
High Speed Lossless Image Compression

Hendrik Siedelmann1,2(B), Alexander Wender1, and Martin Fuchs1

1 University of Stuttgart, Stuttgart, Germany
hendrik.siedelmann@googlemail.com

2 Heidelberg University, Heidelberg, Germany

Abstract. We introduce a simple approach to lossless image compres-
sion, which makes use of SIMD vectorization at every processing step to
provide very high speed on modern CPUs. This is achieved by basing
the compression on delta coding for prediction and bit packing for the
actual compression, allowing a tuneable tradeoff between efficiency and
speed, via the block size used for bit packing. The maximum achievable
speed surpasses main memory bandwidth on the tested CPU, as well as
the speed of all previous methods that achieve at least the same coding
efficiency.

1 Introduction

For applications which need to process large amounts of image data such as
high speed video or high resolution light fields, the I/O subsystem can eas-
ily become the bottleneck, even when using a RAID0 or SSDs for storage. This
makes compression an attractive tool to widen this bottleneck, increasing overall
performance. As lossy compression incurs signal degradation and may interfere
with further processing, we will only consider lossless compression in the fol-
lowing. While dictionary based compression methods like lzo [18] can reach
a high bandwidth, the compression ratio of such generic compression meth-
ods is quite low compared to dedicated image compression methods. However,
research in lossless image compression has mainly been concerned with the max-
imization of the compression ratio, and even relatively fast image compression
schemes like jpeg-ls are not able to keep up with the transfer rates of fast I/O
configurations.

In this article, we present a simple lossless image compression scheme, which
makes use of the SIMD instructions of modern CPUs to achieve extremely high
performance. Our implementation allows a configurable tradeoff between speed
and compression and exceeds the memory transfer speeds of modern CPUs in its
fastest configuration, allowing incorporation of lossless compression into many
areas where compression was not feasible before. Our specific use case, which
motivated this work, is an example of such an application: recording a very large
and dense light field data set (several terabytes in size), requiring a continuous
compression bandwidth of 360 MiB/s, a rate which the used I/O configuration
was not able to guarantee on its own.
c⃝ Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 343–355, 2015.
DOI: 10.1007/978-3-319-24947-6 28



344 H. Siedelmann et al.

Fig. 1. Bandwidth vs. compression ratio for all tested methods, showing single core
results on an Intel R⃝ CoreTM i7-2600 CPU on the “blue sky” test sequence from the
SVT data set [12]. “BBP” denotes our method for several block sizes from 2048 to 4
bytes. An example 4xRAID0 configuration and main memory bandwidth are included
for comparison. The simdcomp method is the C implementation of [14] and can, in gen-
eral, not compress image data, but is shown for bandwidth comparison. For lzo, and
ffvhuff all configurations are shown, as well as all available presets for x264 and x265.

1.1 Applications of Lossless Image Compression

Compression is always a tradeoff of processing resources against bandwidth and
storage. While lossy compression provides high compression ratios, its applica-
tion is limited to areas where the distortion of the signal due to lossy compression
does not pose a problem. But in some cases losses are not acceptable. Examples
for this include reference data sets for image processing or sophisticated image
processing, like superresolution. In this case, lossless compression may still pro-
vide an overall performance increase due to bandwidth savings as well as reduced
storage requirements. However lossless compression provides less compression,
which reduces the gain obtained from using it. In many capture scenarios, the
required bandwidth for on the fly compression, before initial storage, imposes
a hard constraint. This is addressed by the proposed scheme, as compression
bandwidth can be adjusted to speeds that surpass memory transfer speeds, a
hard limit for any hardware configuration.

2 Related Work

In the following, we briefly discuss lossless compression methods that focus on
high speed, see Fig. 1 for an overview of evaluated methods. The methods are



High Speed Lossless Image Compression 345

ordered by the dimensionality of the compression scheme, starting with generic
1D compression algorithms. Any compression method with lower dimensionality
may be used to compress data with a higher dimensionality at reduced effi-
ciency, as correlation in the missing dimensions cannot be exploited. On the
other hand, lower dimensionality can lead to lower algorithmic complexity and
therefore higher speed. While the method discussed in this paper is a pure image
compression method, we will regard and evaluate compression from the basis of
compressing a video stream, which allows the inclusion of advanced lossless video
compression methods like AVC and HEVC which allow higher compression ratios
by exploiting the 3D correlation. Also applications for high bandwidth image
processing like light field, or high speed video capture, may allow the use of video
compression methods, making an evaluation based on video data adequate.

2.1 Dictionary and 1D Compression

General purpose compression methods like deflate (zlib/gzip) [10] or bzip2
[23] achieve good compression ratios for most types of inputs, but are quite slow,
with a maximum bandwidth of around 30 MiB/s on an off-the-shelf Intel Core
i7-2600 CPU. Faster methods, including lzo, lz4 and gipfeli [9,15,18] are
more directly based on the original LZ77 compression scheme [28] and provide a
bandwidth of up to 152 MiB/s for our configuration, see Fig. 1. This performance
has led to the utilization for lossless 4K image transmission [11], but compared
to image based methods the compression ratio is rather poor, as dictionary based
methods are not well suited to the task of image coding. Specialized methods
adapted for specific tasks, like integer or floating point compression, provide a
much higher speed of several gigabytes per second, by using a simple bit packing
approach [8,14] and exploiting the SIMD instructions provided by modern CPU
architectures [14]. However, those methods operate on 32 bit integers or 64 bit
floating point values and are thus not directly applicable to the compression of
8 bit image data. We have developed an algorithm which uses SIMD bit packing
for the actual compression, combining it with a prediction scheme and small
block sizes, allowing efficient compression of image data. See Sect. 3 for details.

2.2 Image Compression

Dedicated lossless image compression methods like jpeg-ls [27] peak at around
25MiB/s, with modifications reaching 75MiB/s on an Intel R⃝ CoreTM i7-920
processor at 2.67 GHz [26]. The jpeg-ls codec was standardized in 1999 and is
still widely used as the baseline for the evaluation of lossless image compression
methods. To our knowledge there are no significantly faster methods available,
even though the gap to the fastest 1D compression method [14] amounts to more
than two orders of magnitude. Later works mainly concentrate on increasing
compression efficiency at reduced speed, which is not the focus of this work.

2.3 Video Compression

State of the art video standards like HEVC, as well as its predecessor AVC, include
lossless profiles which provide high compression ratios. The ffvhuff coder from



346 H. Siedelmann et al.

the ffmpeg library [3] based on HuffYUV [24], which uses the jpeg-ls predic-
tor together with simple Huffmann coding, obtains a speed of 343 MiB/s, the
highest speed for any video codec we evaluated, see Fig. 1. Another interesting
compressor is the ffv1 coder [17] at 44 MiB/s, also from ffmpeg, which com-
bines a jpeg-ls style predictor with a context adaptive entropy coder, based
on similiar principles as the one from AVC, with context adaption over several
frames. The ffv1 coder achieves a compression ratio and speed competitive to
AVC, see Fig. 1.

2.4 GPU Aided Compression

There have been various efforts to improve the performance of different com-
pression techniques by using the massively parallel computation capabilities of
modern GPUs. For 1D compression a text based method has been ported to the
GPU by Ozsoy et al. [21] demonstrating a speedup of up to 2.21x for the GPU
solution. Floating point compression based on bit packing has also been shown
to reach a speedup of 5x [20], but at the cost of a reduced compression efficiency
and in comparison to a CPU version which does not make use of SIMD for bit
packing, like implemented in [14].

An approach for GPU based predictive lossless image coding has been pre-
sented by Kau and Chen, showing a speedup of up to 5x with a combined system
utilizing GPU and CPU [13], however absolute performance is quite low at less
than 1 MiB/s. The cuj2k library, implementing jpeg2000 on the GPU provides
similar performance to a parallel jpeg2000 implementation for the CPU [2].
The work presented by Treib et al. [25], implementing a simple wavelet based
compressor, provides results with slightly worse compression than jpeg2000 but
with a compression speed of up to 700 MiB/s, which is significantly higher than
previous approaches.

The difficulties in porting standard image compression methods to the GPU
are analyzed by Richter and Simon [22], specifically for jpeg and jpeg2000.
They conclude that especially the entropy coding part proves difficult for mod-
ern GPUs, together with the codestream build-up. Their observations include
also the case where a highly optimized CPU implementation outperforms a GPU
based approach. These considerations have led us to the conclusion that a care-
fully implemented CPU image compression algorithm that takes advantage of
modern SIMD instruction sets may already provide a significant boost in lossless
compression speed. Another advantage of the CPU only implementation is that
the GPU remains free for image based processing tasks, for which it is better
suited. However, there still is the opportunity for further research to investigate
the potential of a GPU based implementation, but a CPU implementation is
needed for a thorough comparison.

3 Compression Scheme

From the above methods, we found the SIMD based integer compression method
to be the most promising approach for a fast compression scheme, due to the



High Speed Lossless Image Compression 347

Fig. 2. Flow chart illustrating the compression procedure. An input stream (a) is
processed with delta coding, frequency substitution and bit packing, see Sects. 3.2 to
3.5, producing a packed output stream (b), as well as the number of significant bits
per block (c). The number of significant bits can change slowly from block to block,
therefore (c) is fed through the same compression procedure to produce the final output
streams (d) and (e) which, together with (b), compose the compressed output.

demonstrated high performance. However, bit packing is not directly possible
with image data. A prediction scheme enables decorrelation of neighboring pixels
and allows bit packing of the residuals, see Sect. 3.2, but the scheme still has
to overcome several hurdles compared to the bit packing method using 32 bit
integers from [14]:

Less Latitude: For image data, the bit depth is normally 8 bit compared to at
least 32 bit in database indices, so each additional bit needed for the encoding
has four times the impact on the overall compression performance.

Large Block Size: While SIMD on x86 has a width of 16 bytes, the implemen-
tation in [14] uses block sizes of 128 integers, respectively 512 bytes. Image data
has a much higher variance compared to database indices, especially consider-
ing the smaller range for 8 bit data. Therefore, a smaller block size is required
for efficient image compression, resulting in an increased overhead for signaling
significant bit counts, which is especially problematic considering the greater
impact of this overhead. Also, constant per block computations like signaling
and branching depending on significant bit counts, have a higher impact on
processing times with smaller block sizes.

Missing SIMD Instructions: On x86 many instructions that are available for
processing 32 bit integers, as for example shifts, are not available in byte variants
and have to be replaced by a more expensive combination of 32 bit shift and
mask operations.

Size Increase Due to Delta Coding: In contrast to database indices, pixels in
an image are not sorted by value and deltas between consecutive pixels therefore
require one extra sign bit, increasing the compressed size by 12.5% for naive
delta coding.

3.1 Overview

Our approach, see Fig. 2, revolves around the concept of bit packing, which is the
compression of integers by storing only the significant bits for each input value.
To facilitate vectorization and to avoid excessive overhead due to the coding of
significant bit counts, we apply bit packing to whole blocks of bytes, with larger



348 H. Siedelmann et al.

Fig. 3. Illustration of the interleaved bit packing scheme. For clarity the depicted
blocks have a size of four samples with four bits each, instead of 8 bits as in the actual
implementation. Bits are represented by boxes, significant bits are colored, white blocks
have a value of zero. The packing routine distinguishes two cases: either there is enough
space to store the significant bits, as is the case with block i and i+2, or the block has to
be split between the current and next output block, as with block i+1 in the illustration.
The colored arrows denote executed operations. Please note that the operations are
always performed with the whole SIMD width and not per element.

block sizes resulting in higher performance at reduced compression efficiency. We
use a very simple prediction scheme, trading coding efficiency for higher speed:
We refer to this whole scheme as block-wise bit packing (BBP). Compared to
Huffmann or arithmetic coding, bit packing cannot adapt to the distribution of
symbols. Therefore, we employ frequency substitution in order to encode more
frequent values, i.e. values with a higher probability of occurrence, with less
significant bits, see Sect. 3.4. As bit packing results in a variable length code
which is not prefix free, and correct decoding thus requires that the number
of significant bits is known to the decoder via external means, the significant
bit lengths have to be signaled separately. The need to store the number of
significant bits is another reason, apart from vectorization, for the division into
blocks. As the block size approaches one byte, the overhead of signaling the
number of significant bits outweighs the increase in coding efficiency. To reduce
the efficiency loss at all block sizes, which occurs due to the overhead for signaling
significant bit lengths, the whole scheme is also applied to the data stream which
signals those bit lengths, exploiting the correlation between successive blocks.

3.2 Prediction in 1 Dimension

Delta coding can be regarded as the most simple form of prediction based com-
pression: each sample is predicted to have the same value as the last one, so
calculation of the residual simplifies to the calculation of the difference between
the two samples. A problem with such prediction schemes is the necessity to
calculate a prefix sum when decoding. While parallel calculation of the pre-
fix sum is possible, performance is still reduced. The integer coding by Lemire
et al. [14] avoids the problem by using a fixed offset of 16 Bytes, which the
authors report to increase the average delta by a factor of four.

In contrast to the database indexes they address, image data is correlated in
two dimensions. Normally, this is exploited to improve compression efficiency by



High Speed Lossless Image Compression 349

using a 2D predictor, such as the median edge predictor in jpeg-ls. We exploit
the two-dimensional correlation to accelerate performance by coding the delta
between vertical pixel neighbors, followed by the packing of horizontal blocks
using SIMD. The correlation in the vertical direction provides residuals that are
smaller than the actual sample values, while horizontal correlation means that
a horizontal block tends to group samples with similar significant bit lengths,
reducing efficiency loss due to block-wise handling.

Additionally, this gives a large flexibility for the layout of the input data.
Because of the in-memory layout as continuous chunks of memory, the vertical
prediction can be implemented with simple pointer arithmetic. The address of
the previous line is calculated using the address of the current line minus a fixed
offset, which is normally the width of the image. If the input data consists of
interleaved samples, e.g. RGB images or raw Bayer patterns, then the offset may
be adjusted, so that prediction is always executed from the same sample type,
avoiding costly preprocessing steps for format conversion.

3.3 Modulo Delta Coding

As the difference between predicted and observed value may be anywhere
between -255 and 255, it cannot be coded naively inside an 8 bit range. To
avoid the necessity of expanding the coding range to 9 bit, which would halve
the effective SIMD width and waste one bit of space, we utilize modular arith-
metic over Z/256Z.

3.4 Frequency Substitution

The prediction residuals from delta coding tend to follow a two sided geometric
distribution [16,19], where small differences are very common. While small values
are well suited for bit packing, the use of non-saturated wrapping arithmetics
maps small differences, like −1, to potentially large values (255 in this case),
which requires all 8 bits for encoding. To compensate for this effect, we apply
a substitution, ordered by the minimal absolute difference: 0 stays 0, −1 ≡ 255
maps to 1, −255 ≡ 1 maps to 2, −2 ≡ 254 maps to 3, etc. This mapping is
identical to the scheme often used when mapping signed to unsigned integers in
the context of universal codes, as used by jpeg-ls and AVC when using Golomb
codes for the entropy stage, just applied with respect to the implied modulo
operation.

This mapping describes a triangle function with a slope of 2, where the first
slope maps to even values and the second slope to odd values. This function is
suitable for SIMD implementation, leading to high performance.

3.5 Block-Wise Interleaved Bit Packing

The packing uses a vertical layout, where a block of n bytes is interleaved into
a block of the same size, with unused bits remaining at the same position in



350 H. Siedelmann et al.

every byte. Consecutive blocks are interleaved into the unused bits for each byte
in a block, until no unused bit remains, which leads to the write out of the
current block and allocation of the next one, see Fig. 3 for a visualisation of the
procedure. Compared to a computed jump to one of the different bit packing
routines, depending on unused and required bits, as implemented in [14], we only
branch over the block full condition and process any bit combination using the
same code, with computed shifts and masks. This single branch is the only one
within the compression loop, leading to low misprediction rates. This approach
results in a lower performance penalty for small block sizes, which are necessary
for efficient image compression.

4 Evaluation

The following sections will outline the conditions of the evaluation, which was
performed on an Intel R⃝ CoreTM i7-2600 Processor running at 3.4GHz.

4.1 Implementations

Our implementation for the introduced method is executed in C, making exten-
sive use of compiler intrinsics for SIMD operations as well as constant propaga-
tion and link time optimizations to realize portable, modular and easily extended
code. As SSE3 instructions, released in 2006, have become quite ubiquitous on
the x86 platform, we have targeted it in the evaluations presented in this article
(AVX, which became available in 2011, focused on floating point operations and
was therefore not considered). To allow a more detailed insight into the actual
implementation, our code – including non-vectorized C fallback and an unopti-
mized implementation for the ARM NEON SIMD extension – will be released
online under an open source license.

The implementations for the image and video compression methods were
taken from the ffmpeg library [3], except the AVC (libx264 [6]), HEVC (libx265
[1]) and jpeg2000 encoders (libopenjpeg [4]), which are provided by external
libraries, but are still integrated within ffmpeg. The implementation of Lemire
et al. [14] was also evaluated to show the performance possible when executing
pure bit packing, although no compression could be achieved on the used data
set. To test the dictionary methods the open source squash library [5] was used,
which incorporates a broad range of generic compression methods, using the
respective reference implementations.

4.2 Method

To minimize the effect of memory transfers for the fastest methods, the com-
pression was executed on chunks of 64KiB, which allows the whole compression
to take place within the 256KiB L2 cache of the Intel R⃝ CoreTM i7-2600, for
which we measured a bandwidth of 25GiB/s. Timings were obtained for each
coder, by reading the file in chunks, measuring 16 repeated runs of the coder in



High Speed Lossless Image Compression 351

one go, to avoid the influence of the execution time of the timing syscall on the
measured bandwidth. Measuring only a single iteration resulted in a bandwidth
up to 30% lower for the fastest coders. Note that the results of the video com-
pression methods were obtained by running ffmpeg in benchmark mode, thus
including memory transfer and management overhead. However extra measure-
ment of the pure decoding performance of ffmpeg indicate an overhead of less
than 3% for the fastest measured video compression method.

4.3 Data Set

The results shown in Fig. 1 were obtained by executing the benchmark described
in Sect. 4.1 on the uncompressed “blue sky” test sequence from the SVT data set
[12]. The specific sequence was selected because it is easy enough as a compres-
sion challenge that all methods achieved at least minimal compression, while still
being a recording of a natural scene, containing noise and other artifacts, which
make compression more challenging than computer generated imagery. The scene
was converted to grayscale as this was the only format compatible with all tested
implementations. More complex scenes caused some coders, specifically lzo, to
fall back into a non-compressing mode with a much higher bandwidth of nearly
1.7 GiB/s, see Table 1. While such a mode is a useful fallback if compression is
not possible, such a behavior does not provide useful data for this evaluation.
Please refer to the supplemental materials for a more extensive list of benchmark
results for several different sources.

4.4 Results

A comparison of the performances of all evaluated compression algorithms can
be found in Fig. 1. Positions in the plot show the relative performance of methods
against each other, with faster methods towards the top and better compress-
ing methods to the right. The evaluation of the performance of the different
compression methods can be summarized as follows:

– Even the fastest generic compression methods are dominated by the dedi-
cated image and video compression methods, as they achieve relatively low
compression ratios without higher speed.

– Most of the methods optimized for image or video compression can provide
better compression ratios, but at a significantly lower bandwidth.

– Our implementation can provide a very high bandwidth of over 6GiB/s, much
faster than previous methods, while it is also able to provide a compression
ratio approaching that of the previously fastest dedicated image compression
methods.

Regarding encoding speed, the closest contender to our method is ffvhuff,
which is several times slower, but achieves slightly higher compression of up to
1:2.0. The two video coders x264 and x265 produce the highest compression
at up to 1:2.48 and 1:2.68 respectively, but at a noticeable penalty in encoding



352 H. Siedelmann et al.

speed. The jpeg-ls coder can not keep up with this performance but is still
notable as the relatively high compression ratio of 1:2.32 is achieved by a pure
image coder, which is unable to exploit the temporal correlation.

4.5 Minor Findings

The performance of the different compression methods depends to a varying
degree on the specific data set, please see Table 1 for benchmark results of a few
coders on different sources, more are available in the supplemental materials.
While a detailed analysis of the speed variability was out of scope for this work,
the basic pattern seems to be that the more complex a method the higher the
dependency of the performance on the input characteristics. Specifically the
relatively simple method implemented in this work, as well as the method in
[14] and ffvhuff show a moderate dependency on the input characteristics,
while most video compression methods and the dictionary based methods show
a more complex behavior. The most variability was observed by the lzo coder
for which performance varied by a factor of ten depending on the input.

Table 1. As this extract from our tests (see the supplemental material for all results)
shows, compression ratio and speed vary a lot with the content, with some correlation
between high throughput and better compression rates. The results for lzo indicate a
special mode for non-compressible input. The best results for bandwidth and compres-
sion ratio are marked in bold for each file, the fastest and slowest result for each coder
in italic. For our method block sizes of 8 and 128 bytes were selected as representative
tradeoffs, please refer to Fig. 1 for an overview of all possible block sizes and their
respective performance.

Bandwidth in MiB/s Compression Ratio

Coder File 1 File 2 File 3 File 4 File 5 File 1 File 2 File 3 File 4 File 5

BBP-8 975 992 947 1307 1022 1.31 1.71 1.38 5.16 1.51

BBP-128 3993 4236 3957 4835 4199 1.16 1.28 1.14 3.42 1.31

ffvhuff 329 343 308 479 339 1.45 1.96 1.39 3.47 1.59

x264-ultrafast 101 76 72 206 109 1.49 1.95 1.47 9.17 1.84

density 245 150 311 198 227 1.02 1.20 0.99 1.66 1.04

lzo1x 633 141 1668 334 427 1.02 1.21 1 3.69 1.04

5 Discussion and Future Work

As shown in Sect. 4.4, the performance achieved by our method is significantly
higher than any previous method. In the fastest configuration the achievable
performance surpasses the memory bandwidth, although at a considerable loss
in compression efficiency, while the simple bitpacking method of Lemire et al.



High Speed Lossless Image Compression 353

[14] roughly doubles this performance, without achieving any compression for
the evaluated content.

While one could expect the performance of an implementation to scale well
with the SIMD width, which is effectively the level of parallism, preliminary
results for the new AVX2 extensions, operating with a SIMD width of 256 bits,
indicate a speedup of less than 40% compared to the 128 bit wide SSSE3 imple-
mentation, suggesting that a large portion of the execution time is not spent on
pure arithmetics, but on cache misses and branch misprediction. The expected
AVX-512/AVX3 instructions will warrant further examination of this property.

In the introduced method, compression is based solely on 2D correlation.
A candidate for an efficient disparity compensation based solution could be based
on PatchMatch [7], which could be used to evaluate only few candidates per pixel
over several iterations, propagating good solutions over the frame.

Also, the high performance of the method has implications for applications
limited by main memory size or bandwidth. The compression scheme supports in-
memory compression to increase available memory as well as to increase memory
bandwidth, provided access patterns permit the decompression and processing
to execute from within the CPU caches.

6 Conclusion

This work shows how to overcome the bandwidth limitations of previous lossless
generic and image specific compression methods, while providing a reasonable
compression performance. This does not only enable lossless image compression
for applications which could not previously make use of it, but also provides
interesting possibilities for image processing tasks, regarding memory bandwidth
and utilization optimizations.

Acknowledgements. This research was financially supported by the Juniorprofes-
sorenprogramm Baden-Württemberg.

References

1. x265 HEVC high efficiency video coding H.265 encoder (last accessed on 17 Decem-
ber 2014). http://x265.org/

2. JPEG 2000 on CUDA (last accessed on 27 May 2015). http://cuj2k.sourceforge.
net/

3. A complete, cross-platform solution to record, convert and stream audio and video.
(last accessed on 27 May 2015). https://www.ffmpeg.org

4. OpenJPEG library : an open source JPEG 2000 codec (last accessed on 27 May
2015). http://www.openjpeg.org/

5. Squash - compression abstraction library (last accessed on 27 May 2015). http://
quixdb.github.io/squash

http://x265.org/
http://cuj2k.sourceforge.net/
http://cuj2k.sourceforge.net/
https://www.ffmpeg.org
http://www.openjpeg.org/
http://quixdb.github.io/squash
http://quixdb.github.io/squash


354 H. Siedelmann et al.

6. VideoLAN - x264, the best H.264/AVC encoder (last accessed on 27 May 2015).
http://www.videolan.org/developers/x264.html

7. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A ran-
domized correspondence algorithm for structural image editing. In: Proceeding of
SIGGRAPH ACM Transactions on Graphics vol. 28, no. 3, August 2009

8. Burtscher, M., Ratanaworabhan, P.: FPC: a high-speed compressor for double-
precision floating-point data. IEEE Trans. Comput. 58(1), 18–31 (2009)

9. Collet, Y.: LZ4 explained, May 2011. http://fastcompression.blogspot.co.at/2011/
05/lz4-explained.html

10. Deutsch, P.: Deflate compressed data format specification version 1.3. RFC 1951,
May 1996. https://tools.ietf.org/html/rfc1951

11. Gomes, R.D., Costa, Y.G.G.d., Aquino Júnior, L.L., Silva Neto, M.G.d., Duarte,
A.N., Souza Filho, G.L.d.: A solution for transmitting and displaying UHD 3d raw
videos using lossless compression. In: Proceedings of the 19th Brazilian Sympo-
sium on Multimedia and the Web, pp. 173–176, WebMedia 2013. ACM, New York
(2013). http://doi.acm.org/10.1145/2526188.2526228

12. Haglund, L.: The SVT high definition multi format test set. Swedish Television
Stockholm (2006). https://media.xiph.org/video/derf/

13. Kau, L.J., Chen, C.S.: Speeding up the runtime performance for lossless image
coding on GPUs with CUDA. In: IEEE International Symposium on Circuits and
Systems (ISCAS), 2013, pp. 2868–2871, May 2013

14. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. CoRR abs/1209.2137 (2012). http://arxiv.org/abs/1209.2137

15. Lenhardt, R., Alakuijala, J.: Gipfeli-high speed compression algorithm. In: Data
Compression Conference (DCC), 2012, pp. 109–118. IEEE (2012)

16. Netravali, A., Limb, J.O.: Picture coding: a review. Proc. IEEE 68(3), 366–406
(1980)

17. Niedermayer, M.: FFV1 video codec specification, August 2013. http://www1.
mplayerhq.hu/michael/ffv1.html

18. Oberhumer, M.F.: oberhumer.com: LZO real-time data compression library (last
accessed on 27 May 2015). http://www.oberhumer.com/opensource/lzo/

19. O’Neal, J.: Predictive quantizing systems (differential pulse code modulation) for
the transmission of television signals. Bell Syst. Tech. J. 45(5), 689–721 (1966)

20. O’Neil, M.A., Burtscher, M.: Floating-point data compression at 75 Gb/s on a
GPU. In: Proceedings of the Fourth Workshop on General Purpose Processing
on Graphics Processing Units, pp. 7:1–7:7, GPGPU-4. ACM, New York (2011).
http://doi.acm.org/10.1145/1964179.1964189

21. Ozsoy, A., Swany, M., Chauhan, A.: Pipelined parallel lzss for streaming data
compression on GPGPUs. In: IEEE 18th International Conference on Parallel and
Distributed Systems (ICPADS), 2012, pp. 37–44, December 2012

22. Richter, T., Simon, S.: Coding strategies and performance analysis of GPU accel-
erated image compression. Picture Coding Symp. (PCS) 2013, 125–128 (2013)

23. Seward, J.: bzip2 and libbzip2 (1996). http://www.bzip.org
24. Togni, R.: Description of the HuffYUV (HFYU) codec, March 2003. http://

multimedia.cx/huffyuv.txt
25. Treib, M., Reichl, F., Auer, S., Westermann, R.: Interactive editing of gigasam-

ple terrain fields. In: Proceeding Eurographics Computer Graphics Forum, vol.
31, no. 2, pp. 383–392 (2012). http://diglib.eg.org/EG/CGF/volume31/issue2/
v31i2pp383-392.pdf

http://www.videolan.org/developers/x264.html
http://fastcompression.blogspot.co.at/2011/05/lz4-explained.html
http://fastcompression.blogspot.co.at/2011/05/lz4-explained.html
https://tools.ietf.org/html/rfc1951
http://doi.acm.org/10.1145/2526188.2526228
https://media.xiph.org/video/derf/
http://arxiv.org/abs/1209.2137
http://www1.mplayerhq.hu/michael/ffv1.html
http://www1.mplayerhq.hu/michael/ffv1.html
http://www.oberhumer.com/opensource/lzo/
http://doi.acm.org/10.1145/1964179.1964189
http://www.bzip.org
http://multimedia.cx/huffyuv.txt
http://multimedia.cx/huffyuv.txt
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf


High Speed Lossless Image Compression 355

26. Wang, Z., Klaiber, M., Gera, Y., Simon, S., Richter, T.: Fast lossless image com-
pression with 2d golomb parameter adaptation based on JPEG-LS. In: Proceedings
of the 20th European Signal Processing Conference, EUSIPCO 2012, Bucharest,
Romania, August 27–31, 2012, pp. 1920–1924 (2012). http://ieeexplore.ieee.org/
xpl/freeabs all.jsp?arnumber=6334076

27. Weinberger, M., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compres-
sion algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image
Process. 9(8), 1309–1324 (2000)

28. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977)

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6334076
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6334076

	High Speed Lossless Image Compression
	1 Introduction
	1.1 Applications of Lossless Image Compression

	2 Related Work
	2.1 Dictionary and 1D Compression
	2.2 Image Compression
	2.3 Video Compression
	2.4 GPU Aided Compression

	3 Compression Scheme
	3.1 Overview
	3.2 Prediction in 1 Dimension
	3.3 Modulo Delta Coding
	3.4 Frequency Substitution
	3.5 Block-Wise Interleaved Bit Packing

	4 Evaluation
	4.1 Implementations
	4.2 Method
	4.3 Data Set
	4.4 Results
	4.5 Minor Findings

	5 Discussion and Future Work
	6 Conclusion
	References


