
Quantifying Performance Gains of DirectStorage

for the Visualisation of Time-Dependent Particle

Data Sets

Christoph Müller 1* and Thomas Ertl 1

1Visualisierungsinstitut der Universität Stuttgart, Universität Stuttgart,
Allmandring 19, Stuttgart, 70569, Baden-Württemberg, Germany.

*Corresponding author(s). E-mail(s):
christoph.mueller@visus.uni-stuttgart.de;

Contributing authors: thomas.ertl@visus.uni-stuttgart.de;

Abstract

Visualisation is an essential tool for analysing unstructured particle data as they
are produced, for instance, in molecular dynamics or astrodynamics simulations.
Such simulations often comprise multiple time steps, and scientists produce data
sets with more and more particles in each step. To handle the steadily increasing
size of these simulations, many solutions based on organising the data efficiently
or reducing their amount using compression have been proposed over the years.
Recently, a new storage API called DirectStorage has been introduced on Xbox
consoles and Windows. DirectStorage promises a dramatic reduction of loading
times in games by making the transfer from NVMe drives to graphics memory
more efficient. That begs the question of whether DirectStorage is also beneficial
for visualising time-dependent particle data that have to be streamed from disk to
the GPU and whether a potential improvement in throughput enables interactive
streaming of frames that traditional APIs cannot handle. For that, we imple-
mented a benchmarking application that supports different streaming methods.
We report on the results of an extensive series of tests with varying parameters
that influence the streaming performance, which show that the performance of
DirectStorage is highly dependent on the choice of various parameters.

Keywords: Particle visualisation, Particle streaming, DirectStorage, Direct3D 12

1

https://orcid.org/0000-0002-9979-3682
https://orcid.org/0000-0003-4019-2505


1 Introduction

Unstructured particle data are used for a wide variety of scientific applications, such
as molecular dynamics and cosmology simulations, but such data are also produced
by laser scans or photogrammetry. Especially simulations can handle trillions of parti-
cles nowadays, thanks to the ever-increasing computational power of high-performance
computing (HPC) clusters. Visualisation as an essential means of analysis for simula-
tions has to deal with these amounts of data and has developed different strategies such
as compression, hierarchical organisation and optimising streaming to the GPU, some
of which are already integrated into how the simulation codes store their results. Nev-
ertheless, disk I/O not keeping pace with the computing power of clusters and GPUs is
a critical bottleneck for analysing time-dependent simulation trajectories. Even worse,
writing results to disk is already problematic when running the simulations (Kumar
et al., 2019; Usher et al., 2021; Hoang et al., 2021). Less extreme, but still a relevant
issue, loading data from disk has become a bottleneck in games with massive amounts
of assets that need to be prepared for the highly detailed levels of modern computer
games. Microsoft addressed this by introducing a new I/O path on the Xbox Series X,
which was later ported to personal computers as DirectStorage (Yeung, 2020). This
new API was designed to exploit the high data transfer rate of NVMe SSD specifi-
cally and to introduce less overhead in the driver stack than traditional POSIX-style
APIs. In particular, DirectStorage integrates with the copy queues of Direct3D 12 and
enables programmers to issue I/O requests from disk directly into a GPU-resident
buffer, bypassing any intermediate application-level buffer. Such a design seemingly
fits the requirements of scientific applications that need to stream large amounts of
particles from disk to GPU, albeit the data need not only to be read from disk interac-
tively but also rendered sufficiently quickly. Therefore, the potential application area
for such a technology would be data sets of single frames sufficiently small to be ren-
dered quickly but which form a time series that is too large to be kept in RAM at
once, let alone in video RAM (VRAM). To test the idea that using DirectStorage is
beneficial in this application case, we developed a benchmark that streams particles
using DirectStorage into a Direct3D 12 renderer, which in turn visualises these parti-
cles as spherical glyphs. Using this application, we performed a series of measurements
to identify combinations of parameters – data set sizes but also the sizes of various
buffers used by DirectStorage – that do or do not work well. Our tests also include
the GDeflate feature (Uralsky, 2022), which allows DirectStorage to read compressed
files from disk and decompress them on the GPU.

2 Related work

Nowadays, there are two main directions when it comes to interactively rendering
large amounts of spherical glyphs for visualising simulation results: One uses the
rasterisation-based graphics pipeline to create proxy geometry for each particle and
compute the pixels of the implicitly parametrised spheres in the pixel shader fol-
lowing the basic technique developed by Gumhold (2003). Thanks to its scalability,
this technique has found its way into scientific visualisation systems such as Mega-
Mol (Grottel et al., 2015), VisIt (Childs et al., 2012) or VMD (Humphrey et al., 1996).

2



The advantage of the idea is that it is effectively a brute-force approach that works
on unstructured data without preprocessing, although there are methods to reduce
the rendering load by culling invisible particles (Grottel et al., 2010). Under some
circumstances, it can be beneficial to reduce overdraw by investing in an additional
view-dependent sorting step that allows the GPU to discard invisible proxy geome-
try before generating fragments (Müller et al., 2019). Furthermore, hierarchical data
structures can scale the approach to even larger data sets (Fraedrich et al., 2009).
While the computations in the pixel shader are mostly the same for all the variants of
Gumhold’s approach, a multitude of techniques exist for generating the proxy geom-
etry. These range from point primitives in OpenGL over instancing quads, using the
geometry shader, using the tessellation shader to using the more recently introduced
mesh shader. Gralka et al. (2023) provided a comprehensive overview of many of these
techniques implemented in OpenGL and included a comparison of their performance
on the latest hardware generations. A previous performance survey by Bruder et al.
(2020) used Direct3D implementations but lacked the then non-existing mesh shader.

Gralka et al. (2023) also included the other technique that has become increas-
ingly popular: ray tracing. Since the introduction of NVIDIA’s Turing architec-
ture (NVIDIA, 2017), GPUs have added dedicated support for ray tracing, previously
mainly used for non-interactive high-quality renderings on the CPU. The CUDA-based
Optix (Parker et al., 2010) is one way to use the ray tracing features of GPUs, but sim-
ilar programming models have subsequently been added to Vulkan and Direct3D 12.
Being an image-order approach, ray tracing typically needs some kind of acceleration
structure, be it bounding volume hierarchies (Clark, 1976), kd-trees (Bentley, 1975) or
octrees (Samet, 1989), to be efficient in processing large amounts of particles. While
the former are mostly used for GPU-accelerated ray tracing, ray tracing on the CPU
oftentimes uses the latter two. For instance, Wald et al. (2015) proposed a variant
of kd-trees specialised for rendering large amounts of particles in the CPU ray trac-
ing framework OSPRay. They argued that the large amount of relatively cheap main
memory makes ray tracing on the CPU viable as long as the ray tracer can efficiently
organise memory accesses and the data structures it uses have a low memory overhead
like their proposed P-k-d-tree. Using their approach, they achieved interactive frame
rates for millions of particles. The idea of P-k-d trees was later ported by Gralka et al.
(2020) to the GPU. In their work, they compared it to different spatial partitioning
strategies, the previously mentioned brute-force rasterisation approach on the GPU,
and an OSPray implementation. They concluded that – if memory permits – bound-
ing volume hierarchies are fastest, but if memory is scarce, different trade-offs have to
be made when choosing the best fitting approach. While ray tracing approaches with
appropriate acceleration structures outperform rasterising unstructured particles, our
focus is on the latter because data that require a time-consuming preprocessing step
before rendering cannot reasonably be streamed from disk to GPU.

Especially for simulation data, which typically comprise multiple frames to rep-
resent the temporal evolution of the simulation, GPU memory – and even main
memory in some cases – does not suffice any more to hold all of the data. At this
point, it becomes necessary to stream data from RAM to the GPU or even from

3



disk to the GPU. Grottel et al. (2009) investigated the performance of many com-
binations of streaming particles to the GPU and rendering them using OpenGL.
Later work (Grottel, 2012) also looked into streaming the data from disk. This study
compared different I/O methods ranging from C++ streams over POSIX-style I/O
functions to memory mapping and block sizes of 4KB and 4MB. While looking not
specifically into unstructured particles but into streaming triangle geometry, Wiede-
mann and Kranzlmüller (2019) performed an experiment that investigated various
options that influence data upload from main memory to VRAM. In their experi-
ment, they tested millions of combinations and subsequently relied on statistical data
analysis to draw their conclusions.

For I/O already being a bottleneck when creating particle data sets in a simulation,
there is extensive work on optimising parallel I/O during the simulation to reduce the
downtime in computation due to saving data (Usher et al., 2021). Kumar et al. (2019)
designed a parallel I/O scheme specifically tailored towards particle data that not
only addresses the simulation’s needs but simultaneously produces output suitable for
interactive visualisation. However, we focus only on local read operations for streaming
in this work, while additional parallel layers might be built on top of that. Likewise, we
do not consider any particle compression techniques like the one described by Hoang
et al. (2021), quantisation techniques (e. g. Grottel et al. (2009); Fraedrich et al. (2009))
or special on-disk layouts of data (Fraedrich et al., 2009) except for the data-agnostic
built-in compression techniques provided by DirectStorage.

DirectStorage is a technology first introduced on Xbox Series X consoles as part
of the so-called Velocity architecture and later ported to Windows PCs (Yeung, 2020;
Microsoft, 2022). Having this heritage, speeding up the process of loading the ever-
growing amount of assets in modern games is the obvious purpose. At GDC 2022,
Serandour and Ono (2022) presented data from an actual game, which showed an
improvement of around 15% compared to loading a level using Win32 API I/O func-
tions from an NVMe drive. A year later, AMD provided further guidance on effectively
using DirectStorage (Ziman, 2023). In their synthetic tests, they achieved significantly
larger speedups than Serandour and Ono, not least as they also included the on-GPU
GDeflate decompression feature of DirectStorage (Uralsky, 2022). Furthermore, they
included the results of a series of raw I/O tests indicating that current generations
of NVMe drives perform best with a queue depth of 16 or higher and with block
sizes of at least 32KB. To accelerate I/O in machine learning and HPC applications,
NVIDIA has developed a technology named GPUDirect Storage (GDS) (Thompson
and Newburn, 2019), which can perform DMA from NVMe drives directly to the GPU
while bypassing main memory. In that way, DirectStorage and GPUDirect Storage
serve similar purposes of speeding up transfers from disk to VRAM, but while the
former is only available on Windows, the latter is only available on Ubuntu and Red
Hat Enterprise Linux. Inupakutika et al. (2022) provided performance data for GDS
using synthetic I/O benchmarks and actual deep learning workloads. Their study not
only includes numbers for a single NVMe drive, but they also investigated the use
of a distributed file system. The 14% increase of single-drive throughput they found
is in line with the numbers of Serandour and Ono (2022) for DirectStorage. Besides
GDS, CUDA provides means for asynchronously overlapping I/O and computation

4



via CUDA streams, allowing for a programming approach similar to DirectStorage
combined with Direct3D 12 fences. However, in order to maximise the benefit of over-
lapping transfers and computation, the work must be split such that compute and
copy engines are kept equally busy. Gómez-Luna et al. (2012) therefore performed an
empirical study to derive guidelines for finding optimal parameters. One of the goals of
our experiment goes in the same direction, i. e. we also want to get an idea of how the
different parameters of DirectStorage can be used to tweak the upload performance.

3 Implementation

As raycasting spherical glyphs is one of the most widely used ways of visualising the
unmodified results of particle-based simulations, we based our streaming implementa-
tion using DirectStorage on such an approach. For that, we ported one of the Direct3D
11 methods used by Bruder et al. (2020) to Direct3D 121. Specifically, we used the ray-
casting shader on instanced quad glyphs, which was the most efficient in their work.
This port was more or less straightforward: Shaders could be used without modifica-
tions across the APIs, but we opted to embed the root signatures in HLSL rather than
build them in C++. The rationale here is that the framework generates the shaders
for different data formats at build time, which provides a convenient way to create
matching root signatures as well, without the need to handle any of that in the host
code.

On the host side, we use double buffering, i. e. a pipeline depth of two, to achieve a
behaviour comparable to the original Direct3D 11 implementation. For each of these
two frames, we record a command list which instances four vertices for each particle
in the data set. Based on the vertex ID, the vertex shader subsequently creates a unit
quad without a vertex buffer being bound and transforms this quad to its position in
world space based on the per-particle data read from a structured buffer view at the
position of the instance ID. The pixel shader then produces the image of the sphere
on the fragments generated by the quad following the method by Gumhold (2003).
The only difference between the command lists is the render target, which is enabled
at their respective start. In the most basic case, these lists remain unchanged during
rendering and are executed alternatingly.

3.1 Streaming particles

The trivial port of using a command list per frame does not work anymore when
it comes to streaming because it becomes necessary to change the resource bindings
during a frame. Furthermore, the contents of the buffer holding the particle data
change for every draw call. GPU memory in Direct3D 12, which holds these buffers,
is organised in so-called heaps. Heaps are sections of VRAM that can have different
properties, like being accessible by the GPU only or allowing for transfer between main
memory and GPUmemory. Often, data accessed by shaders are allocated on heaps only
accessible by the GPU, particularly if the data are immutable. This is, for example,
the case for the aforementioned implementation of sphere raycasting on Direct3D 12.
However, when streaming particles, the host code would have to transfer the data first

1https://github.com/UniStuttgart-VISUS/trrojan

5

https://github.com/UniStuttgart-VISUS/trrojan


� �� � �

Read to buffer 0

Buffer 1
Buffer 0

Draw Draw WaitRead to buffer 1 Read to buffer 0
�

Fig. 1 Simplified illustration of streaming particle data to a persistently mapped buffer, in this case,
for two segments. A buffer is marked red while the GPU is rendering on it and green while it is
ready to accept new data from the CPU. After the draw call, a fence is injected into the command
stream of the GPU, which the GPU will signal once it is done rendering the segment. When the CPU
submits the second segment, the GPU uses both buffers simultaneously. Therefore, the next segment
cannot be uploaded, and the CPU needs to wait for the GPU to finish work. This can be achieved
by waiting for the fence to be signalled. In the actual implementation, the CPU does not wait for a
specific buffer to become ready but for any of them.

to a CPU-accessible upload heap and subsequently issue a copy request that transfers
the data from this upload heap to the resource being rendered. This not only incurs
the cost for an additional copy, but it is also necessary to transition the resource from
the copy target state to the shader resource state, which possibly stalls the pipeline.
An alternative to this approach – the one we implemented because it better fits the
way DirectStorage works – is to map the buffer on the upload heap persistently into
the address space of the application and bind it as a shader resource simultaneously.
This is an acceptable implementation as long as the application can guarantee that
the region of the mapped buffer currently being rendered by any command list is not
modified by the host code at the same time. For the CPU to know when it is safe
to write new data, we split the resource holding the per-particle data into several
segments. The actual implementation could place these segments either on a single
heap or use multiple heaps, allowing for working around apparent heap size limits.
Although we could not find official documentation on this, we found the maximum
size of a heap being limited well below the available amount of physical VRAM, which
is in line with reports by Gralka et al. (2023), who mentioned a vendor-dependent
limit on contiguous allocations in OpenGL. Regardless of whether a segment was sub-
allocated from a single heap or on an individual one, each command list rendered
the particles of exactly one of them, and at the end of each list, we injected a fence
that is being signalled once the GPU is done with that particular list (see Figure 1).
Splitting the draw calls into multiple ones solely changes the number of primitives
being processed and the resource descriptors that are bound. Therefore, we could use
all of the rendering techniques implemented by Bruder et al. (2020), though we limited
our measurements to the fastest one, which is instancing a quad as the proxy geometry
of each particle.

At this point, there are multiple ways to fill the segments of the particle buffer,
which all could take the place of ReadFile in algorithm 1: If all data fit into RAM,
this can be as simple as a memcpy. Otherwise, the input file could be incrementally
mapped into the address space of the process and copied from there, or it could be read
using traditional POSIX-style I/O APIs or using a DirectStorage request from disk to
memory. All of these methods effectively copy particle data to the location where a
segment is mapped into the address space of the process. However, before they can do

6



Algorithm 1: Simplified process of streaming one frame using a traditional
I/O API or copy from main memory.

Data: A file handle H for the input data, the number of particles PT , the
number of particles per batch PB , the number of batches B that can
be processed in parallel, an array F of B fences, an array C of B
command lists, a persistently mapped buffer PG for B ∗ PB particles.

for t← 0 to ⌈PT /PB⌉ /* Iterate over all batches of particles. */

do
b← NextFreeBatch(F ) /* Search signalled fence or wait. */

f ← F [b] /* Get fence for batch. */

c← C[b] /* Get unused command list for batch. */

QueueCommand (c, enable render target) /* Set render target. */

if t = 0 then QueueCommand (c, clear render target)
ReadFile (H, &PG[b ∗ PB ], t ∗ PB , PB) /* Read to mapped VRAM. */

QueueCommand (c, set root signature) /* Configure shaders’ input. */

QueueCommand (c, set descriptors) /* Set resource bindings. */

QueueCommand (c, set primitive topology) /* Set triangle strip. */

QueueCommand (c, draw instanced) /* Emit quad per particle. */

if t = ⌈PT /PB⌉ − 1 then QueueCommand (c, disable render target)
ExecuteCommandList (c) /* Execute queued commands. */

SignalWhenDone (f, c) /* Signal the fence when rendered. */

if t = ⌈PT /PB⌉ − 1 then Present (render target)

end

so, they must check whether the fence of the segment has already reached the value
of the last draw call that was issued on the existing data at this location. If this is not
the case, the application can have Direct3D signal a kernel event object once the GPU
has reached the fence, which enables the host code to wait for the GPU to finish.

3.2 DirectStorage

While DirectStorage can be used as a replacement for traditional I/O APIs, its main
benefit for the application case at hand is the tight integration with Direct3D 12.
Most importantly, DirectStorage not only allows for issuing read requests from disk
to main memory but it also accepts Direct3D resources as copy targets. In the best
case, this operation can bypass any application buffer and copy directly from kernel
memory and, if Bypass I/O is possible on an NVMe drive on Windows 11, additionally
skip significant parts of the kernel I/O stack (Microsoft, 2023). Furthermore, this
integration allows DirectStorage to upload compressed data and decompress it on the
GPU. Decompression is a fully transparent feature for users of the API – it simply
needs to be turned on, and the data on disk must be compressed in a compatible
manner.

The rendering process is very similar to the previous streaming approach: The
resource from which the GPU reads the particle data is segmented, and every unused
segment is filled with new data and sent to the GPU to render it. The difference is

7



� � �� �� � �

Queue Queue

Buffer 1
Buffer 0

DStorage

Draw
Queue

DrawDraw Wait
Submit

�

Fig. 2 Illustration of the streaming process when using DirectStorage: In contrast to the previous
streaming implementation, the application no longer transfers particles directly to mapped GPU
memory. Instead, it queues transfer requests and draw requests for the transferred data immediately
after that. A fence that the GPU awaits before starting the draw makes sure that the rendering
of a segment does not start before the transfer has been completed. As in the previous case, the
application must handle the case when the GPU currently uses all buffers and prevent DirectStorage
from overwriting this memory.

that the host code does not have to wait for the copy or I/O operation to complete
any more because DirectStorage can signal fences, too (Figure 2). Hence, we have it
signal a fence after every I/O request and have the command list wait for this fence
before it starts rendering (algorithm 2). In other words, DirectStorage enables a “fire
and forget” approach to queuing I/O and rendering without knowing the actual state
of the I/O.

In DirectStorage, I/O requests are not fulfilled immediately, but they are queued,
and all queued requests are processed as a batch once the queue is submitted. Microsoft
recommends submitting larger batches simultaneously because submitting the queue
is associated with some cost. Nevertheless, we have built our implementation to either
immediately submit every request or multiple requests in batches, which allows for
evaluating the overhead of frequent submissions. In the latter case, the submission
is triggered by the host code detecting insufficient unused segments to submit more
requests (see algorithm 2).

The GDeflate implementation is based on the method mentioned above of submit-
ting batches of requests. As DirectStorage requires every request to be individually
decompressable, the data must be preprocessed for this to work. Therefore, we per-
form a preprocessing step that splits the data set into chunks matching the size of a
segment expected by the renderer and compress these individually. The compressed
blocks are stored contiguously in a single file on disk while the application keeps an
index of the offsets of each individual block as we need to provide the compressed and
uncompressed extents when issuing a DirectStorage request. In a real-world applica-
tion, this approach would require a custom file format that allows the software to
read all of these indices before beginning to stream, thus removing all read-to-read
dependencies during actual rendering.

8



Algorithm 2: Simplified process of streaming one frame using DirectStorage.

Data: A file handle H for the input data, the number of particles PT , the
number of particles per batch PB , the number of batches B that can
be processed in parallel, an array FG of B fences, another array FI of
B fences, an array C of B command lists, a buffer PG for B ∗ PB

particles, a DirectStorage I/O queue Q.
for t← 0 to ⌈PT /PB⌉ /* Iterate over all batches of particles. */

do
b← NextFreeBatch(F ) /* Search signalled fence or wait. */

fG ← FG[b] /* Get fence for batch completion. */

fI ← FI [b] /* Get fence for I/O completion. */

c← C[b] /* Get unused command list for batch. */

QueueCommand (c, enable render target) /* Set render target. */

if t = 0 then QueueCommand (c, clear render target)
QueueRequest (Q, H, t ∗ PB , PG, b ∗ PB , PB) /* Queue I/O. */

QueueSignal (Q, FI) /* Make DStorage signal FI when done. */

if Q is full then SubmitQueue (Q)
QueueCommand (c, wait FI) /* Make GPU to wait for DStorage. */

QueueCommand (c, set root signature) /* Configure shaders’ input. */

QueueCommand (c, set descriptors) /* Set resource bindings. */

QueueCommand (c, set primitive topology) /* Set triangle strip. */

QueueCommand (c, draw instanced) /* Emit quad per particle. */

if t = ⌈PT /PB⌉ − 1 then QueueCommand (c, disable render target)
ExecuteCommandList (c) /* Execute queued commands. */

SignalWhenDone (fG, c) /* Signal the fence when list was

rendered. */

if t = ⌈PT /PB⌉ − 1 then Present (render target)

end

4 Results

We performed a series of performance tests using synthetic data sets, which allowed us
to control the properties of the data. As streaming data introduces overhead compared
to simply rendering from VRAM, we also obtained reference measurements without
DirectStorage, which allows for isolating the overhead introduced by streaming from
RAM and the overhead introduced by streaming from disk using different methods.

4.1 Hardware

Our measurements were performed on two identically equipped PCs with an AMD
Ryzen 9 5900X CPU and 64GB RAM, one running Windows 10, the other running
Windows 11. As GPUs, we used an NVIDIA RTX 4090 and an AMD Radeon RX 7900
XTX. The SSDs were Samsung 980 PRO NVMe drives and Samsung 850 PRO SATA
drives. To get a baseline idea of the performance of the drives, we ran CrystalDiskMark
8.0.4 on each of them, one time using the default settings and another time using the

9



Table 1 Results of a read benchmark performed with CrystalDiskMark 8.0.4 on the SSDs used for
our experiment using a 1GB test file. The lower half of the table uses the settings recommended for
NVMe drives.

Test configuration Windows 10 Windows 11

Access Block Queue Threads 850 980 850 980
pattern size depth (SATA) (NVMe) (SATA) (NVMe)

Sequential 1MB 8 1 527MB/s 6537MB/s 531MB/s 6486MB/s
Sequential 1MB 1 1 510MB/s 4098MB/s 528MB/s 4156MB/s
Random 4KB 32 1 223MB/s 581MB/s 245MB/s 633MB/s
Random 4KB 1 1 42MB/s 84MB/s 42MB/s 87MB/s

Sequential 1MB 8 1 437MB/s 6537MB/s 533MB/s 6205MB/s
Sequential 128KB 32 1 512MB/s 4098MB/s 536MB/s 6567MB/s
Random 4KB 32 16 228MB/s 3599MB/s 244MB/s 3888MB/s
Random 4KB 1 1 41MB/s 84MB/s 43MB/s 87MB/s

suggested NVMe settings. The results of these runs can be seen in Table 1. Differences
between the standard and the suggested NVMe settings are inexistent with one notable
exception: the NVMe drive massively benefits from issuing I/O requests from multiple
threads in case of small random access patterns. Given these numbers, around 215
million particles per second are the upper limit for streaming, assuming the format
we used in our test, which comprises three position components, a radius and four
floating-point colour channels.

4.2 Procedure

The measurements were highly automated, and the system performed the following
for each configuration of varying factors. First, a data set comprising one million, ten
million or 100 million random particles was created such that the overall volume of the
particles filled approximately one third of the cubic bounding box. Each particle was
represented by eight 32-bit floating-point numbers: three for the position in space, one
for the radius and four for the colour. The data sets were created using the C++ STL
random number generator (but with a fixed seed value) and a uniform distribution
over floats. These data were written contiguously to disk, repeating all particles four
times to simulate multiple frames the application must seek to. This approach mimics
that in a real-world scenario, the file format would have some kind of index allowing
the application to directly seek to individual frames after reading this index once. In
the case of the benchmark using GDeflate decompression on the GPU, the data set
was pre-split into the segment length to be tested, and the segments were compressed
individually, retaining the offsets to seek into the file. Each benchmark then rendered
the frames round-robin while performing the tasks outlined in algorithm 3: First, four
frames were rendered that were excluded from the results, ensuring no changes in the
pipeline state from previous benchmarks influenced the measurements. Furthermore,
this step computed the number of iterations for the wall-time clock measurements.
Measurements were then obtained in three passes. First, we determined how long
the GPU worked on each frame. As the queries used for that cannot span multiple
command lists, we measured each draw call individually and aggregated the numbers

10



Algorithm 3: The steps for a single run of the benchmarks.

Data: The number of pre-warming renderings Rp, the desired time Tw to
measure the wall time for, the number of iterations Rg for on-GPU
timings.

/* Preparation */

Allocate resources and setup pipeline
/* Phase 1: Pre-warm and estimate frames to teach Tw. */

p← Rp

r ← true
while r do

s← Now()
for i← 1 to p do

Render frame
end
Wait for GPU
e← Now()
q ← max(1, ⌈Tw · p/(e− s)⌉)
r ← q > p /* Repeat if estimated frames for Tw not reached. */

p← q /* p is now best guess for required iterations. */

end
/* Phase 2: Measure on-GPU timings using queries. */

tg ← GpuQueryResult[Rg]
for i← 1 to Rg do

Render frame instrumented with timing query
tg[i]← Result of query

end
Sort(tg)
m← tg[Rg/2] /* Median of GPU times. */

if Rg mod 2 = 0 then m← 0.5(m+ tg[Rg/2− 1])
Output (tg[0],m, tg[Rg − 1])
/* Phase 3: Measure wall time using OS timers. */

s← Now()
for i← 1 to p do

Render frame
end
Wait for GPU
e← Now()
Output ((e− s), p, (e− s)/p)
/* Phase 3: Collect pipeline statistics. */

Issue statistics query
Render frame
Output (Results of statistics query)

11



2 2 2 2 1 1 1 1
17 17 17 17

5 5 5 5

136 137 137 138

53 53 53 53

2 2 2 2 1 1 1 1
17 17 17 17

5 5 5 5

136 137 137 139

53 53 54 53

0
20
40
60
80

100
120
140
160

D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12 D3D 11 D3D 12

Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11

AMD Radeon RX 7900 XTX NVIDIA GeForce RTX 4090 AMD Radeon RX 7900 XTX NVIDIA GeForce RTX 4090 AMD Radeon RX 7900 XTX NVIDIA GeForce RTX 4090

1000000 10000000 100000000

Ti
m

e 
[m

s]

GPU time Wall time

Fig. 3 Average frame times for rendering one million (31MB per frame), ten million (305MB per
frame) and 100 million (3GB per frame) particles from a buffer fully resident on the GPU. The oper-
ating system and the Direct3D API version barely influence the rendering performance. Furthermore,
the overall wall-clock time per frame is clearly dominated by the time the GPU takes for rendering.

afterwards. In a second pass, the average frame time was measured on the CPU over
the number of iterations determined in the first step. During this pass, the application
also counted how often the host code had to wait for the GPU to finish in-flight draw
calls, thus making at least one buffer available for transfer. The final step rendered
only one frame to obtain pipeline statistics, i. e. the number of shader invocations,
etc. Such statistics can be used to perform sanity checks on the data and judge the
overdraw of the particles.

For all streaming implementations, there are mainly two factors that could be
varied: the number of segments and the number of particles for each segment, which
in turn determine the size of a single upload. DirectStorage has several additional
parameters: the length of its internal queue and the size of its staging buffer. We did
not modify the length of the queue as this primarily affects when the API performs
a so-called auto submit, i. e. DirectStorage detects that the queue is running full and
submits the queued requests without user intervention. We varied, however, the size
of the staging buffer between 32MB, 256MB and 512MB because of the findings of
Ziman (2023). All of the test configurations were repeated for eight randomly chosen
camera positions, ensuring the data set was visible. The random seed was fixed such
that the same configurations were tested for each test case. For all test cases, the
viewport was set to Full HD (1920× 1080). Overall, we performed more than 30,000
individual measurements, which are available at https://doi.org/10.18419/darus-4017.

4.3 API and operating system

As a first step, we wanted to find out whether switching the renderer from Direct3D
11 to Direct3D 12 significantly impacted performance. There should be little to no
API overhead for the base implementation issuing only a single draw call for all the
particles. Performance should, therefore, be limited by what the hardware can handle,
wherefore we hypothesised that there would be no significant difference between the
implementations running on the same platform. To test this, we measured the ren-
dering times of the Direct3D 11 implementation and the streaming-free port of the
Direct3D 12 variant. Figure 3 shows the rendering times from the GPU timestamp
queries and from the wall-clock timer on the CPU for different numbers of particles.
The frame times for each condition are averages of all camera positions. Several of

12

https://doi.org/10.18419/darus-4017


1

10

100

1000

128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000

1000000 10000000 100000000 1000000 10000000 100000000

AMD Radeon RX 7900 XTX NVIDIA GeForce RTX 4090

Fr
am

e 
tim

e 
[m

s]

RAM Map everything Map individually Map batches ReadFile

Fig. 4 Average wall-clock frame times for different “conventional” streaming methods when reading
from a SATA drive. The factors on the x-axis are from top to bottom: the number of particles rendered
for each batch (approximately 4MB, 15MB and 30MB of raw data), the total number of particles
per frame (approximately 31MB, 305MB and 3GB of raw data per frame) and the GPU used. All
numbers have been obtained on Windows 10 using 64 in-flight batches. The numbers for 256 parallel
batches exhibit a similar structure overall, but the frame times are slightly higher except for ReadFile.

these were far away from the data set, leaving a lot of blank space in the frame, while
others were in the data set such that all screen pixels were covered. The only appar-
ent differences in Figure 3 are either caused by the choice of the GPU or the size
of the data set. This effectively confirms the idea that the performance of this static
rendering is limited by how many vertices and pixels the graphics card can push.

4.4 Conventional streaming

The first streaming method we tested was streaming from RAM. This is obviously
only viable if the data set completely fits in the main memory, but the test gives us
an idea of the overhead of streaming the data from RAM instead of holding them
in VRAM. Next, we tested streaming using traditional APIs for file access. These
included mapping the whole file into the process memory (“Map everything”), which
is, again, not realistic for real-world large data. Therefore, we also implemented indi-
vidually mapping each segment as needed (“Map individually”) and mapping the
number of segments that can be in flight simultaneously (“Map batches”). The latter
two methods must always be possible, as otherwise, the system would not have suf-
ficient main memory to run that configuration. Finally, we read each segment from
disk as necessary using a blocking ReadFile call.

Figure 4 shows the wall-clock times for streaming one million, ten million and
100 million particles, respectively, using the methods above from the SATA drive.
Streaming from RAM and mapping the whole file at once are, as expected, the fastest
methods in all cases. They achieve around 30 fps even for the ten million particle
data set on both cards – compared to almost 60 fps when rendering directly from
VRAM on the AMD card and 200 fps for the NVIDIA GPU. The smallest data set
can be rendered with around 100 fps even using the worst streaming method, which is
mapping the whole file at once. Notably, even the blocking ReadFile achieves more
than double the frame rate in this case and is also faster for the larger data sets. For
the medium-sized data set, mapping batches is the best method actually transferring
data from disk – except for the smallest batch size. For the largest data set, ReadFile
becomes the best choice. However, frame rates around 2 fps and 3 fps even for the best
method (streaming from RAM) are not interactive any more.

13



1

10

100

1000

10000

128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000

1000000 10000000 100000000 1000000 10000000 100000000

AMD Radeon RX 7900 XTX NVIDIA GeForce RTX 4090

Fr
am

e 
tim

e 
[m

s]

ReadFile Map individually Map batches DStorage (immediate submit) DStorage (batch submit) DStorage (GDeflate)

Fig. 5 Wall-clock frame times for different streaming methods when reading from an NVMe drive.
The factors on the x-axis are from top to bottom: the number of particles read and rendered per
batch, the total number of particles per frame and the GPU used. All numbers have been obtained
on Windows 10 using a staging buffer of the Microsoft-recommended 32MB and 64 in-flight batches.

The conventional methods for streaming from disk are also included in Figure 5,
which shows the frame times when streaming from NVMe. Surprisingly, ReadFile
becomes slower on the faster drive, with the NVMe drive requiring between 111% and
123% of the frame time from the SATA drive. We surmise that the combination of
our access pattern and chunk sizes poorly saturates the NVMe I/O queues. Mapping
the batches individually as needed, in contrast, only requires between 86% and 89%
of the time for the smaller two data sets on the AMD card and between 90% and
95% on the NVIDIA. For the 100 million particles, it becomes slower, too – in the
worst case, which is the NVIDIA card with the smallest batch size, it requires 132%
of the time measured for the SATA drive. Mapping the segments in batches behaves
effectively the same for both kinds of drives within a ±2% range. In particular, for
the two smaller data sets, the frame times of this technique are suspiciously close to
what we could achieve by streaming from RAM. On closer investigation, we found
that this is because this method is effectively streaming from RAM as the operating
system does not immediately remove mapped pages from physical memory as the
application unmaps a segment. Instead, it keeps them in standby memory, making it
basically “free” to reuse a frame already rendered before, provided all frames fit into
RAM. Figure 6 illustrates this for the four frames we used in our benchmark and two
additional runs with 128 and 256 extra copies, respectively. As the size of the data set
exceeds the memory available for backing the mapping, the frame times increase, as
expected in these tests.

The fact that the performance differences between the cards from Figure 3 have
largely disappeared in Figure 4 and Figure 5 indicates that the performance here is
limited by the transfer capabilities of the PCIe bus (for RAM and mapping the whole
file) or the disk (for the other methods).

4.5 DirectStorage

As mentioned, we have implemented three variants using DirectStorage: the first one
submits the queue immediately after enqueuing each request (“naive”). This goes
against any recommendation, as submitting a queue incurs an overhead, which is
relatively more significant for smaller submissions. However, Figure 5 shows that the
performance hit by this implementation on NVMe drives is small and becomes only
noticeable as the size of each segment increases. For the smaller batch sizes of 128,000
and 500,000 particles, both techniques perform slightly better than ReadFile; when

14



Fig. 6 Memory usage while running the benchmark performing batch-mapping of the input file
as captured by RamMap. The first snapshot shows the idle state of the system after cleaning all
working sets. The second one in the first row shows the state while running the ten million particle
data set with four copies of the frame, as we did for our test runs. This file comprises approximately
1.2GB, which are completely resident in the standby memory after the first iteration (light blue bar
in the visualisation on the left). The third snapshot on the left of the bottom row shows the same
benchmark when repeating the frame 128 times. Again, this file, which is approximately 40GB, is
fully backed by standby RAM (larger light blue bar on the left). For the last snapshot, the frame was
repeated 256 times. This file is approximately 80GB and, as such, cannot be fully backed by RAM on
a system with 64GB RAM. The memory occupied by mapped files is capped at around 60GB in this
constellation (the light blue bar on the left effectively occupies all the previously available memory).

rendering a million spheres at once, both perform worse. However, for the 100 million
particle data set rendered using the RTX 4090, we found a combination of parameters
(with a batch size of one million) where the presumably better implementation using
batches performs worse than the naive one. This combination is, however, a bad one
in general as the naive approach takes 177% of the render time of ReadFile, and the
batched approach even needs 195%.

The second, more streamlined, variant (“batches”) submits the queue whenever it
cannot queue new storage requests, i. e. every time the configured number of parallel
segments was requested from disk. As already mentioned, this technique performs
very similarly to the naive one – on the NVIDIA card, sometimes a bit better with a
difference of no more than a single-digit percent number.

Except for one case (streaming the smallest data set in one batch to the GeForce),
the final implementation, which loads GDeflate-compressed data and has DirectStor-
age decompress it on the GPU, outperforms all other methods. On average, over all
cases, including the one that performs worse, the GDeflate implementation requires
only 57% (48% in the best case and 111% in the worst case) of the time that ReadFile
needs for the same benchmark configuration. This number is almost directly in line

15



1

10

100

1000

10000

128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000 128000 500000 1000000

1000000 10000000 100000000 1000000 10000000 100000000

AMD Radeon RX 7900 XTX NVIDIA GeForce RTX 4090

Fr
am

e 
tim

e 
[m

s]

ReadFile Map individually Map batches DStorage (immediate submit) DStorage (batch submit) DStorage (GDeflate)

Fig. 7 Wall-clock frame times for different streaming methods when reading from a SATA drive.
The factors on the x-axis are from top to bottom: the number of particles read and rendered per
batch, the total number of particles per frame and the GPU used. As in Figure 5, all numbers have
been obtained on Windows 10 using a staging buffer 32MB and 64 in-flight batches.

6 5

63 64 65 58

631 639 629 581

6292 6381

6 5

63 62 65 58

631 627 625 581

6289 6271

5 4

38 37 40 34

378 374 292 275

3245 3223

1

10

100

1000

10000

Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11 Windows 10 Windows 11

NVMe SATA NVMe SATA NVMe SATA

1000000 10000000 100000000

Fr
am

e 
tim

e 
[m

s]

DStorage (immediate submit) DStorage (batch submit) DStorage (GDeflate)

Fig. 8 Comparison of the averaged frame times for a staging buffer of 256MB and 64 segments of
500,000 particles between Windows 10 and Windows 11. The achievable render times effectively do
not differ.

with the compression ratio of GDeflate between 50% and 60%, depending on the size
of the segments that are compressed individually.

Although 263ms per frame (3.8 fps) are not interactive, DirectStorage achieves a
massive improvement for 100 million particles (AMD rendering batches of 500,000,
NVIDIA batches of 128,000) over any other streaming method. GDeflate streaming
is effectively on par with streaming uncompressed particles from RAM (287ms for
batches of 128,000 on the AMD card, 315ms on NVIDIA with batches of one million).
The best “conventional” method performing actual I/O is ReadFile, which requires
420ms to read from the NVMe drive in its best case, which is slightly faster than
uncompressed DirectStorage but significantly slower than GDeflate.

Figure 7 shows the same results as Figure 5, but for the SATA drive. DirectStorage
performs consistently worse than any other method in this case. In summary, GDeflate
takes between six and ten times the time of ReadFile and the uncompressed variants
between twelve and 18 times.

Finally, we were interested in whether DirectStorage would perform better on
Windows 11 than on Windows 10. The comparison in Figure 8 shows that this is not
the case, although we have verified that the NVMe drive we streamed the data from is
eligible for Bypass I/O. As for the mixed results with the larger data sets, we cannot
say whether this is due to an unfortunate choice of streaming parameters or whether
there is no performance difference to expect.

16



1667733698

0
1000
2000
3000
4000
5000
6000

10
00

12
80

00

50
00

00

10
00

00
0

10
00

12
80

00

50
00

00

10
00

00
0

10
00

12
80

00

50
00

00

10
00

00
0

10
00

12
80

00

50
00

00

10
00

00
0

10
00

12
80

00

50
00

00

10
00

00
0

10
00

12
80

00

50
00

00

10
00

00
0

1000000 10000000 100000000 1000000 10000000 100000000

AMD Radeon RX 7900 XTX NVIDIA GeForce RTX 4090

N
um

be
r o

f u
pl

oa
d 

st
al

ls

DStorage (immediate submit) DStorage (batch submit) DStorage (GDeflate)

Fig. 9 The average number of cases when DirectStorage requests could not be made because the
GPU was still working on all buffers. The factors on the x-axis are from top to bottom: the number
of particles read and rendered per batch, the total number of particles per frame and the GPU used.
The measurements were made on Windows 10 from the NVMe drive using 64 batches and a 32MB
staging buffer.

5 Discussion

While the port from Direct3D 11 to Direct3D 12 mostly behaved as we had expected,
namely that there would be no difference in performance, the results for DirectStorage
are mixed. In cases when DirectStorage performed better than ReadFile as the refer-
ence, the improvement was roughly in the same range as reported for games (Serandour
and Ono, 2022). Only GDeflate was consistently faster than ReadFile, although more
at the lower end of the improvements achieved by Ziman (2023). However, this only
holds for the NVMe drive in our benchmark. On the SATA drive, we could not only
achieve no speed up at all, but DirectStorage even performed significantly worse than
basically any other technique. This is different from the results of Serandour and Ono
(2022), and it is difficult to pinpoint whether this is a principal problem of the sequen-
tial access pattern interwoven with rendering or our specific choice of parameters – not
at least because there are no details available for the implementation of Forspoken,
which would allow finding similarities or differences between the implementations. It
is, however, likely that the game would load the assets before starting to use them
and probably also have more parallel in-flight read requests than we have.

When investigating the depth of the I/O queue of our benchmark in the PIX per-
formance analyser, it was far less saturated than what Ziman (2023) showed. This
leads to a fundamental problem illustrated in Figure 9, which shows how often our
benchmark could not immediately submit a read request because the GPU still used
all the buffers. This mostly happens when the batches are small, which hints at a
massive overhead for submitting work to the GPU compared to what the GPU then
actually does – filling the disk queues causes the GPU to be less efficient. Therefore,
similar to what Gómez-Luna et al. (2012) found for CUDA streams, it is difficult to
find a balance that equally saturates the rendering and copy queues of the GPU for
perfect overlap. We believe that an even broader study of parameters is required for
DirectStorage than the few thousand measurements we performed. However, a different
approach than systematically testing combinations of parameters would be required
for that, which already took days of fully automated benchmarks for the data at hand.
The current approach puts certain a priori assumptions into the test, which makes it
unlikely to find the black swan with a limited number of samples (Taleb, 2007). Given
the large range in render times introduced by the size of the data sets and the compa-
rably low noise added by the remaining parameters, our data were not even remotely

17



normally distributed, much like the data of Wiedemann and Kranzlmüller (2019),
who reported even aggregation of their data did not lead to passing the Shapiro-Wilk
test. Therefore, randomly sampling the parameter space using per-parameter distri-
butions should paint a more reliable picture of it and possibly hit unexpectedly good
and bad combinations. However, it is equally possible that there are no significantly
better parametrisations for our current approach, and the algorithm itself needs to be
improved, for instance, by removing the one-to-one mapping of read requests to draw
calls.

The unexpectedly good performance of memory mapping is a reminder that mod-
ern operating systems already perform a lot of optimisation under the hood. Therefore,
DirectStorage is much like Direct3D 12 in that it enables programmers to tailor their
code to leverage modern hardware, but at the same time also requires them to do
so. In contrast, existing solutions provide decent performance with less complexity.
Hence, it should be carefully considered if investing in low-level work is justifiable for
a specific application case.

Finally, one might wonder if our findings might be transferable to other platforms.
While the close integration of DirectStorage and Direct3D 12 via shared resources,
fences and queues has no direct equivalent on Linux, it should be possible to build
a similarly overlapping streaming implementation using the relatively new io uring

API – which should be beneficial on NVMe drives similar as DirectStorage is – and
fences in OpenGL or, even better, Vulkan. Considering the previously stated complex
relations between parameters, making predictions for such an implementation based
on our measurements would be highly speculative – this must be evaluated empirically.
Likewise, GDS transferring directly from NVMe to GPU memory is an even better
solution than DirectStorage with its kernel-space copy, but only for CUDA resources.
We cannot predict from our results whether the performance impact of sharing these
resources with OpenGL or Vulkan would outweigh the benefits of the direct transfer –
this must be measured, too.

6 Conclusion

We have implemented several variants of streaming particle data sets directly from
disk to the GPU using DirectStorage. The variants include a very straightforward one
that effectively just replaces a conventional I/O request with a DirectStorage one,
one that batches multiple I/O requests, which better suits the deep queues of modern
NVMe drives, and a final one that uses the built-in GDeflate feature that allows
DirectStorage to uncompress data not until they are already on the GPU. To isolate
which potential performance gains and losses can be attributed to DirectStorage, we
also implemented different conventional streaming methods ranging from streaming
from RAM to reading with POSIX-style APIs. The results were mixed and showed
that it is imperative to choose the right parameters, which also depend on each other
in some cases. In particular, when exploiting the compression feature, DirectStorage
can be an improvement over other I/O methods. However, if the wrong parameters
are chosen, there is not only no performance gain, but the effect can be detrimental,
with DirectStorage performing an order of magnitude worse than ReadFile. Therefore,

18



we plan on reworking our testing framework to sample the parameter space more
randomly, as previously mentioned, hopefully leading to a better understanding of the
interdependencies between parameters. We also want to investigate ways to decouple
I/O and render queues to better saturate both at the same time.

Acknowledgements. This work was partially funded by Deutsche Forschungsge-
meinschaft (DFG) as part of SFB/Transregio 161 (project ID 251654672).

Declarations

Not applicable

References

Bentley, J.L.: Multidimensional Binary Search Trees Used for Associative Searching.
Commun. ACM 18(9), 509–517 (1975) https://doi.org/10.1145/361002.361007

Bruder, V., Müller, C., Frey, S., Ertl, T.: On Evaluating Runtime Performance of Inter-
active Visualizations. IEEE Trans. Vis. Comput. Graph. 26(9), 2848–2862 (2020)
https://doi.org/10.1109/TVCG.2019.2898435

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas,
K., Miller, M., Harrison, C., Weber, G., Krishnan, H., Fogal, T., Sanderson, A.,
Garth, C., Bethel, E.W., Camp, D., Rubel, O., Durant, M., Favre, J., Navratil, P.:
VisIt: An end-user tool for visualizing and analyzing very large data. High Perf.
Vis.-Enabling Extreme-Scale Scient. Insight, 357–372 (2012)

Clark, J.H.: Hierarchical Geometric Models for Visible Surface Algorithms. Commun.
ACM 19(10), 547–554 (1976) https://doi.org/10.1145/360349.360354

Fraedrich, R., Schneider, J., Westermann, R.: Exploring the Millennium Run – Scal-
able Rendering of Large-Scale Cosmological Datasets. IEEE Trans. Vis. Comput.
Graph. 15(6), 1251–1258 (2009) https://doi.org/10.1109/TVCG.2009.142

Grottel, S., Krone, M., Müller, C., Reina, G., Ertl, T.: MegaMol—A Prototyping
Framework for Particle-Based Visualization. IEEE Tran. Vis. Comput. Graph.
21(02), 201–214 (2015) https://doi.org/10.1109/TVCG.2014.2350479

Gómez-Luna, J., González-Linares, J.M., Benavides, J.I., Guil, N.: Performance mod-
els for asynchronous data transfers on consumer Graphics Processing Units. J.
Parallel Distrib. Comput 72(9), 1117–1126 (2012) https://doi.org/10.1016/j.jpdc.
2011.07.011

Grottel, S., Reina, G., Dachsbacher, C., Ertl, T.: Coherent Culling and Shading for
Large Molecular Dynamics Visualization. Comput. Graph. Forum 29(3), 953–962
(2010) https://doi.org/10.1111/j.1467-8659.2009.01698.x

19

https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/TVCG.2019.2898435
https://doi.org/10.1145/360349.360354
https://doi.org/10.1109/TVCG.2009.142
https://doi.org/10.1109/TVCG.2014.2350479
https://doi.org/10.1016/j.jpdc.2011.07.011
https://doi.org/10.1016/j.jpdc.2011.07.011
https://doi.org/10.1111/j.1467-8659.2009.01698.x


Grottel, S., Reina, G., Ertl, T.: Optimized data transfer for time-dependent, GPU-
based glyphs. In: Proc. Pac. Vis. Symp., pp. 65–72 (2009). https://doi.org/10.1109/
PACIFICVIS.2009.4906839

Gralka, P., Reina, G., Ertl, T.: Efficient Sphere Rendering Revisited. In: Proc. Symp.
Parallel Graph. Vis. (2023). https://doi.org/10.2312/pgv.20231083

Grottel, S.: Point-based Visualization of Molecular Dynamics Data Sets. PhD thesis,
Universität Stuttgart (2012). https://doi.org/10.18419/opus-6385

Gumhold, S.: Splatting Illuminated Ellipsoids with Depth Correction. In: Proc. VMV,
pp. 245–252 (2003)

Gralka, P., Wald, I., Geringer, S., Reina, G., Ertl, T.: Spatial Partitioning Strategies
for Memory-Efficient Ray Tracing of Particles. In: Proc. LDAV, pp. 42–52 (2020).
https://doi.org/10.1109/LDAV51489.2020.00012

Hoang, D., Bhatia, H., Lindstrom, P., Pascucci, V.: High-Quality and Low-Memory-
Footprint Progressive Decoding of Large-Scale Particle Data. In: Proc. LDAV, pp.
32–42 (2021). https://doi.org/10.1109/LDAV53230.2021.00011

Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol.
Graph. 14(1), 33–38 (1996) https://doi.org/10.1016/0263-7855(96)00018-5

Inupakutika, D., Davis, B., Yang, Q., Kim, D., Akopian, D.: Quantifying Performance
Gains of GPUDirect Storage. In: Proc. Int’l Conf. Netw., Arch. Storage, pp. 1–9
(2022). https://doi.org/10.1109/NAS55553.2022.9925516

Kumar, S., Petruzza, S., Usher, W., Pascucci, V.: Spatially-Aware Parallel I/O for
Particle Data. In: Proc. ICPP (2019). https://doi.org/10.1145/3337821.3337875

Müller, C., Braun, M., Ertl, T.: Optimised Molecular Graphics on the HoloLens. In:
Proc. IEEE VR, pp. 97–102 (2019). https://doi.org/10.1109/VR.2019.8798111

Microsoft: DirectStorage on Windows Samples. Online, last accessed 2023-12-01
(2022). https://github.com/microsoft/DirectStorage

Microsoft: BypassIO for filter drivers. Online, last accessed 2023-12-01 (2023). https:
//learn.microsoft.com/en-us/windows-hardware/drivers/ifs/bypassio

NVIDIA: NVIDIA Turing GPU Architecture. Technical report (2017).
Available online, last accessed 2023-12-01. https://images.nvidia.com/
aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf

Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllis-
ter, D., McGuire, M., Morley, K., Robison, A., et al.: Optix: a general purpose ray
tracing engine. ACM Trans. Graph. 29(4), 1–13 (2010)

20

https://doi.org/10.1109/PACIFICVIS.2009.4906839
https://doi.org/10.1109/PACIFICVIS.2009.4906839
https://doi.org/10.2312/pgv.20231083
https://doi.org/10.18419/opus-6385
https://doi.org/10.1109/LDAV51489.2020.00012
https://doi.org/10.1109/LDAV53230.2021.00011
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1109/NAS55553.2022.9925516
https://doi.org/10.1145/3337821.3337875
https://doi.org/10.1109/VR.2019.8798111
https://github.com/microsoft/DirectStorage
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/bypassio
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/bypassio
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf


Samet, H.: Implementing ray tracing with octrees and neighbor finding. Computers &
Graphics 13(4), 445–460 (1989) https://doi.org/10.1016/0097-8493(89)90006-X

Serandour, A., Ono, T.: Breaking Down the World of Athia: The technol-
ogy of Forspoken. Talk at GDC 2022, available online, last accessed 2023-
12-01 (2022). https://gpuopen.com/gdc-presentations/2022/GDC Breaking Down
The World Of Athia.pdf

Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable, 1st edn. Random
House, New York (2007)

Thompson, A., Newburn, C.: GPUDirect Storage: A Direct Path Between Storage and
GPU Memory. Online, last accessed 2023-12-01 (2019). https://developer.nvidia.
com/blog/gpudirect-storage/

Usher, W., Huang, X., Petruzza, S., Kumar, S., Slattery, S.R., Reeve, S.T., Wang,
F., Johnson, C.R., Pascucci, V.: Adaptive Spatially Aware I/O for Multiresolution
Particle Data Layouts. In: Proc. IPDPS, pp. 547–556 (2021). https://doi.org/10.
1109/IPDPS49936.2021.00063

Uralsky, Y.: Accelerating Load Times for DirectX Games
and Apps with GDeflate for DirectStorage. Online, last
accessed 2023-12-01 (2022). https://developer.nvidia.com/blog/
accelerating-load-times-for-directx-games-and-apps-with-gdeflate-for-directstorage/

Wiedemann, M., Kranzlmüller, D.: Statistical Analysis of Parallel Data Uploading
using OpenGL. In: Proc. Symp. Parallel Graph. Vis. (2019). https://doi.org/10.
2312/pgv.20191114

Wald, I., Knoll, A., Johnson, G.P., Usher, W., Pascucci, V., Papka, M.E.: CPU ray
tracing large particle data with balanced P-k-d trees. In: Proc. VIS, pp. 57–64
(2015). https://doi.org/10.1109/SciVis.2015.7429492

Yeung, A.: DirectStorage is coming to PC. Online, last accessed 2023-12-01 (2020).
https://devblogs.microsoft.com/directx/directstorage-is-coming-to-pc/

Ziman, D.: DirectStorage – Optimizing load-time and stream-
ing. Talk at GDC 2023, available online, last accessed
2023-12-01 (2023). https://gpuopen.com/gdc-presentations/2023/
GDC-2023-DirectStorage-optimizing-load-time-and-streaming.pdf

21

https://doi.org/10.1016/0097-8493(89)90006-X
https://gpuopen.com/gdc-presentations/2022/GDC_Breaking_Down_The_World_Of_Athia.pdf
https://gpuopen.com/gdc-presentations/2022/GDC_Breaking_Down_The_World_Of_Athia.pdf
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/
https://doi.org/10.1109/IPDPS49936.2021.00063
https://doi.org/10.1109/IPDPS49936.2021.00063
https://developer.nvidia.com/blog/accelerating-load-times-for-directx-games-and-apps-with-gdeflate-for-directstorage/
https://developer.nvidia.com/blog/accelerating-load-times-for-directx-games-and-apps-with-gdeflate-for-directstorage/
https://doi.org/10.2312/pgv.20191114
https://doi.org/10.2312/pgv.20191114
https://doi.org/10.1109/SciVis.2015.7429492
https://devblogs.microsoft.com/directx/directstorage-is-coming-to-pc/
https://gpuopen.com/gdc-presentations/2023/GDC-2023-DirectStorage-optimizing-load-time-and-streaming.pdf
https://gpuopen.com/gdc-presentations/2023/GDC-2023-DirectStorage-optimizing-load-time-and-streaming.pdf

	Introduction
	Related work
	Implementation
	Streaming particles
	DirectStorage

	Results
	Hardware
	Procedure
	API and operating system
	Conventional streaming
	DirectStorage

	Discussion
	Conclusion
	Acknowledgements


