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Abstract We present implicit visualization of vector field topology by means of
adaptive sampling by streamlines and determination if the streamlines sufficiently
approach a critical point. We exemplify our approach using different 2D flow fields.

1 Introduction

Vector field topology is concerned with the identification and extraction of regions
of qualitatively different streamline behavior within the domain of a steady vector
field. The behavior is determined with respect to spatial convergence as time reaches
±∞. The structures that the streamlines converge to include critical points (isolated
zeros of the vector field) and periodic orbits (isolated closed streamlines). Both criti-
cal points and periodic orbits can be classified in terms of their attraction/repulsion
behavior. Those exhibiting both attracting and repelling behavior are classified as
hyperbolic or saddle-type.

Traditionally, vector field topology is visualized by means of graphical repre-
sentation [4] of the critical points, periodic orbits, and their manifolds (so-called
separatrices, consisting of streamlines that converge to saddle-type critical points
or saddle-type periodic orbits in forward-time or reverse direction). Although this
approach is very successful, it involves several difficulties: First, it depicts the boun-
daries of the different regions by means of separatrices, but does not depict the re-
gions themselves, hence complicating interpretation. Second, it may require the ex-
traction of further topological structures such as attachment/detachment points [4],
boundary switch points [8], and bifurcation lines [5], together with the respective
separatrices that converge to those structures in forward or reverse time direction.
Beyond that, it may require explicit treatment of more intricate structures such as
strange attractors.

All this motivates us to propose implicit visualization of vector topology, i.e.,
instead of extracting separatrices, i.e., the boundaries of the regions, we focus here
on the visualization of the regions themselves. In the present state of this work, we
accomplish this by extracting all critical points of a vector field, densely seeding
streamlines, and assigning each seed of a streamline the ID of the critical point that
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Fig. 1 Grid refinement. Red curve represents separatrix to be captured, with streamlines seeded
on both of its sides reaching different critical points. (a) After initial streamline integration from
the grid nodes, the ID of the respective critical point is stored at the node (blue/green). (b) If two
nodes with different labels share an edge, all edges sharing those nodes are subdivided by inserting
a new node at the edge midpoint. These new nodes are incorporated into the grid using Delaunay
triangulation. (c) The process is repeated until minimum edge length threshold is reached.

it converges to. Since it would take infinite time to test if a streamline reaches a
critical point, we define a sphere with radius ε around each critical point and test if
the streamline enters such a sphere. To reduce the costly streamline integration, we
present a refinement scheme that increases the sampling at the resulting boundaries,
i.e., at the implicitly visualized separatrices. We exemplify our approach with 2D
vector fields, but it can be trivially extended to 3D, which we plan to do.

2 Method

The input to our technique is the vector field, the positions of its critical points, the
diameter ε of the spheres around the critical points, a 2D uniform sampling grid
(representing the region of interest for analysis) with cell size δ , and a refinement
threshold σ . We choose δ < 2ε to make sure that there is at least one node of the
sampling grid within each sphere. The algorithm consists of two phases.

In the initial phase, each critical point is given a unique non-negative ID, and
a streamline is seeded at each node of the sampling grid and integrated over the
predetermined time with the fourth-order Runge-Kutta scheme. After integration,
each streamline p consists of Np vertices such that xp,0 is the seed and xp,Np−1 is the
last vertex of the streamline. Subsequently, we search for the first vertex along the
streamline that is contained in one of the spheres centered at the critical points. If
we find such a vertex, we store the respective ID of the critical point at the seed node
of the sampling grid. Otherwise, we set the respective node to ID −1. This results
in a scalar field defined on our sampling grid.

In the second phase, the sampling grid is iteratively refined to capture the details
of the topology of the vector field. First, we employ Delaunay triangulation of the
sampling nodes to obtain a triangular mesh. Then, for each edge of this mesh with
edge length≤ σ , the IDs of its two vertices are compared. If the IDs differ, all edges
sharing these two vertices are subdivided, i.e., a sample node is added at their mid-
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Fig. 2 Periodic Orbit dataset. (a) LIC [2] representation of the vector field with attracting-focus
critical point at its center (red dot), and color legend on the left. (b) Implicit visualization reveals
topological region (red) where streamlines are attracted toward the critical point. The boundary of
this region implicitly depicts the periodic orbit.

point, see Figure 1. Once all additional nodes are determined, we seed streamlines
at their position and determine their ID as described above. This process is iterated,
i.e., we continue with the Delaunay triangulation step above. Since the edges with
different IDs are halved in each step, this procedure converges to a sampling of the
vector field topology at resolution σ .

The whole algorithm is performed forward and backward in time in order to
capture the regions of different behavior, e.g., with respect to convergence to sinks
and sources. We implemented our approach as a ParaView plugin [1], where the
vector field and critical points are given as input, and we plan to make the source
code publicly available.

3 Results

The first data set we apply our technique to, is a synthetic vector field with a repel-
ling periodic orbit around a critical point of type attracting focus (see Figure 2(a)).
Our technique extracts in forward time the topological region connected to the cri-
tical point (Figure 2(b), i.e., the region within the periodic orbit. The disk boundary
implicitly reveals the periodic orbit, since the streamlines started outside the perio-
dic orbit reach the domain boundary.

The Buoyant Flow dataset is a single time step from a computational fluid dyna-
mics simulation of buoyant flow in a closed container with resolution of 102×102
nodes (see Figure 3(a)). This dataset exhibits critical points of type focus (very
close to the center type, i.e., very small outflow/inflow) and saddle. The Rotated
Flow dataset was obtained by rotating the vectors of the Buoyant Flow dataset by
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Fig. 3 (a) LIC representation of the 2D Buoyant Flow dataset, with color indicating velocity mag-
nitude (color legend on the left). Critical points by red dots. (b) Rotated Flow dataset.

(a) (b) (c)

Fig. 4 Rotated Flow dataset. Implicit visualization with forward (a) and backward (b) integration.
(c) Overlay of (a) and (b) reveals the topological structure of the vector field.

90 degrees counterclockwise (Figure 3(b)). This way, sources and sinks were obtai-
ned from centers with clockwise and counterclockwise rotation, respectively, while
saddles have retained their type.

For both datasets, the threshold σ for the minimum edge length was set to 1.2×
10−4, which corresponds to 0.12d, where d is the diagonal of a cell from the dataset.
For the Rotated Flow dataset, the refinement resulting from different values of σ

is shown in Figure 5, where already with the chosen σ (Figure 5(c)) the details
are well captured. The critical point radius ε was set to ε = 7.071× 10−4 for the
Rotated Flow dataset. As will be shown below, this value was insufficient to capture
the whole topological structure in the Buoyant Flow dataset, in which case we used
ε = 14.142×10−4.

In the Rotated Flow dataset, Figure 4(a) and (b) shows topological regions for
forward and backward streamline integration. The critical points, representing sour-
ces and sinks, can be seen as colored dots which have been captured by the refine-
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Fig. 5 Buoyant Flow dataset (forward integration, as in Figure 4(a)), with region marked with
green box (a) enlarged for σ = 2.4× 10−4 (b), σ = 1.2× 10−4 (c) and Fig. 4, and σ = 0.6×
10−4 (d). Smaller values of σ provide improved accuracy but cannot reveal additional regions.

ment. The color of the regions indicates the respective critical point ID. The overlay
of our result from both integration directions (see Figure 4(c)) reveals the topolo-
gical structure of the vector field, with region boundaries representing separatrices.
Interestingly, a partially developed region corresponding to the saddle point in the
green box in Figure 4(b) can bee seen. The backward integration captures the diago-
nal region (top left to bottom right) corresponding to a sepratrix, since streamlines
do not diverge strongly from the separatrix, and hence more remote streamlines
reach this critical point. In case of forward integration, however, the streamlines di-
verge faster from the separatrix (bottom left to top right) and hence the separatrix is
not captured at the given maximum resolution σ . Interestingly, in the Buoyant Flow
dataset, the regions corresponding to the separatrices emerging from that critical
point are captured as fully developed closed curves (see green box in Figure 6(c)). It
is worth noting that, as can be seen in Figure 6(a) and (b), the smaller critical point
radius ε = 7.071× 10−4 leads to disconnected separatrices corresponding to the
saddle point (green box), since, due to relatively high streamline divergence around
the sepatrices, few of them reach the critical point. Only after doubling the radius to
ε = 14.142×10−4, do the streamlines reach the saddle point, therefore closing the
separatrix.

Regarding the computation characteristics, a substantial part of computation is
spent in streamline tracing, where in the first iterations, it consumes about hundred
times more time than Delaunay triangulation (i.e., 40s versus 0.4s). With decrea-
sing number of inserted streamlines and increasing number of grid points, this ratio
changes, and in the final iterations (after 50 iterations) Delaunay triangulation takes
three times longer than streamline computation (i.e., 11s versus 4s).
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Fig. 6 Buoyant Flow dataset. With tolerance ε = 7.071× 10−4, the blue thin lines representing
separatrices are disconnected for forward (a) and backward (b) integration due to limited sampling.
With tolerance ε = 14.142×10−4, the lines are closed for both integration directions ((c) and (d)),
and therefore clearly show the topological region constrained by the separatices.

4 Conclusion

In this paper, we presented a technique for implicit visualization of vector field topo-
logy. It extracts regions of different flow behavior by assigning the ID of the critical
point reached by a streamline started at a given point. This way, separatrices and
periodic orbits enclosing repelling or attracting critical points are revealed as the
boundaries of these regions. We presented a grid refinement method to improve the
quality of the extracted regions, and exemplified its utility with different datasets.
As future work, we would like to come up with a more sophisticated test to decide
if a streamline converges to a critical point, possibly inspired by the approach by
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Friederici et al. [3]. We also want to visualize the separatrices by isosurfaces, in
that regard our approach represents an adaptive version of implicit integral surface
extraction [7, 6]. The presented method also lends itself for extension to 3D vec-
tor fields, where graphics processing units could be used to accelerate the costly
streamline computation.
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