric overview of all ligand conformations.

Input Data. The data set presented in this section falls in the lat-
ter category. Multiple ligands were tested against a given receptor
protein. For each ligand, several runs were performed, without spec-
ifying the target position on the surface of the protein. Each of the
runs comprises one hundred possible ligand conformations. In our

preprocessing step, each run was handled separately. As mentioned
in Section 6, not all of the calculated variables are applicable when
using docking data. While the upper five values of Table 1 work as
intended, none of the lower six is applicable. Since docking results
have no temporal component, calculation of time step-related vari-
ables is impossible. Due to the missing movement of the molecules,
neither landing spots nor the RMSF can be calculated.

Analysis and Results. After the preprocessing, domain experts
used our tool to explore the results. Figure 7 shows a cutout of the
CLISD, as well as the most relevant part of the protein surface of
one of the runs. In this case, hydrogen bonds were chosen as bond
types. Combining all information, three specific areas of interest can
be identified. The first is the area with the highest ligand presence
probability, namely the residue with the highest n,,;,,, value. Most of
the tested ligand molecules (82 out of 100) were docked in this lo-
cation, so some of the surface properties of the protein are highly
likely to be favourable for ligand docking. One of these reasons
might be a hydrogen bond formed at one certain location of the sur-
face, marked with a red border. The presence of this bond can be
investigated in the sequence view or the surface view by switching
to one of the two bond colouring modes. Our linked views allow
for a direct switch between the two representations. The third area
of interest is on the upper left of the surface view, marked in cyan.
Only few ligand molecules found there an energetically favourable
position to bind, leading to a slightly lighter tone of purple as sur-
face colour. When investigating this further, the lack of hydrogen
bonds in this location might be one of the reasons.

An additional feature of our visualisation is the easy identifica-
tion of outliers in the surface view. The visualised protein contains
multiple areas where ligands find a position to dock. In fact, there is
one on the other side of the protein, represented by the violet marked
bars on the far left of the CLISD. Depending on the application case,
such areas can be ignored or can be seen as a possible target for mu-
tations if one wants to optimise the reaction rates.

Discussion. For this concrete problem, ligand docking analysis, our
tool allows for an easy and direct visual identification of relevant
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M)

Figure 7: CLISD and surface visualisation showing the number of contacted time steps Neme of one single run of the molecular docking
data set. As docking only occurs in a specific area, both views have been cropped to these parts. In the surface view, a predominant docking
area, marked as green and yellow surface colour, can be identified. The highest contact values (Neontaer = 1168, nerime = 82, orange marks)
occur there. Only few actual hydrogen bonds are formed, but the most often occurring one (g = 20, red marks) is inside the crowded area.
This hydrogen bond may be one of the causes for the ligand’s tendency to bind at this location. Besides the crowded area, an area with fewer

contacts without hydrogen bonding can be identified (cyan marks).

Table 2: Data set sizes before and after aggregation.

Data set Original Json PDB Mesh

Simulation (1 run) 200 GB 68 KB
Simulation ensemble 2TB 68 KB
Docking (1 run) 65 MB 112 KB

357 KB 16 MB
357 KB 16 MB
623 KB 35 MB

Cursive values mark binary data sets, the other ASCII-encoded ones. As the
simulation run is part of the simulation ensemble, the size of the resulting
data stays the same, although it contains different values.

areas that may be prone to ligand binding. These specific input data
sets are also a good example for the other uses shown in Figure 2.
In addition to this, using the standardised output data, our col-
laboration partners were able to work with the aggregated results
even before the visualisation system was even usable. They used
MegaMol (other frameworks for protein surface visualisation were
also possible) to generate surface renderings for an upfront analysis
of the ligand density distribution.

9.3. Performance and scalability

For a data aggregation approach, not only the running times but also
the data set sizes are of importance. The smaller the final size is, the
easier it is to transfer and visualise. This, of course, also means a
higher data loss. The omitted data is in our case mainly the absolute
atom position of each atom and the accountability of specific lig-
ands to the observed effects. Resulting data set sizes are shown in
Table 2. It is observable that the resulting sizes heavily depend on
the size of a single snapshot. Although the ligand docking set was
much smaller in size than the other two, the resulting data is roughly
twice as large. The simulated protein consisted out of ~ 300, and
the ligand docking receptor protein out of ~ 500 amino acids. As
the single simulation run and the whole ensemble work on the same
data, the final data size is the same for both. This leads to compres-
sion by five orders of magnitude in the case of the ensemble. With

our approach being agnostic about the length of the simulation, it
is possible to process Petabytes of input data without increasing the
memory footprint. Please note that the mesh data could be further
compressed, as we chose the more easily writable ASCII-encoded
version of PLY instead of the binary variant.

As the aggregation times for the ligand docking data set were
dominated by startup overhead, we evaluated them for the first run
of the simulation data. The initial reading of the data to retrieve the
average atom positions to later on calculate the RMSF value took
699 s, the second run through the data for actual value aggregation
took 917 s. Timings do not include the writing time of the output
data. This results in a data throughput of about 150 MB/s, which
is close to the maximum reading speed of the used hard drive. The
results for the other runs are roughly the same, differing only by
a few seconds. Aggregation of the whole ensemble takes straight-
forwardly ten times longer than the calculation of one of the ten
ensemble members.

The final rendering of the aggregated values leads to no perfor-
mance problems whatsoever. We evaluated our web-based tool in
four different browsers (Google Chrome, Firefox, Opera, and Mi-
crosoft Edge). As it was not possible to turn off VSync for all
browsers, we left it on for all measurements. It appeared that the
visualisation reaches almost constant 60 fps, even with a moving
surface visualisation. Only small drops to roughly 30 fps were no-
ticeable as the user changes the input data set or performs a brushing
operation. Although our application also runs smoothly in modern
smartphone browsers, we recommend using at least a tablet to view
the results, due to the larger available screen size.

As shown, with the used data sets the preprocessing scales well
with the length of the data set. We could not observe effects like a
changing size of a single time step, which could influence the pre-
processing time in a non-linear manner, as the used data was not
diverse enough. As stated, the IO time was dominant in our case,
but with increasing sizes for single time steps the radius search for
ligand atoms could become dominant as it scales with O(mlogn)
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(m: no. of protein atoms, n: no. of ligand atoms) and not linearly.
Although the actual visualisation has no performance issues, avail-
able screen size could be a limiting factor for the CLISD. While our
approach scales better than the one of Vazquez et al. [VHG*18], for
example, too small bar widths can render the visualisation unread-
able. In our opinion, this limit is reached when the width for individ-
ual bars reaches values below 1 mm and the dividing room between
them values below 0.5 mm. For a screen width of 50 cm this is the
case when at least 233 amino acids have to be rendered emphasised
(still assuming that Wgg = 0.7). This can only be reached with ei-
ther very large proteins or evenly distributed ligand movement over
the complete surface. The latter was the case in the combined 10 run
dataset but the screen space issued to the emphasised amino acids
was still more than double than the specified limit.

10. Summary and Future Work

We presented an approach for the visual analysis of very large
protein-ligand interaction data sets. Our approach includes a data
aggregation pipeline as well as an interactive web-based visuali-
sation framework, which combines novel and traditional visualisa-
tions, namely an enhanced sequence diagram that supports level-
of-detailing (the CLISD) and a commonly used molecular surface
(the SES) of the targeted protein. Aggregating the values of inter-
est, like the number of contacted ligand molecules or the number
of found ligand landing spots, results in a data representation that
is completely independent of the number of snapshots of the under-
lying data set. Our web-based framework is then able to visualise
the overview of the simulation by adding as many variables as de-
manded. As mentioned above, the users can decide either to show all
the aggregated data or filter out some of them. Since our application
is lightweight and uses only standard web technologies like HTMLS5
and JavaScript. Therefore, and since the aggregated data has a small
memory footprint, it can even be used on mobile devices like smart-
phones or tablets. Domain scientists can use it to inspect the surface
of the receptor protein in the surface visualisation view. Via brushing
and linking, it is possible to identify amino acids that interact with
ligands in the novel abstract sequence diagram. Our enhanced se-
quence diagram de-emphasises low-value areas by decreasing their
size and, therefore, directs the attention of the user towards the more
important values. A zoomed-in detail view shows the full informa-
tion for each amino acid if required. We demonstrated the utility of
the aggregation and visualisation using an individual MD simulation
and a simulation ensemble, as well as ligand docking experiments.

In the future, we plan to incorporate aggregated ligand paths to
foster the understanding of the movement. This approach has al-
ready been used for water molecules in simulations, for example
by Bidmon et al. [BGB*08] or by Vad et al. [VBJ*17], and would
complement our surface-based visualisation. Another possible ex-
tension would be to incorporate additional interaction forces apart
from the three currently used ones (range-based, hydrogen bonds,
and carbon-carbon interactions). van der Waals forces, for exam-
ple, become relevant when the distance between atoms becomes
smaller. However, vdW forces are not as easily parameterizable as
other force types, which makes their calculation more difficult. Ad-
ditionally, a further incorporation of physico-chemical properties of
the surface into the precomputation could deliver more exact results.

Finally, an extension to protein-protein interactions may also be use-
ful to domain scientists.
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