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Figure 1: Our approach is centered around the phase histogram widget (a), which indicates the von Mises distribution [36] for given
period lengths as a row-wise heat map (b). The duration of the period can be adjusted by vertically scrolling the heat map. The
current period length is indicated by a frame (c) and visualized additionally as a bar chart (d). The quality measures for period
lengths are visualized as a vertical bar chart (e). Bigger changes of the period length or picking a dedicated one is possible with the
time slider (f). Other interesting period lengths that are fractional multiples of the current one are suggested above (g) the slider.

ABSTRACT

Periodically occurring accumulations of events or measured values
are present in many time-dependent datasets and can be of inter-
est for analyses. The frequency of such periodic behavior is often
not known in advance, making it difficult to detect and tedious to
explore. Automated analysis methods exist, but can be too costly
for smooth, interactive analysis. We propose a compact visual rep-
resentation that reveals periodicity by showing a phase histogram
for a given period length that can be used standalone or in combina-
tion with other linked visualizations. Our approach supports guided,
interactive analyses by suggesting other period lengths to explore,
which are ranked based on two quality measures. We further de-
scribe how the phase can be mapped to visual representations in
other views to reveal periodicity there.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques

1 INTRODUCTION

Many datasets contain temporal information. For many years,
visualization techniques have been used to understand develop-
ments, trends, and other temporal patterns in such time data se-
ries [1]. Such patterns include periodically occurring accumula-
tions of events, measured values, or frequencies. In time series
data, one or more attributes depend on time: a(t). Accordingly, pe-
riodic behavior of period length τ can be seen as a similarity of the
characteristics of a(t) in the intervals [t0 + kτ, t0 + kτ + τ] , k ∈ Z.
A special case are event data, where the temporal distribution of
data points is of interest, rather than the distribution of values over
time. Periodic behavior can be interesting for analyses; for instance,
to predict future values of a data attribute, or to find hidden de-
pendencies in the data. Several well-known automated procedures
for detecting periodic effects exist, such as Fourier transforms [6],
seasonal-trend decomposition based on Loess (STL) [10], and dy-
namic mode decomposition (DMD) [20, 27]. However, some of
these methods require the period length of interest as an input pa-
rameter, or can be expensive regarding the compute time.

In certain situations, the interactive visual identification and ex-
ploration of periodic effects has benefits over automatic procedures
and static visual approaches; for example, if the interplay of peri-
odicity in events with their geographical location or other data at-
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tributes is of interest. Different periodicities can be explored with-
out making presumptions on interesting periods. In addition, impor-
tant facets of the time-dependent data become visible immediately.
Various approaches [5, 19, 30, 35, 37] map phase and time to posi-
tions in a grid- or spiral-based layout, revealing periodicity in an
intuitive manner. We extend previous work with a compact, ag-
gregated, and interactive representation (Fig. 1a) of time series data
that reveals periodic behavior even for datasets with larger temporal
extent. We offer guidance [9] in the form of suggestions (Fig. 1g)
and quality measures [28, 36]. Since exploring the interplay with
other data attributes can be interesting, our approach can be inte-
grated within a larger, multiple-view visualization.

The contributions of the approach presented in this work com-
prise the introduction of a new composite widget that (i) helps users
detect and explore periodic occurrences of aggregated quantitative
information in long time series data, (ii) offers guidance to point
users to potentially interesting periods exhibiting seasonal effects,
and (iii) lets users pick suitable mappings including glyphs and
color scales to understand periodicity in other views.

2 RELATED WORK

We briefly discuss related automatic methods for analyzing periodic
behavior, but focus on interactive visual approaches. Various pos-
sibilities for representing cyclical temporal data exist [1, 5]. Hence,
we limit our discussion here to approaches closely related to ours.

Automatic Periodicity Analysis. Fourier analysis [6] converts
an input signal to the frequency domain. This requires a high
sampling rate on the input signal, which can be expensive for
event data, where it must be generated as a long, sparse histogram
of the events. Fourier analysis also returns many false positives
for non-sinusoidal periodicity. Cleveland et al. [10] introduced
STL, which splits a time-dependent data signal into a season-
ally recurring component, a linear trend, and a remainder. Con-
strained DMD (cDMD) [20] produces similar results using a dif-
ferent method. Cycle plots [7, 11] produce visualizations that also
reveal such seasonal characteristics. While these methods produce
good results even for noisy data, they are usually expensive to com-
pute, and require prior knowledge on the frequency of the periodic
behavior. STL also requires the period length to be an integer multi-
ple of the sampling rate. Unconstrained DMD [27] does not require
the period length as input, but has similar computation costs as
cDMD [20], and does not always output the expected period length.
Fourier analysis [6], DMD [27], and cDMD [20] find sinusoidal sig-
nal components; but struggle with other signal characteristics that
could occur with event data. In contrast to these methods, we focus
on interactive and exploratory analysis of periodic behavior in event
data, often in the context of other data attributes.



Visualization of Periodicity. Various works have explored
non-linear layouts of data to reveal periodicity. Carlis et al. [8] and
Weber et al. [37] proposed Archimedean spirals, where one turn
along the spiral represents one period. Periodic behavior of that
period length would then appear as lines or cones going radially
outward from the center (Fig. 2i). The same effect can be reached
with a line-wise, rectangular representation (Figs. 2e to 2g), where
each line represents one period [19]. In both representations, spi-
ral and rectangular, the period length can be adjusted interactively,
by tightening the spiral or changing the aspect ratio of the rectan-
gle, to find periodicities. Our approach focuses particularly on scal-
ability, as well as guidance of users to interesting period lengths.
We show these representations as detail views on demand. A spe-
cial case of the rectangular representations are calendar-based lay-
outs [21, 29, 35], which reveal periodic behavior in human-made
time concepts on multiple scales, but are limited to fixed time con-
cepts. Several visualizations utilizing concentric circles [2,3,16,23]
or stacks [22] also fit this category. Frey et al. [14] present a ma-
trix representation which reveals self-similar patterns in time series
data, but requires considerable screen estate.

Pinus view [30] shows an aggregated visual summary of a time
series in a triangular fashion, where each position in the triangle
corresponds with an interval and an offset in the temporal domain
of the dataset. The residuality model by Van de Weghe et al. [34]
describes a similar concept. These concepts, like ours, show a vi-
sual summary of the temporal domain. However, they are orthog-
onal to ours in that they consider aggregated intervals, rather than
looking at repeating patterns. Closer to our approach is the work
by Suschnigg et al. [31], who compare characteristics between pe-
riods via glyphs, or a matrix of anomaly scores. The approach
by Ishii and Misue [17] is also closely related to our quality met-
rics, as they essentially visualize the von Mises [36] vector strength
and direction for different data attributes. Recurrence quantification
analysis [24, 25] also share similarities to our work. In contrast to
these works, we focus on interactive discovery of interesting period
lengths, and offer a more compact visual representation.

3 APPROACH

Our approach is centered around an aggregated view on all periods
at once for a given period length, which we call the phase histogram.
Periodic behavior for that period length is visible by non-uniform
distribution of values (Figs. 1b, 1d, 2b, and 2c; Table 1). We calcu-
late quality measures for different period lengths to guide towards
interesting ones, focusing on fractional multiples of the current pe-
riod length to balance out the challenges discussed in Section 3.2.

3.1 Phase Histogram

Our approach considers a time series of events S, |S|= n. The time
series S = {ti | i ∈ {1, . . . ,n} ⊂ N} consists of points in time ti. It
has an extent from t0 to t1: ti ∈ [t0, t1], where t0, t1 ∈ R. For a
user-selectable period length τ , each point in time t has a phase
ϕ(t,τ) ∈ [0,2π). The phase is the offset from the start of the period
relative to the period length, where the first period starts at t0:

ϕ(t,τ) = 2π ·
(t−t0) mod τ

τ

For a given τ , we then calculate a histogram with N bins over
the phases of all time series events (Fig. 2a). The choice of N de-
pends mainly on available space. It affects the granularity of the
resulting phase histogram, as well as the scaling of the entropy es-
timation values. In the subsequent examples, we use N = 25. The
shape of the histogram then reveals potential periodic behavior if
one or some of the bins contain considerably more items than the
others. Figures 2b, c, e to k, and Table 1 (rows 2–5) show some
examples of histograms which represent periodic behavior. Multi-
ples and fractions of the actual periodic behavior’s period length
will also produce interesting-looking patterns. We consider such

Table 1: Example phase histograms alongside the two quality mea-
sures used: Shannon entropy [28] and von Mises vector strength [36].
For the vector strength, the distribution of the data points on the unit
circle (blue) and their barycenter (red) are also visualized.

uniform random

0.079 Sh4.5

sharp peak

1 Sh0

soft peak

0.78 Sh3.5

two symmetric peaks

0.0037 Sh3.3

three symmetric peaks

0.01 Sh4

Phase histogram Distribution Vector strength Entropy

multiples and fractions to evaluate whether they show clearer pe-
riodic behavior than the current period length τ (see Section 3.2).
While our approach focuses on event data, it can also be employed
to show periodic behavior of time-dependent data attributes (Sec-
tion 3.3). Our representation can be understood as a vertical ag-
gregation of the rectangular binned representations [19, 21, 29, 35],
which reveals overarching patterns in all rows (see Fig. 2a).

3.2 Pre-calculation and Guidance

Interesting period lengths are those that match periodically reoc-
curring events in the data. In these cases, the phases of a larger-
than-average number of events are similar, and the phase histogram
is not uniform. Our approach calculates two quality measures that
help decide which period lengths show promising patterns. The first
measure is the Shannon entropy [28] of a phase histogram. Shannon
entropy is high for more uniformly distributed histograms, and low
for histograms with clear peak outliers (Table 1). The second mea-
sure is von Mises vector strength [36], which is a measure between
0 and 1, and is highest when the phases of all data points are the
same. Von Mises vector strength is approximated by the distance
from the center of a unit circle to the barycenter of all data points af-
ter these have been projected onto the unit circle at the angle of their
respective phase. Both measures are suited for the task, since they
generally indicate when the phase histograms are not uniformly dis-
tributed. They are also fast to compute, and so can be used as part
of a highly interactive exploration approach. They have individual
downsides, which is why we calculate both for a more nuanced view
on the data: For Shannon entropy, the values quickly rise with only
little noise. Von Mises vector strength cannot recognize whole mul-
tiples of the period length of periodic behavior, as the barycenter
then moves to the center of the unit circle (Table 1, last two rows).

For a dataset, our approach initially pre-calculates the histograms
and quality measures for a set of period lengths between a lower
bound (e.g., 1 min) and an upper bound (the temporal extent of the
dataset). Within this range, multiples of time units are sampled
(1 . . .59min, 1 . . .23h, etc.). In addition, exponentially increasing
period lengths are included. Data for additional period lengths can
then be requested during analysis, and are calculated ad-hoc.

We also offer suggestions based on the current period length as a
guidance. A key challenge here is to determine the actual frequency
or period length of periodic behavior: A repeating pattern of period
length τ looks repeating also for multiples of τ (Table 1 and Fig. 2f),
but also for fractions thereof, if only an aggregation of all periods
is considered (Fig. 2g). Furthermore, fractions of multiples (such
as 4/3rds of the actual period length) can look interesting as well in
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Figure 2: A schematic explanation (a) of our approach: Event data gets binned over the temporal domain. For the Cartesian representations [19,
21, 29, 35] the bins then get placed so that each row represents one period. Our approach shows an aggregated view on this, and varies the
period durations slightly from row to row. The current period length is framed in red in the figure. Example patterns for periodic behavior in our
approach for a sharp (b) and a less sharp (c) periodic pattern, and for uniform noise (d). As a comparison, periodic behavior (e) in the Cartesian
binned representation is shown for the actual signal period length, and for multiples (f), integer fractions (g), and non-integer fractions (h, here
6/5) thereof. Here, the periodicity manifests as vertical lines. Patterns appear as straight lines emanating from the center in the Archimedean
binned representation (i) [8,37], but are also visible if the period length is nearly right (k).

an aggregated view on the data (Fig. 2h). To facilitate discovery of
better period lengths that are located at such factors, our approach
samples a small set of fractions k/n, where n is a small natural num-
ber ≥ 2 and k ∈ {1, . . . ,2n−1}. Small natural-numbered multiples
of the current period length are sampled as well, and a selection of
the best-ranking suggestions are returned based on available space.
This sampling happens on the fly for the current period length τ .

3.3 Visual Representation

We propose a compact widget (Fig. 1a) that can be included as part
of a larger, coordinated-views visualization. The widget shows
the aggregated phase distribution for the currently selected pe-
riod (Fig. 1d) length τ , as well as for the immediate neighborhood
period lengths. This context (Fig. 1b) is shown as a pixel-based [18]
visualization or heat map, where each row shows a period length.
Each row visualizes the histogram as a line of colored rectangles,
where the bin’s respective value is mapped to color. The period
lengths are shown in ascending order from the pre-calculated data
(Section 3.2 and Fig. 2a), with a context of n rows above and be-
low the current row, which is located at the center of the heat
map (Fig. 1c). By scrolling on the heat map with the mouse wheel,
or clicking on rows, users can browse the rows, changing the cur-
rent period length accordingly. By default, the color of the heat map
cells represents the number of data items in that histogram bin. It
is also possible to map this to other measures calculated on these
subsets of data, such as the mean value or variance of another data
attribute (shown in Fig. 1g for the number of sun spots per day).

To the right of the heat map, an interest measure is indicated for
each row by a vertical bar chart (Fig. 1e). For the vector strength
(Section 3.2), which is shown by default, the measure is mapped
directly. For the entropy, the highest possible entropy (least inter-
esting) is mapped to an empty bar, and the lowest possible entropy
(most interesting) is mapped to a full bar. At the top of the widget,
the current period length’s histogram is visualized again, as a bar
chart (Fig. 1d). In applications where the phase is mapped to visual
attributes in other views (see Section 3.4), this visual mapping is
displayed in a legend (Figs. 3d and 3e) below the bar chart.

Our approach also contains a time slider (Fig. 1f), which repre-
sents the domain of possible period lengths on a logarithmic scale
and can be used for larger adjustments to the current period length τ .
Period lengths with the highest-ranked quality measure values are
indicated as longer tick marks to guide users. During exploration,
multiples and fractions for the current period length are sampled.
The sampled period lengths are ranked by the selected quality mea-
sure, and the most promising ones are suggested as small thumb-
nails (Fig. 1g) above the time slider. Clicking on one such thumb-
nail changes the current period length to that of the thumbnail.

3.4 Visually Mapping the Phase

The presence of periodicity in the context of other data attributes
can be of interest as well. For example, users might be interested
in understanding whether certain events displayed on a map occur
at recurring times (see Section 4). We have tested this mapping
with position-based visualizations in our approach, but it could be
extended to other visualization types. Our prototype implementa-
tion contains a scatter plot (Fig. 3a), which represents the spatial
attribute of the data. To reveal spatio-temporal periodicity patterns,
we propose two different types of mapping that can be applied to
the markers of the scatter plot: color and shape (Fig. 3).

The first variant maps the phase of the data item to a position on
a continuous color scale. Cyclical color scales, such as a rainbow
color scale, can be a reasonable choice in this case. However, some
datasets might favor color scales with a clear cut between the end
and the beginning. The second variant maps to a visual mark with
a parameterized shape. For our prototype, we offer a mapping to a
moon phase-like mapping, or the angular rotation within [0,π) of a
rectangle, both cyclical. As acyclic mappings, we offer star shapes
that morph into circles. Previous works [4, 12, 26] on glyph design
offer additional options here. Future work might explore suitable
shapes for representing cyclical data attributes.

Within our central widget, we show a legend (Figs. 3d and 3e)
of this mapping. Especially for the acyclic mappings, it can be
beneficial to change the offset of the mapping. Hence, the offset
can be adjusted from within the legend.

4 CASE STUDY

We tested our approach with various synthetic and real-world
datasets. Here, we demonstrate its applicability on tidal sea level
data obtained from NOAA [32], with two specific datasets. Such
data contains various periodicities pertaining to the rotation of the
earth in relation to the moon, the orbit of the moon around the earth
and the earth around the sun, but also to annual or perennial pat-
terns stemming from meteorological phenomena. The interplay of
these factors is not always obvious, demonstrating the need for ex-
ploratory analysis of the resulting patterns in the data.

The first dataset was generated from hourly measurements of
the mean sea level (MSL) at one station located in Honolulu,
Hawai’i [33]. The station measurements cover 118 years, from
1905 to the present day. We reduced this data to the measure-
ments that exceeded a threshold value (+0.5m), leaving us with
5060 events. Our approach guided us to find the spring and neap
tide periodicity at half a sidereal month (13.66d, Fig. 1a). We also
could see and verify the 18.61-year nodal cycle discussed by Haigh
et al. [15]. By mapping time of year to the x and year to the y coor-
dinate in a scatter plot (Fig. 3c, days increase to the right, years to
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Figure 3: Example mappings of phase to color (a, c) or shape of
visual marks (b) in a scatter plot. Periodic behavior related to the
spatial aspect of the data is revealed by uniform areas. The mapping
is shown in our widget (Fig. 1a) as a legend (d, e) that can be inter-
actively adjusted to change the mapping of glyph or color to phase.

the top), we can also see an increase of events over the years, and a
seasonal yearly component (denser and less dense vertical areas).

The second dataset contains the dates with highest extreme wa-
ter levels for all observation stations, as provided by NOAA [32].
Over a record interval of 122.5 years, this data only contains 571
events, distributed over 74 unique stations. Hence, the observed
patterns are not as expressive; additional preprocessing of raw data
with more domain knowledge might yield better results here. Still,
we can see some periodicity at the 18.61-year period length [15].
Furthermore, seasonal differences in events between the US east
and west coast are clearly visible in the mapping of phase to color
in a geographical scatter plot (Fig. 3a) for a one-year period length.

5 DISCUSSION

We implemented a web-based prototype for our approach. Its back-
end calculates the required data, as well as additional detail data on
demand. We discuss initial results, and benefits and disadvantages
compared to other visual representations and automated methods.

Suitable Datasets and Use Cases. Our approach can be ap-
plied to use cases where the periodic re-occurrence of events is of
interest. Such events can also be generated from general time se-
ries data by determining points in time where time-dependent data
values match some criteria. We demonstrated the viability of this
strategy for finding periodic behavior in real-world data in our case
study (Section 4). We offer a few sample datasets in our prototype,
but also allow for arbitrary datasets to be loaded by the user.

Implementation Details and Scalability. Our web-based pro-
totype visualizes pre-calculated data, and additional data is calcu-
lated on demand asynchronously in a backend. With this strategy,
even for larger datasets with tens of thousands of events, interac-
tion with the user interface is very responsive and smooth, with no
or very few frame drops. Suggestions are calculated ad-hoc by the
backend and typically appear within half a second after the last in-
teraction. The thumbnails at the top (Fig. 1g) work well to guide
users to interesting period lengths. We have found that the two
measures supplement each others’ drawbacks (Section 3.2) quite
well. The mapping of phase to color or shape in the scatter plot has
proven useful to detect periodic behavior that is local in other data
attributes (Fig. 3). For performance, redrawing the scatter plot is
the bottleneck, but we have found datasets with thousands or tens
of thousands of data points to still render interactively. The imple-
mentation is available on GitHub and Zenodo [13].

Comparison to automated analyses. STL [10] and related
methods [20] allow for the automated analysis of periodic behavior,
and handle noisy data better. These methods require prior knowl-
edge of the period length for which the periodic behavior should be
analyzed. We compared mean computation time over ten runs of
our method, STL, and DMD for two datasets: For a smaller syn-
thetic dataset, STL took 227.2ms to calculate for one period length

of interest, and 3.45s for the Hawai’i tide dataset [33]. DMD took
2.53s and 1.63s, respectively, to produce decompositions with six
components and a sensible delay parameter, but did not find the ex-
pected periodic behavior. In contrast, our method took 470ms and
589.5ms, respectively, to calculate the phase histograms and qual-
ity measures for over 1800 sampled period lengths. The fairly high
computation costs of methods like STL or cDMD prohibit extensive
pre-calculations, or on-the-fly computation during smooth interac-
tion. We also see that DMD struggles to produce good results for
non-sinusoidal periodic behavior. However, these methods could
still be utilized as a second step to verify results found interactively
with our approach on demand. Fourier analysis [6] is another op-
tion, but not always suitable to real-world periodicity patterns. We
argue that automated analysis is most useful for targeted use cases,
but that exploratory analysis, especially in the context of other data
attributes (Section 3.4), still requires more interactive methods.

Comparison to other visual representations. Cycle plots [7,
11] are a powerful way to visualize periodicity, but again presume
knowledge of the periodic behavior. The calendar-based represen-
tations [21, 35] presume specific period lengths as well, but are
often suitable for data based on from human-specified time con-
cepts, such as months. We think other rectangle- [19] and spiral-
based [8, 37] visualizations show periodic behavior in an intuitive
manner, especially when period length can be adjusted. However;
these representations do not scale well for larger time spans; and
interactive use can often lead to large shifts, bad aspect ratios, and
flickering effects. Our approach condenses these two-dimensional
representations down to a one-dimensional aggregation. This opens
up space for visualizing different data attributes to understand rela-
tions between them, and allows showing close-by period lengths as
a context to the current one. This supports users in finding the best
local period for periodic events. The aggregation hides periodicity
that only appears for a part of the temporal extent, and multiples or
fractions of the actual periodicity are not clearly identifiable as such
(Section 3.2). Hence, we offer guidance, as well as detailed views
as a tooltip to closer examine interesting period lengths (Fig. 2).

Open challenges. We demonstrated the general applicability
of our approach with a prototype and different datasets, and plan
to explore its integration into larger visualization systems. Un-
derstanding the best choices with respect to phase mapping (Sec-
tion 3.4) in different scenarios, and determining the most appropri-
ate visual mapping in terms of color scales and glyph designs to rep-
resent periodicity, is another interesting research direction we plan
to pursue. The integration of other quality measures such as vari-
ance of the phase, domain-specific measures, or the combination of
multiple measures, could be an interesting extension. Incorporating
more complex automatic analysis methods, such as STL, could be
another good addition to verify promising findings on demand.

6 CONCLUSION

We have presented a novel, aggregated visual representation of tem-
poral data to explore periodicity. The time domain is mapped to
the phase or remainder for a given and adjustable period length and
visualized in a binned manner. Patterns that repeat with the same
period length appear clearly in our representation. Our approach
offers a more compact, interactive alternative to existing represen-
tations. It can be employed as a part of visualization systems with
many views to let users configure the mapping of phases for depict-
ing periodicity in other visual contexts.

ACKNOWLEDGMENTS

This work has been partially funded by the German Research Foun-
dation (DFG) project # 314647693. We thank Tim Krake in particu-
lar; as well as Frank Heyen, Daniel Klötzl, and Kuno Kurzhals; for
their valuable feedback and assistance.



REFERENCES

[1] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization

of Time-oriented Data. Springer, London, UK, 2011.
[2] E. N. Argyriou and A. Symvonis. Detecting periodicity in serial data

through visualization. In Advances in Visual Computing, pp. 295–304.
Springer Berlin Heidelberg, Jul 2012. doi: 10.1007/978-3-642-33191
-6_29

[3] K. Bale, P. Chapman, N. Barraclough, J. Purdy, N. Aydin, and P. Dark.
Kaleidomaps: A new technique for the visualization of multivariate
time-series data. Information Visualization, 6(2):155–167, Jan 2007.
doi: 10.1057/palgrave.ivs.9500154

[4] R. Borgo, J. Kehrer, D. H. S. Chung, E. Maguire, R. S. Laramee,
H. Hauser, M. Ward, and M. Chen. Glyph-based visualization: Foun-
dations, design guidelines, techniques and applications. In Eurograph-

ics STARs, pp. 39–63. The Eurographics Association, Aug 2013. doi:
10.2312/conf/eg2013/stars/039-063

[5] M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner. Time-
lines revisited: A design space and considerations for expressive story-
telling. IEEE Transactions on Visualization and Computer Graphics,
23(9):2151–2164, Sep 2017. doi: 10.1109/tvcg.2016.2614803

[6] E. O. Brigham and R. E. Morrow. The fast Fourier transform.
IEEE Spectrum, 4(12):63–70, Dec 1967. doi: 10.1109/mspec.1967.
5217220

[7] M. Bögl, P. Filzmoser, T. Gschwandtner, T. Lammarsch, R. A. Leite,
S. Miksch, and A. Rind. Cycle plot revisited: Multivariate outlier de-
tection using a distance-based abstraction. Computer Graphics Forum,
36(3):227–238, Jun 2017. doi: 10.1111/cgf.13182

[8] J. V. Carlis and J. A. Konstan. Interactive visualization of serial peri-
odic data. In Proc. UIST, pp. 29–38. ACM, Nov 1998.

[9] D. Ceneda, T. Gschwandtner, and S. Miksch. A review of guidance ap-
proaches in visual data analysis: A multifocal perspective. Computer

Graphics Forum, 38(3):861–879, Jun 2019. doi: 10.1111/cgf.13730
[10] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning.

STL: A seasonal-trend decomposition procedure based on Loess. Jour-

nal of Official Statistics, 7(1):3–73, 1990.
[11] W. S. Cleveland. Visualizing data. Hobart Press, Sep 1993.
[12] D. S. Ebert, R. M. Rohrer, C. D. Shaw, P. Panda, J. M. Kukla, and

D. A. Roberts. Procedural shape generation for multi-dimensional
data visualization. Computers & Graphics, 24(3):375–384, Jun 2000.
doi: 10.1016/s0097-8493(00)00033-9

[13] M. Franke. UniStuttgart-VISUS/periodic-time-vis. Zenodo, Jul 2023.
v1.0.0. doi: 10.5281/zenodo.8164734

[14] S. Frey, F. Sadlo, and T. Ertl. Visualization of temporal similarity in
field data. IEEE Transactions on Visualization and Computer Graph-

ics, 18(12):2023–2032, Aug 2012. doi: 10.1109/tvcg.2012.284
[15] I. D. Haigh, M. Eliot, and C. Pattiaratchi. Global influences of the

18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high
tidal levels. Journal of Geophysical Research, 116(C6):C06025, Jun
2011. doi: 10.1029/2010jc006645

[16] M. Hao, M. Marwah, S. Mittelstädt, H. Janetzko, D. Keim, U. Dayal,
C. Bash, C. Felix, C. Patel, M. Hsu, Y. Chen, and M. Hund. Visual
analytics of cyber physical data streams using spatio-temporal radial
pixel visualization. In P. C. Wong, D. L. Kao, M. C. Hao, C. Chen,
and C. G. Healey, eds., SPIE Proceedings. SPIE, Feb 2013. doi: 10.
1117/12.2002948

[17] T. Ishii and K. Misue. 2.5D extension of ChronoView for exploring
periodic features of temporal data. In Proc. IV. IEEE, Jul 2018. doi:
10.1109/iv.2018.00014

[18] D. Keim. Designing pixel-oriented visualization techniques: Theory
and applications. IEEE Transactions on Visualization and Computer

Graphics, 6(1):59–78, 2000. doi: 10.1109/2945.841121
[19] R. Kosara. Spirals for periodic data. https://eagereyes.org/

techniques/spirals, Aug 2011. Accessed: 2023-02-22.
[20] T. Krake, D. Klötzl, B. Eberhardt, and D. Weiskopf. Constrained dy-

namic mode decomposition. IEEE Transactions on Visualization and

Computer Graphics, pp. 182–192, Sep 2022. doi: 10.1109/tvcg.2022.
3209437

[21] T. Lammarsch, W. Aigner, A. Bertone, J. Gärtner, E. Mayr, S. Miksch,
and M. Smuc. Hierarchical temporal patterns and interactive aggre-

gated views for pixel-based visualizations. In Proc. IV. IEEE, Jul 2009.
doi: 10.1109/iv.2009.52

[22] T.-Y. Lee, A. Chaudhuri, F. Porikli, and H.-W. Shen. CycleStack: In-
ferring periodic behavior via temporal sequence visualization in ul-
trasound video. In Proc. PacificVis. IEEE, Mar 2010. doi: 10.1109/
pacificvis.2010.5429602

[23] G. C. Mariano, V. G. Staggemeier, L. P. Cerdeira Morellato, and
R. da Silva Torres. Multivariate cyclical data visualization using ra-
dial visual rhythms: A case study in phenology analysis. Ecological

Informatics, 46:19–35, Jul 2018. doi: 10.1016/j.ecoinf.2018.05.003
[24] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths. Recur-

rence plots for the analysis of complex systems. Physics Reports,
438(5–6):237–329, Jan 2007. doi: 10.1016/j.physrep.2006.11.001

[25] T. Rawald, M. Sips, and N. Marwan. PyRQA—Conducting recurrence
quantification analysis on very long time series efficiently. Computers

& Geosciences, 104:101–108, Jul 2017. doi: 10.1016/j.cageo.2016.
11.016

[26] T. Ropinski, S. Oeltze, and B. Preim. Survey of glyph-based visual-
ization techniques for spatial multivariate medical data. Computers &

Graphics, 35(2):392–401, Apr 2011. doi: 10.1016/j.cag.2011.01.011
[27] P. J. Schmid. Dynamic mode decomposition of numerical and experi-

mental data. Journal of Fluid Mechanics, 656:5–28, Jul 2010. doi: 10
.1017/s0022112010001217

[28] C. E. Shannon. A mathematical theory of communication. Bell Sys-

tem Technical Journal, 27(4):623–656, Oct 1948. doi: 10.1002/j.1538
-7305.1948.tb00917.x

[29] P. Silva, C. Macas, E. Polisciuc, and P. Machado. Visualisation tool
to support fraud detection. In Proc. IV. IEEE, Jul 2021. doi: 10.1109/
iv53921.2021.00022

[30] M. Sips, P. Kothur, A. Unger, H.-C. Hege, and D. Dransch. A visual
analytics approach to multiscale exploration of environmental time
series. IEEE Transactions on Visualization and Computer Graphics,
18(12):2899–2907, Dec 2012. doi: 10.1109/tvcg.2012.191

[31] J. Suschnigg, B. Mutlu, G. Koutroulis, V. Sabol, S. Thalmann, and
T. Schreck. Visual exploration of anomalies in cyclic time series data
with matrix and glyph representations. Big Data Research, 26:100251,
Nov 2021. doi: 10.1016/j.bdr.2021.100251

[32] Tides & Currents, National Oceanic and Atmospheric Administra-
tion, United States of America. Extreme water levels. https://
tidesandcurrents.noaa.gov/est/. Accessed: 2023-04-25.

[33] Tides & Currents, National Oceanic and Atmospheric Adminis-
tration, United States of America. Station home page of Hon-
olulu, HI. https://tidesandcurrents.noaa.gov/stationhome.
html?id=1612340. Accessed: 2023-04-26.

[34] N. Van de Weghe, R. Docter, P. De Maeyer, B. Bechtold, and
K. Ryckbosch. The triangular model as an instrument for visual-
ising and analysing residuality. Journal of Archaeological Science,
34(4):649–655, Apr 2007. doi: 10.1016/j.jas.2006.07.007

[35] J. J. van Wijk and E. R. van Selow. Cluster and calendar based visual-
ization of time series data. In Proc. InfoVis. IEEE, Oct 1999. doi: 10.
1109/infvis.1999.801851

[36] R. von Mises. Über die “Ganzzahligkeit” der Atomgewichte und ver-
wandte Fragen. Physikalische Zeitschrift, 19:490–500, 1918.

[37] M. Weber, M. Alexa, and W. Müller. Visualizing time-series on spirals.
In Proc. InfoVis. IEEE, Oct 2001. doi: 10.1109/infvis.2001.963273

https://doi.org/10.1007/978-3-642-33191-6_29
https://doi.org/10.1007/978-3-642-33191-6_29
https://doi.org/10.1007/978-3-642-33191-6_29
https://doi.org/10.1007/978-3-642-33191-6_29
https://doi.org/10.1007/978-3-642-33191-6_29
https://doi.org/10.1007/978-3-642-33191-6_29
https://doi.org/10.1007/978-3-642-33191-6_29
https://doi.org/10.1057/palgrave.ivs.9500154
https://doi.org/10.1057/palgrave.ivs.9500154
https://doi.org/10.1057/palgrave.ivs.9500154
https://doi.org/10.1057/palgrave.ivs.9500154
https://doi.org/10.1057/palgrave.ivs.9500154
https://doi.org/10.1057/palgrave.ivs.9500154
https://doi.org/10.2312/conf/eg2013/stars/039-063
https://doi.org/10.2312/conf/eg2013/stars/039-063
https://doi.org/10.2312/conf/eg2013/stars/039-063
https://doi.org/10.2312/conf/eg2013/stars/039-063
https://doi.org/10.2312/conf/eg2013/stars/039-063
https://doi.org/10.2312/conf/eg2013/stars/039-063
https://doi.org/10.2312/conf/eg2013/stars/039-063
https://doi.org/10.1109/tvcg.2016.2614803
https://doi.org/10.1109/tvcg.2016.2614803
https://doi.org/10.1109/tvcg.2016.2614803
https://doi.org/10.1109/tvcg.2016.2614803
https://doi.org/10.1109/tvcg.2016.2614803
https://doi.org/10.1109/tvcg.2016.2614803
https://doi.org/10.1109/mspec.1967.5217220
https://doi.org/10.1109/mspec.1967.5217220
https://doi.org/10.1109/mspec.1967.5217220
https://doi.org/10.1109/mspec.1967.5217220
https://doi.org/10.1109/mspec.1967.5217220
https://doi.org/10.1109/mspec.1967.5217220
https://doi.org/10.1111/cgf.13182
https://doi.org/10.1111/cgf.13182
https://doi.org/10.1111/cgf.13182
https://doi.org/10.1111/cgf.13182
https://doi.org/10.1111/cgf.13182
https://doi.org/10.1111/cgf.13182
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1016/s0097-8493(00)00033-9
https://doi.org/10.1016/s0097-8493(00)00033-9
https://doi.org/10.1016/s0097-8493(00)00033-9
https://doi.org/10.1016/s0097-8493(00)00033-9
https://doi.org/10.1016/s0097-8493(00)00033-9
https://doi.org/10.1016/s0097-8493(00)00033-9
https://doi.org/10.5281/zenodo.8164734
https://doi.org/10.5281/zenodo.8164734
https://doi.org/10.5281/zenodo.8164734
https://doi.org/10.5281/zenodo.8164734
https://doi.org/10.5281/zenodo.8164734
https://doi.org/10.5281/zenodo.8164734
https://doi.org/10.1109/tvcg.2012.284
https://doi.org/10.1109/tvcg.2012.284
https://doi.org/10.1109/tvcg.2012.284
https://doi.org/10.1109/tvcg.2012.284
https://doi.org/10.1109/tvcg.2012.284
https://doi.org/10.1109/tvcg.2012.284
https://doi.org/10.1029/2010jc006645
https://doi.org/10.1029/2010jc006645
https://doi.org/10.1029/2010jc006645
https://doi.org/10.1029/2010jc006645
https://doi.org/10.1029/2010jc006645
https://doi.org/10.1029/2010jc006645
https://doi.org/10.1117/12.2002948
https://doi.org/10.1117/12.2002948
https://doi.org/10.1117/12.2002948
https://doi.org/10.1117/12.2002948
https://doi.org/10.1117/12.2002948
https://doi.org/10.1117/12.2002948
https://doi.org/10.1109/iv.2018.00014
https://doi.org/10.1109/iv.2018.00014
https://doi.org/10.1109/iv.2018.00014
https://doi.org/10.1109/iv.2018.00014
https://doi.org/10.1109/iv.2018.00014
https://doi.org/10.1109/iv.2018.00014
https://doi.org/10.1109/2945.841121
https://doi.org/10.1109/2945.841121
https://doi.org/10.1109/2945.841121
https://doi.org/10.1109/2945.841121
https://doi.org/10.1109/2945.841121
https://doi.org/10.1109/2945.841121
https://eagereyes.org/techniques/spirals
https://eagereyes.org/techniques/spirals
https://eagereyes.org/techniques/spirals
https://eagereyes.org/techniques/spirals
https://eagereyes.org/techniques/spirals
https://eagereyes.org/techniques/spirals
https://eagereyes.org/techniques/spirals
https://doi.org/10.1109/tvcg.2022.3209437
https://doi.org/10.1109/tvcg.2022.3209437
https://doi.org/10.1109/tvcg.2022.3209437
https://doi.org/10.1109/tvcg.2022.3209437
https://doi.org/10.1109/tvcg.2022.3209437
https://doi.org/10.1109/tvcg.2022.3209437
https://doi.org/10.1109/iv.2009.52
https://doi.org/10.1109/iv.2009.52
https://doi.org/10.1109/iv.2009.52
https://doi.org/10.1109/iv.2009.52
https://doi.org/10.1109/iv.2009.52
https://doi.org/10.1109/iv.2009.52
https://doi.org/10.1109/pacificvis.2010.5429602
https://doi.org/10.1109/pacificvis.2010.5429602
https://doi.org/10.1109/pacificvis.2010.5429602
https://doi.org/10.1109/pacificvis.2010.5429602
https://doi.org/10.1109/pacificvis.2010.5429602
https://doi.org/10.1109/pacificvis.2010.5429602
https://doi.org/10.1016/j.ecoinf.2018.05.003
https://doi.org/10.1016/j.ecoinf.2018.05.003
https://doi.org/10.1016/j.ecoinf.2018.05.003
https://doi.org/10.1016/j.ecoinf.2018.05.003
https://doi.org/10.1016/j.ecoinf.2018.05.003
https://doi.org/10.1016/j.ecoinf.2018.05.003
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.cageo.2016.11.016
https://doi.org/10.1016/j.cageo.2016.11.016
https://doi.org/10.1016/j.cageo.2016.11.016
https://doi.org/10.1016/j.cageo.2016.11.016
https://doi.org/10.1016/j.cageo.2016.11.016
https://doi.org/10.1016/j.cageo.2016.11.016
https://doi.org/10.1016/j.cag.2011.01.011
https://doi.org/10.1016/j.cag.2011.01.011
https://doi.org/10.1016/j.cag.2011.01.011
https://doi.org/10.1016/j.cag.2011.01.011
https://doi.org/10.1016/j.cag.2011.01.011
https://doi.org/10.1016/j.cag.2011.01.011
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1109/iv53921.2021.00022
https://doi.org/10.1109/iv53921.2021.00022
https://doi.org/10.1109/iv53921.2021.00022
https://doi.org/10.1109/iv53921.2021.00022
https://doi.org/10.1109/iv53921.2021.00022
https://doi.org/10.1109/iv53921.2021.00022
https://doi.org/10.1109/tvcg.2012.191
https://doi.org/10.1109/tvcg.2012.191
https://doi.org/10.1109/tvcg.2012.191
https://doi.org/10.1109/tvcg.2012.191
https://doi.org/10.1109/tvcg.2012.191
https://doi.org/10.1109/tvcg.2012.191
https://doi.org/10.1016/j.bdr.2021.100251
https://doi.org/10.1016/j.bdr.2021.100251
https://doi.org/10.1016/j.bdr.2021.100251
https://doi.org/10.1016/j.bdr.2021.100251
https://doi.org/10.1016/j.bdr.2021.100251
https://doi.org/10.1016/j.bdr.2021.100251
https://tidesandcurrents.noaa.gov/est/
https://tidesandcurrents.noaa.gov/est/
https://tidesandcurrents.noaa.gov/est/
https://tidesandcurrents.noaa.gov/est/
https://tidesandcurrents.noaa.gov/est/
https://tidesandcurrents.noaa.gov/est/
https://tidesandcurrents.noaa.gov/stationhome.html?id=1612340
https://tidesandcurrents.noaa.gov/stationhome.html?id=1612340
https://tidesandcurrents.noaa.gov/stationhome.html?id=1612340
https://tidesandcurrents.noaa.gov/stationhome.html?id=1612340
https://tidesandcurrents.noaa.gov/stationhome.html?id=1612340
https://tidesandcurrents.noaa.gov/stationhome.html?id=1612340
https://doi.org/10.1016/j.jas.2006.07.007
https://doi.org/10.1016/j.jas.2006.07.007
https://doi.org/10.1016/j.jas.2006.07.007
https://doi.org/10.1016/j.jas.2006.07.007
https://doi.org/10.1016/j.jas.2006.07.007
https://doi.org/10.1016/j.jas.2006.07.007
https://doi.org/10.1109/infvis.1999.801851
https://doi.org/10.1109/infvis.1999.801851
https://doi.org/10.1109/infvis.1999.801851
https://doi.org/10.1109/infvis.1999.801851
https://doi.org/10.1109/infvis.1999.801851
https://doi.org/10.1109/infvis.1999.801851
https://doi.org/10.1109/infvis.2001.963273
https://doi.org/10.1109/infvis.2001.963273
https://doi.org/10.1109/infvis.2001.963273
https://doi.org/10.1109/infvis.2001.963273
https://doi.org/10.1109/infvis.2001.963273
https://doi.org/10.1109/infvis.2001.963273

	Introduction
	Related Work
	Approach
	Phase Histogram
	Pre-calculation and Guidance
	Visual Representation
	Visually Mapping the Phase

	Case Study
	Discussion
	Conclusion

