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ABSTRACT
Automatic summarization systems usually are trained and
evaluated in a particular domain with fixed data sets. When
such a system is to be applied to slightly different input,
labor- and cost-intensive annotations have to be created to
retrain the system. We deal with this problem by providing
users with a GUI which allows them to correct automati-
cally produced imperfect summaries. The corrected sum-
mary in turn is added to the pool of training data. The per-
formance of the system is expected to improve as it adapts
to the new domain.
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1 Introduction

To write meeting minutes is a task which almost nobody
likes to do. The antipathy towards summarizing meetings
manually has several reasons. Basically there are two stan-
dard situations: First, a meeting participant is assigned the
task. In this case the person in charge of summarizing is
not able to properly participate in the meeting. Second, an
outsider is asked to summarize the meeting. However, such
a person often does not have sufficient knowledge needed
to identify the important parts. This increases the workload
and typically interrupts the discussion, as the person taking
notes has to ask whether something was important or not.
The leader of the meeting and the recorder could also meet
in advance and set the agenda, agree on signals etc. In both
scenarios there is a lot of work necessary after the meet-
ing to write a summary based on the notes taken during the
meeting itself.

The aim of our automatic meeting summarization sys-
tem is to offer a tool to support creating extractive sum-
maries. But instead of providing the user with a ready-
made system, where everything is fixed and settled, we
base our summarization on the concept of an interactive
agent. This is based on the idea that in order ”to be truly
helpful, an assistant must learn over time, through interact-
ing with the user and its environment – otherwise it will
only repeat its mistakes” (Lieberman & Maulsby, 1996).
Interactive agents have been applied to various tasks in the

past (Middleton, 2001), but to our knowledge not to the
task of summarizing meetings.

The disadvantage of ready-made summarization sys-
tems – and many natural language processing systems in
general – is that they rely on a predefined set of train-
ing data which cannot be easily exchanged or extended by
adding data suitable for the domain of interest. We over-
come this problem by providing the user with an interface
which allows them to correct the automatically produced
summary. The correction is fed back to the system, thus
making it possible for the system to adapt to new domains
over time. This strategy allows to start out with a smaller
amount of training data. The quality of the summarization
gradually improves as more high quality training data of the
right domain become available. For development the sys-
tem is based on the ICSI Corpus, which contains 75 manu-
ally transcribed dialogues, each on average one hour long,
and with between three and 13 participants (Janin et al.,
2003).

We will give an outline of the current state of the art
in summarization systems in Section 2. we will present a
system that is easy to use even for people who are not very
adept in using complicated systems and we will show how
much control the system and the user will have (Middle-
ton, 2001). Furthermore, we will describe what the initial
state of the system is, how this initial state is reached and
how the feedback is provided in order to improve the output
results (Sections 3, 4 and 5).

2 Available Summarization Systems

We will briefly discuss summarization systems which
are either available for download or accessible as demos
through the web. In general, these systems are not intended
to be used by naive users. Either the configuration options
are hidden in some arcane configuration file or the interface
is not intuitive, because it was intended for the developers.

One of the earliest systems isSUMMARIST(Hovy &
Lin, 1999), which produces generative instead of only ex-
tractive summaries of news articles. It combines machine
learning methods (e.g. decision trees), heuristics (e.g. title
and query word matching) and external knowledge sources
such as WordNet (Fellbaum, 1998) for extracting relevant
parts of the document. The extraction is used as an inter-



mediate step, from which the summary is generated. Af-
ter the topic discussed in the text is determined, the text is
analysed and reinterpreted in order to compact and fuse the
extracted elements (e.g ”he bought pears, apples and ba-
nanas” is fused to ”he bought fruit”). The generation itself
is based on two components: the microplanner and the sen-
tence generator. The microplanner builds the structure of
the text based on the information from the topic identifica-
tion. It already selects important words, main verbs, princi-
pal theme and focus. The sentence generator fills the struc-
ture with grammatical sentences. The system was eval-
uated in the context of the SUMMAC evaluation, where
several shortcomings became obvious. First, the amount of
training data was not sufficient. Second, there was a lack
of world knowledge, which is necessary for topic identifi-
cation. And finally, a shortage in resources to further en-
hance the microplanner became apparent. A big difference
betweenSUMMARISTand our system is that it summarizes
text instead of multiparty dialogue. The tool is available as
a demo on the web. The interface is very complicated and
not very intuitive to use.

The system MEAD (Radev et al., 2004) was also de-
veloped for text summarization, but covers both single and
multi document summarization and can handle several lan-
guages. It also offers several varieties of extraction meth-
ods and contains evaluation metrics likekappa(Carletta,
1996) andprecision/recall(Baeza-Yates & Ribeiro-Neto,
1999). The process of summarizing consists of four steps:
first the texts are converted into the MEAD format. Second,
from each sentence a set of features is extracted. Third,
these features result in a score for each sentence. These
scores are then refined using cross-sentence dependencies.
The system allows the developer to access many options.
There are many ways to customize the summaries. These
options and customizations have to be set in a configuration
file. The system is mainly built for usage on the command
line and apparently not intended for naive users.

Finally, DiaSumm (Zechner & Waibel, 2000) is clos-
est to our system, because it can be applied not only
to texts but can also summarize dialogues and meetings.
The meeting summarization is embedded in theMeeting
Browser1. During preprocessing a large variety of anno-
tations is added, but most of them depend on manual an-
notation. Few have been implemented to work automati-
cally as well, although methods to develop automatic an-
notations are outlined. The extraction is based onMaxi-
mum Marginal Relevance(Carbonell & Goldstein, 1998),
the detection of question-answer pairs, and other features.
Intrinsic evaluation is performed based on word counts and
summary accuracy. The system was built to summarize
telephone dialogues. Whether it is applicable to meetings
with more than two participants is unclear.

The Meeting Browser is a powerful tool, which not
only allows the transcription of the meetings to be viewed,
but also video recordings. DiaSumm provides summaries

1http://penance.is.cs.cmu.edu/meeting_
room/index.html

for a quick overview over the meeting. Unfortunately, there
is no indication about where and how to obtain the tool.
The description also mentions search functions to look for
keywords and topics. One of the features is described as
”Create and customize dialogue, audio, and video sum-
maries to the user’s particular needs”, but details are not
given2.

None of the systems allows the user to intervene in
the summarization. All mentioned systems are just black
boxes where the summary comes out and the user has to
be happy with the result. Additionally, none of the sys-
tems has been tested on multi-party dialogues or meetings.
Most have been developed for text or news speech (Hori
et al., 2002) or dialogues as presented above. But summa-
rizing multi-party dialogues gives rise to additional prob-
lems, which cannot be dealt only with methods from text
summarization (McKeown et al., 2005).

3 Annotation

As already mentioned, our system creates extractive sum-
maries by selecting and concatenating relevant elements
of a meeting transcript. One question that we had to ad-
dress was the size of these elements, and thus the granular-
ity of the summaries. The original ICSI Meeting corpus is
structured as a sequence of semi-automatically created seg-
ments. These segments are not intended to capture any lin-
guistically relevant elements liketurn or sentence, which
is mainly due to the fact that the definition of e.g.turn is
difficult in the context of multi-party dialogue with a con-
siderable amount of overlapping speech.

As a rule of thumb, the developers of the ICSI corpus
inserted a break in the current speaker’s segment whenever
some other speaker started to talk. This principle, however,
was not followed consequently, as it would have led to a
high degree of fragmentation (Janin, 2002). As a result, the
corpus contains both long segments for speaker contribu-
tions that clearly do overlap with others, but at the same
time there are also longer, uninterrupted contributions by
one speaker which are split into several segments.

Despite these irregularities, we decided to use the
original segments, since they are the major structuring
elements in the corpus. Alternatively, we also experi-
mented with so-calledspurts, i.e. sequences of segments
with pauses no longer than500 milliseconds. However, a
pilot annotation experiment proved spurts to be inappropri-
ate for extractive summarization since they tend to become
extremely long and thus too coarse-grained.

In the manual annotation phase, our annotators used
the annotation tool MMAX2 (Müller & Strube, 2006) to
mark segments as relevant or not relevant for a summary. In
MMAX2, annotation data is stored in the form of so-called
markables. Markables pertaining to the same phenomenon
(e.g. segments, but also things like Part-of-Speech (POS)

2http://penance.is.cs.cmu.edu/meeting_
room/index.html



tags or syntactic chunks) are grouped on a dedicatedanno-
tation level. Arbitrarily many annotation levels can coexist
for the same underlying data, because each markable refer-
ences the words that it applies to by means of a pointer into
a separate file containing the words.

One fundamental principle of multi-level annotation
is that data from diverse, unrelated levels can (and in fact
should) be kept apart. Therefore, while the granularity of
the annotation of elements to be included in the summary is
defined by segments, this information should not be stored
on the segment level itself, but on a dedicatedsummary
level which contains markables which can be mapped to
segments one-to-one.

4 System Architecture

Figures 1 and 2 show an overview of all elements of our
summarization system and the steps involved in the project.
Figure 1 shows the procedure during the development of
the system. Figure 2 shows the system during usage.

In both figures square components represent data that
can be further processed or used. Round components rep-
resent actions performed on the data that is fed to the com-
ponent. For example, the annotated transcriptions (square)
are split into training and test data (both square). The
machine learning (round) component produces a model
(square) from the training and test data. This model is then
used for producing summaries. The lighter coloured ele-
ments have already been implemented or, like the summa-
rizaton component, are currently being implemented. All
steps presented here will be addressed in more detail in the
following.

Figures 1 and 2 have some common components,
namely the speech recognizer, the preprocessing, the pro-
noun and anaphora resolution and the annotation compo-
nent. During the development (Figure 1) the data from
these various stages is gathered manually. The data serves
two goals: First, it is used tosimulatethe output of auto-
matic components during development. Second, it is used
to build these components. POS data e.g. is used to retrain
existing taggers. These common components are the fol-
lowing:

First, a speech recognizer would be most important.
So far, we have relied on manual transcriptions of the ICSI
Meeting Corpus, which were provided with the sound data.
We aim to add a speech recognizer in the near future. The
output of the speech recognizer will be transcribed speech.

Second, various preprocessing steps are applied.
Among these steps are POS tagging, disfluency detection
and dialogue act annotation, all of which have already been
implemented. When we add the speech recognizer in the
near future, we will also need a sentence boundary detec-
tion component.

A third step in summarizing meetings is pronoun and
anaphora resolution. Spoken language contains a larger
amount of pronouns than written texts (Strube & Müller,
2003). In order to improve extraction recall and to avoid
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Figure 1. Overview of the Development System

confusing and unclear summaries, these pronouns have to
be resolved. This is currently being developed.

A fourth step is topic boundary detection. The meet-
ings in our corpus are quite long (in average one hour) and
in most cases several topics are discussed, which have to
be summarized separately. As there are no agendas for the
meetings, the topic boundaries have to be found automati-
cally. This task is done by a reliable method already devel-
oped.

4.1 Development System

The final step in this chain is the detection of summary
relevant items. These items are manually annotated. The
manual data is split into training and test data. The first
serves as input for a machine learning method (e.g. De-
cision Trees), which creates a model. This model then is
tested on the test data and if necessary the parameters for
the training step are adjusted. Currently, we are using a to-
tal of 12 meetings to build the automatic annotation steps.
9 meetings are used for training and 3 for testing. The final
system is then evaluated for its quality, e.g. with preci-
sion/recall or other methods described in (Zechner, 2002).
This work is currently carried out.

It is important to note that there is a considerable dif-
ference between the ”enriched transcriptions” and the ”an-
notated transcriptions” in Figures 1 and 2. The enriched
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transcriptions are necessary for the further processing, but
they are by no means sufficient for summarization. The an-
notated transcriptions provide topic boundary information
as well as information about summary relevant items.

4.2 The Interactive Production System

Figure 2 shows the system as it is supposed to work during
usage. All stages which were done manually in the devel-
opment stage are now performed automatically. The model
is directly applied to the transcribed data and the annotation
for summary relevant items is based on the output from the
model. This automatic summary can now be checked via a
graphical user interface (GUI). The user can add or remove
items from the summary. The information about new or
changed items is then fed back to the available annotations
and used to retrain the model and improve future automatic
summaries. Depending on the environment in which the
system is used, some additional training is needed, but it
will learn from the interaction with the user and improve
the results. The details about the GUI will be explained in
Section 5 below.

During the development of the summarization system
we are currently experimenting with various summariza-
tion methods (e.g. tf*idf, MMR (Carbonell & Goldstein,
1998), Lexical Chains (Barzilay & Elhadad, 1999)), but
also methods based on machine learning. The method that

proves most successful and best applicable to the interac-
tive system will be incorporated into the system as shown
in Figure 2.

The summarization system as a whole will be used as
a plugin in the MMAX2 tool, as described in Section 5.
The system will provide a summary based on the knowl-
edge gathered so far. This summary is then presented to
the user, who can approve it or change it. If the summary is
approved it can be saved for further usage. If the user want
to change it, they can do so by changing the attribute of
the elements in the summary tonon-relevant. If he wants
to add elements from the meeting to the summary, he can
do so by changing the attribute of elements in the meet-
ing from non-relevantto relevant, as shown in Figure 3.
These elements are then added to the summary. Once the
summary is changed it can be saved for further usage. The
changed summaries are also used to update the model for
producing the initial summaries.

5 The Graphical User Interface and its Com-
bination with MMAX2

The data format described in Section 3 is not only used
within the MMAX2 annotation tool. There is also a
MMAX2 API which supplies Java bindings for data el-
ements like markables, annotation levels, or entire dis-
courses, among others. Our summarization tool takes the
form of a plugin to MMAX2. As such, it can use the
MMAX2 API to produce output which is structurally iden-
tical to the data produced by the manual annotation, and
which can be viewed within the same annotation tool.

Support for Java plugins is a feature that has recently
been added to MMAX2. A plugin is a user-specified Java
class that can be accessed from within the tool via the Plug-
ins menu. In order for a Java class to be usable as a plugin,
three things are required.

1. The Java class has to be derived from the class
org.eml.MMAX2.MMAX2Plugin. In addition, the
class can implement arbitrary methods to be exe-
cuted on demand. The first parameter for each
of these methods must be an object of the class
MMAX2Discourse, followed by an arbitrary number
of string attributes.

2. For each plugin method that should be callable from
the MMAX2 Plugins menu, an entry must exist in the
global plugins.xml file. This file has the following
structure:

<?xml version="1.0"?>
<plugins>
<plugin name="Summarization GUI"

class="summGUI.SummGUI">
<parameter attribute="task"

value="showSummAgent"/>
</plugin>

</plugins>



3. The Java class must be in the classpath of MMAX2.

The plugins.xml file must be located in the MMAX2
installation directory. At startup, an entry in the Plugins
menu is created for every plugin method definition found
in this file.

Once a plugin method has been called, it has access to
the same data as the MMAX2 instance from which it was
called. This means that changes to the data in one compo-
nent are visible to the other, and vice versa. In addition, the
plugin can call methods on individual markable objects to
keep the annotation tool display synchronized, i.e. to high-
light a markable in the tool’s display. If necessary, the dis-
play is first scrolled to the position of the markable.

Figure 3 shows the main window of MMAX2 on the
left side and the summary plugin window on the left side.
In the main window the segments are shown together with
the speakers (e.g. fe016). Some segments are very short,
some are quite long. Words in light grey are non-speech el-
ements, like noise or transcribers’ comments. The elements
that have been annotated as relevant for the summary are
highlighted with a grey background and bold font.

The summarization plugin window on the right side
of Figure 3 shows all segments that were marked as rele-
vant on the summary level. Topic breaks (double lines) are
marked here as well, to give the reader more information on
the division of the meeting. As the plugin is synchronized
with the MMAX2 display, elements in the summary can be
selected and the main window shows the same element in
its context. This is also shown in Figure 3. In the main
window the attribute of the selected segment can now be
changed fromrelevantto non-relevantand vice versa, thus
removing elements from or adding elements to the sum-
mary.

As shown in Figure 2 above the corrected summary
can then be fed back to the machine learning component
which updates the model according to the new training
data.

6 Conclusions and Future Work

We presented ongoing work on a system for automatic ex-
tractive meeting summarization. Unlike other systems, our
system is not just a black box, where the user is unable to
influence the production of the summary. Rather, our sys-
tem allows the user to actively improve the summaries via
a GUI-based feedback loop. Compared to other systems
for automatic summarization, it is designed for an end-user
rather than a developer. As such, the control mechanisms
are simple and straightforward.

In future work we would like to evaluate the usabil-
ity of the system with naive users who deal with meetings
and their summaries as part of their daily work. Before
this extrinsic evaluation can take place, an intrinsic evalua-
tion on the development system has to be done. For this, a
suitable and updateable method for automatically extract-
ing relevant segments from the meetings has to be found

and incorporated into the system.
Also, an addition to both the development and usage

system is planned: A method to save a summary once it
is corrected. For the developer this should allow for com-
paring various steps during the development process and
observing the development of the initial model. For the
end-user, the system should allow for two functionalities:
First, the user can load an already saved summary. Second,
the system could keep track of saved summaries, and once
it recognizes an already summarized meeting, it can offer
to load an existing summary or create a new one.

By presenting this system we showed that not all data-
driven applications in NLP rely on a predefined set of train-
ing data, and that there are applications which are not just
black boxes outside the control of the user. Our system is
designed to be able to extend an initially limited amount
of training data to become more and more suitable for the
domain of interest and the context in which it is used. This
is achieved by providing a GUI-based tool for collecting
and utilizing user feedback. The feasibility of such a boot-
strapping approach is mainly due to the nature of the ap-
plication: For (meeting) summarization, there is a practical
application scenario in which a linguistically naive domain
expert evaluates and corrects automatically created sum-
maries as a part of his or her job, thus producing improved
training data as a by-product. For other NLP applications
like e.g. parsing, the situation is different: Parsing natural
language is not a practical application in its own right, and
even if parser output is manually evaluated and corrected
(e.g. in the course of a research project), this has to be done
by a linguistics expert, which puts a narrow limit on the
amount of data that can be produced.

However, in the future similar applications in natural
language processing may emerge which can be dealt with
in this way.

Acknowledgments

This work has been supported by the DFG under grant STR
545/2-1 within the DIANA-Summ Project and by the Klaus
Tschira Foundation.

References

Baeza-Yates, R. & B. Ribeiro-Neto (1999).Modern Information
Retrieval. New York, NY, Harlow, UK: ACM Press, Pearson
Addison-Wesley.

Barzilay, R. & M. Elhadad (1999). Using lexical chains for
text summarization. In I. Mani & M. T. Maybury (Eds.),Ad-
vances in Automatic Text Summarization, pp. 111–121. Cam-
bridge/MA, London/England: MIT Press.

Carbonell, J. G. & J. Goldstein (1998). The use of MMR,
diversity-based reranking for reordering documents and pro-
ducing summaries. In A. Moffat & J. Zobel (Eds.),Proceed-
ings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,Mel-
bourne, Australia, pp. 335–336.



Figure 3. MMAX2 Main Window and the Summary Plugin

Carletta, J. (1996). Assessing agreement on classificationtasks:
The kappa statistic.Computational Linguistics, 22(2):249–
254.

Fellbaum, C. (Ed.) (1998). WordNet: An Electronic Lexical
Database. Cambridge, Mass.: MIT Press.

Hori, C., S. Furui, R. Malkin, H. Yu & A. Waibel (2002). Au-
tomatic summarization of English broadcast news speech. In
Proceedings of the Human Language Technology Conference,
San Diego, Cal., 24–27 March 2002, pp. 241–246.

Hovy, E. & C.-Y. Lin (1999). Automated text summarization in
SUMMARIST. In I. Mani & M. T. Maybury (Eds.),Advances
in Automatic Text Summarization, pp. 82–94. Cambridge/MA,
London/England: MIT Press.

Janin, A. (2002). Meeting recorder. InProceedings of the Applied
Voice Input/Output Society Conference (AVIOS),San José, Cal-
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