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Figure 1: Principal Component Analysis reveals the constituent colors of a two-tone image and a corresponding blend map. By
identifying the most similar image from a database of images generated by a procedural texture model according to a texture
descriptor, we can retrieve structural parameters. Together with the colors, they produce an image closely matching the input.

Abstract

The choice of parameters for procedural textures to achieve a desired appearance poses a challenging problem
even for experienced artists. We propose a method to automatically determine such parameters to reproduce the
appearance of input images. Addressing two-tone textures, we separate the estimation of color and structure
information and interpret the problem as image retrieval task from the space of procedural outputs. Applying a
perceptually motivated image metric based on a texture descriptor enables us to precompute a comprehensive
collection of possible parameter sets and yet achieve interactive retrieval performance. Our method supports a
large variety of procedural texture models with a unified approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and texture I.3.m [Computer Graphics]: Miscellaneous—
Image-based modeling

1. Introduction

Visually appealing models and high quality renderings are
required for the construction of virtual worlds. However,
manual modeling of details, especially regarding surface tex-
tures, becomes increasingly intractable as quality demands
rise. Historically, two principal avenues have been explored
to face this challenge: image-based modeling on the one
hand, where natural images are used for highly realistic ren-
derings at the cost of expensive recording and storage and

limitations for editing, and procedural modeling on the other,
which has most compact storage requirements but suffers at
times from unwieldy parameter control. In this article, we
investigate a fusion of the two principles, choosing the pa-
rameters of procedural models automatically so as to match
the appearance of a natural input picture.

For an artist, the initial exploration of the parameters of
a procedural model is tedious and often the parameter space
appears unmanageable as the parameters might behave non-
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linearly with overlapping effects. We intend to support this
process by offering an artist to start with an automatically
retrieved feasible parameter set for a procedural model, en-
abling the artist to fully focus on the creative task of fi-
nalizing the look. In designing our system, we have real-
world production scenarios in mind, which require intuitive
and real-time interaction mechanisms and robust setups. We
show that our pipeline reasonably matches production tex-
tures (see Acknowledgments for image sources). Prelimi-
nary discussions with members of the movie industry have
revealed interest in our work, for instance as a technique to
support pre-visualization in production.

Our proposed technique, outlined in Figure 1, makes
the following contributions: we match the input pictures to
structural parameters while employing a perceptually moti-
vated image distance metric calibrated to the end user of the
technique. Aside from this calibration, our approach is con-
figuration free and works robustly for very different texture
model classes, which we demonstrate for noise textures, reg-
ular grids, and special-purpose texture models for tiled and
wooden surfaces. Interpreting the problem as an image re-
trieval task permits to precompute databases of texture de-
scriptors, which in turn enables interactive performance.

2. Related Work

In order to distinguish the different example-based texture
synthesis techniques, we are briefly going to discuss texture
categories and their procedural representations. We then re-
late our work to other example-based texture synthesis pub-
lications and review the different steps of our interactive pa-
rameter retrieval pipeline.

Lin et al. [LHW⇤06] define a texture spectrum that ranges
from regular deterministic textures with distinguishable tex-
ture elements recurrently placed, to irregular placements,
ending in purely stochastic textures. Most publications about
example-based texture synthesis focus on one specific tex-
ture type, for example on stochastic texture models. In our
pipeline there are no general restrictions on the structural
spectrum of the matched textures.

One approach for example-based texture synthesis is data-
driven, producing its output as an array of pixel data [HB95,
EL99, WL00]. Wei et al. [WLKT09] present a comprehen-
sive summary of such data-driven techniques, focusing on
neighborhood-based texture synthesis applications, also in
regard to dynamic and solid texture synthesis. Recently, Van-
hoey et al. [VSLD13] contribute with an on-the-fly gener-
ation of non-periodic infinite texture data and height maps
using multi-scale texture tiles. As all these techniques pro-
duce pixel data, they are fundamentally different to our
approach of retrieving parameter sets for procedural tex-
tures: compact representations which can be evaluated in-
dependently per texel permitting parameteric control. The
term procedural texture has been used with different mean-
ings in a variety of texture synthesis approaches. We refer

to Ebert et al.’s [EMP⇤02] characterization and understand
procedural textures as mathematical texture models. Ebert
et al. [EMP⇤02] give a valuable survey for such function
based texture programs. Among other techniques, they dis-
cuss modelling based on noise functions, an approach thor-
oughly discussed by Lagae et al. [LLC⇤10]. They can either
be used as texture models on their own or as a basis for fur-
ther pattern generation. Perlin noise [Per85], for example, is
a common basis function for procedural textures and Perlin’s
texture renderings demonstrate that many natural phenom-
ena can easily be described in such a compact fashion.

Related work on example-based procedural texture syn-
thesis techniques is distinguishable regarding the underlying
texture models, which distance metrics are employed and
how its parameters are controlled. For the class of stochas-
tic texture models, the generating parameters can be ob-
served by computational analysis of the query images. This
has been used as a parameter control strategy for stochastic
textures in a variety of techniques. Lagae at al. [LVLD10]
compute weights for the different noise bands of a multi-
resolution noise to match isotropic stochastic procedural
textures. Galerne et al. [GLLD12] automatically adjust the
parameters of bandwidth-quantified Gabor noise. Gilet et
al. [GDG12] present a multiple kernel noise which they de-
signed by defining the power spectral density. Successively
decomposing and matching the noise frequencies enabled
the creation of visually appealing procedural textures. All
techniques above yield convincing results but, being based
on purely stochastic textures, their expressiveness is limited.

Lefebvre and Poulin [LP00] transfer measured properties
of images to corresponding parameters for procedural brick
and wood textures. The algorithm takes a reference image,
a binary mask, and the texture class as input and produces
persuasive results for these two structural texture types.

Gilet and Dischler [GD10] apply a more general optimiza-
tion strategy for choosing the parameters of a procedure.
They minimize an image distance metric computed with a
multi-resolution Gabor filter bank and a windowed Fourier
transform with gradient descent. While their approach is lim-
ited to a specific class of stochastic textures, they can create
volumetric representations from 2D input images. Bourque
and Dudek [BD04] also employ distance metrics and non-
linear optimization while allowing for the whole procedu-
ral texture spectrum when matching. Our work differs from
theirs by reducing the search space by several dimensions:
we are able to support more complex structural designs as we
process a texture’s color information independently, an idea
loosely based on previously implemented color space trans-
formations [HB95] [VSLD13]. Furthermore our work is dis-
tinguished by presenting a robust and generalized pipeline
for any structural texture model. In Bourque and Dudek’s
work the user needs to select the distance metric and opti-
mization strategy for each fitting task individually. Finally,
we present a larger variety of results with average match-
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ing times in less than one second during run-time due to our
retrieval technique while Bourque and Dudek’s non-linear
optimization cost around 12 minutes at that time.

Wu et al. [WDR13] also implement a retrieval-based core
for their inverse bi-scale material design pipeline. They split
the appearance design task into a search in pre-computed
small scale geometry and material libraries, employing an
overall non-uniformly weighted euclidean distance of the
BRDF representations. We base our distance metric on a
more abstract appearance feature vector by implementing
a Gabor distance metric. Field [Fie87] show that the re-
sponses of a Gabor filter bank, with filters that differ in ori-
entation, frequency and resolution, relate to the responses of
the human visual system to image elements. Manjunath and
Ma [MM96] introduce a robust image browsing and retrieval
application based on a Gabor filter bank and a distance mea-
sure from the accumulation of the filter responses. They
compared their implementation with other classification al-
gorithms and concluded that Gabor filters show slightly bet-
ter performance and retrieval accuracy.

3. Texture Model

We model a three-channel color texture

T~a,~c1,~c2 : R2 ! R3, ~x 7! (r,g,b)T (1)

as convex combination of two RGB colors ~c1,~c2 2 [0,1]3.
Each pixel position~x may be expressed as

T~a,~c1,~c2(~x) = (1� s~a(~x)) · ~c1 + s~a(~x) · ~c2. (2)

The structure function

s~a : R2 ! [0,1]⇢ R (3)

controls the blend between the two colors dependent on a
parameter vector

~a 2
�
[amin,1,amax,1], . . . , [amin,n,amax,n]

�
⇢ Rn (4)

and is implemented as a procedural texture. Thus, T is de-
fined by the discrete choice of a structural function (manu-
ally selected by the user or automatically chosen by the al-
gorithm), two color tones, ~c1,~c2, and a structural parameter
vector ~a depending on the concrete choice of the structural
function. This formulation expresses colors using RGB val-
ues, which we found favorable for the intended place deep in
the digital asset production pipeline. While perceptual uni-
formly scaled color spaces would conceivably improve pre-
dictive capabilities of perception, they would be most helpful
only after lighting and color grading has already taken place.

By using two-tone texture models we assume that the in-
put picture shows a two-tone texture also. This implies that
the distribution of its color values in the RGB cube follows
a straight line. A principal component analysis (PCA) of the
color values reveals the line’s location as the first principal
component (the one corresponding to the eigenvector of the
covariance matrix with the largest eigenvalue). The extremal

pixel values of the input picture define its two constituent
tones ~c1 and ~c2. An affine transformation maps the color
with the smaller luminance value to 0 and the greater one to
1. If the luminance comparison fails, we use the three chan-
nels in lexicographical order for comparison. This mapping
transforms the input picture to a gray valued structural im-
age starget and we can proceed with matching this structural
information. The determined tones ~c1 and ~c2 constitute the
final colors for the texture program.

For input images that deviate from the two-tone assump-
tion, the pixel values are projected onto the straight line ~c1~c2.
As the projected values may fall outside the RGB unit cube,
we chose the intersection points of the line with the RGB
cube as the two constituent colors.

4. Texture Distance Metric

For our application, the choice of a suitable texture distance
metric is crucial. A useful metric needs to abstract the tex-
ture input sufficiently while maintaining features relevant for
a human observer, supporting fast evaluation. In mimicking
human perception, both global statistics of an image, which
relate to features such as overall brightness and contrast, as
well as its frequencies and their distributions, which corre-
spond to structural orientations, have been successfully used
in the past [PCR11,MM96]. We formulate a metric incorpo-
rating both types into a descriptor vector which can be inde-
pendently computed per input image and compactly stored.

As global statistical features of the structure functions in
the observed domain, we employ the mean and standard de-
viations µglobal and sglobal. In order to model the distribu-
tions of frequency content in the structure maps, we employ
a descriptor derived from a Gabor filter bank as used by
Manjunath and Ma [MM96]. It is constructed from a fam-
ily of harmonic, sinusoidal functions, weighted by a Gaus-
sian distribution and extracts localized descriptions for dif-
ferently oriented frequency bands. The response for one of
the individual Gabor filters gi is calculated by

Ri :=

RR
x,y2Ai

|(I ⇤gi)(x,y)|dxdy
|Ai| ·

RR
x,y2Ai

|gi(x,y)|dxdy
(5)

where Ai is the maximal circular inner image area within
which the convolution with a filter on a given scale does not
cross the image boundary. For fast evaluation, the convolu-
tions are best performed in the frequency domain, as com-
puted by the Discrete Fourier Transform [Smi97] [FJ05].

In our application, we employ sixteen different orien-
tations and four different frequencies and an additional
isotropic kernel on six filter scales each, except for the high-
est frequency on the lowest scale; this covers scales from the
sampling limit up to the maximum filter size for which the
kernels observe quasi-repetitive structures with the 2562 tex-
tures we will use later on. This results in a total of 374 filter
response images Ri.
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0.60 0.96 0.99 0.99 1.00 0.99 0.95 0.94

Table 1: The top 10% of the total test chart used to deter-
mine contrast weights, with the weights used reported below
the corresponding sinusoids. The full chart is 4096 pixels
wide and was used in actual size with scrolling.

Intuitively, two images should have similar descriptor vec-
tors if and only if the distributions of filter responses are
similar. In order to achieve a compact representation, we
model these histograms as Gaussian distributions, storing
only arithmetical means µi and standard deviations si.

For comparing the distributions we compute the W2
Wasserstein distance, which in this case can be expressed
compactly in closed form [GS84]. In the 1D case (not an-
alyzing the covariance between different responses Ri,R j),
the comparison corresponds to evaluating a L2 distance in
the first two statistical moments [DL82] in a vector space
with µi and si in separate dimensions.

This motivates a m-dimensional descriptor vector for the
image I to be assembled from the mean µi and standard de-
viations si of the filter responses Ri interpreted as individual
sets of numbers concatenated to the global values µglobal and
sglobal, inducing a global L2 distance metric

D(I1, I2) :=
r

w2
global ·d

2
global +Â

i
w2

i ·d2
i (I1, I2) (6)

where dglobal and di are the Wasserstein distances of the re-
spective distributions (the square root being omitted in prac-
tice). D depends on weights which express the relative im-
portance of the respective descriptor entries. These weights
model the frequency-dependent contrast sensitivity of the
human visual system [CR68]. As the specific weights de-
pend on both the observer and on viewing conditions, they
need to be calibrated individually in production. For our ex-
periments, we have chosen wi dependent on the scale of the
Gabor filters proportional to the location of beginning con-
trast sensitivity as determined by a contrast test chart dis-
played on the monitor. Exact values and peaks vary between
observers, but follow a similar distribution for different in-
dividuals. The weights used for all results in this article are
reported in Table 1.

This leaves the balancing of local feature sensitivity vs.
global brightness and contrast, as expressed by wglobal. As
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Figure 2: Influence of wglobal. Low values tend to under-
emphasize global statistics, large values put too little weight
on local structure. For an intermediate value, a good com-
promise is achievable.

Figure 2 shows, there is a trade-off to be made. For low val-
ues of wglobal, local structure dominates the descriptor, and
while orientations and edge densities are recovered well, av-
erage brightness is lost. For high values, the opposite effect
occurs. Such a balancing of features also depends on produc-
tion requirements. In order to provide a comparable evalua-
tion, we used the same wglobal for all texture classes. Follow-
ing the intuition that global statistics and local structure are
equally important, we chose wglobal := Âi wi, as the sum of
weights for the descriptor elements representing local struc-
ture (354.82 in the reported results).

Note that, in contrast to full color texture descriptors,
which would need at least three separate descriptor vector
entries for each of the color channels – possibly more in or-
der to resolve color correlation – our approach of explicitly
mapping to a two-tone space remains 1-D and thus compact
while being descriptive.

5. Retrieval

In the sense of the image distance defined above, the ideal
choice of structural parameters ~a for a given input image
starget and a given texture model are simply those which re-
sult in the minimal distance, i.e. argmin~a D(starget,s~a). The
compactness of the Gabor texture descriptor vector and the
pre-processing of the colors allow to fully pre-compute and
store a map Rn ! Rm, encoding the descriptor vectors for a
dense sampling of the parameter space Rn. For moderately
complex texture models, this sampling can even be exhaus-
tive in practice. Where more than 106 entries are required,
we instead apply random sampling of the parameter space.

As Gabor filter kernels for a given frequency are identi-
cal up to discretized rotation, this map also contains the de-
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Figure 3: Results with automatic model selection for noisy textures.

scriptors of rotated versions of all structure images it stores
descriptors for. Hence, while searching this map for the op-
timal match, we simultaneously search for rotated versions
simply by permutating descriptor values during comparison,
and we require no explicit sampling of texture rotations.

Most texture programs produce useful results when swap-
ping the roles of the colors ~c1 and ~c2. Instead of encoding
this behavior as a dimension of the structural parameter vec-
tor, we search for the descriptors of both starget and 1�starget,
and, if the latter produces a solution with smaller distance,
exchange ~c1 and ~c2, cutting storage requirements in half.

6. Results

We consider a usage scenario in which an artist is tasked
with choosing a texture model and defining its procedural
parameters for matching a reference picture (such as a pho-
tograph or drawing). Our approach intends to provide sub-
stantial support for this task by suggesting the best-matching
parameters for several possible texture models from a pre-
selected class. Within a class, the results are arranged in in-
creasing distance D to the reference. The pre-selection of a
model class is easy for the human artist to do and makes the
descriptor more discriminative. As a consequence, its com-
pact representation remains meaningful and comparable as
the individual texture models constrain the search space.

Our results represent several common texture classes and
the procedures follow standard texture models available in
commercial modeling packages, such as Autodesk’s Maya.
In addition to six scalars for the two color tones, our imple-
mentations have one parameter rotation and additionally be-
tween one and seven structural parameters. We consider this
representative, both in line with tools used in content produc-

tion such as the count of structural parameters of Autodesk’s
Maya texture nodes and in research [LLD12a] [LLD12b].
Exemplary source code and a detailed description of param-
eter counts, value ranges, sampling densities and exemplary
visualizations for each model are provided as supplementals.
We have implemented texture models from these classes:

• Noise textures, including classic Perlin noise with added
contrast control (perlin), turbulence, and turbulence with
a ridge (turbulenceridge) [Per85]. They all support
anisotropic stretch and global scaling, and are suitable for
a large variety of surface materials, including concrete,
wood, rust, clouds or even vegetable skin (Figure 3).

• Grids of regular structures, with models covering grids
of variable spacing, edge sizes and edge softness (grid,
cellular grid) (Figure 4).

• Tiled textures, comprising a semi-shaded turbulent sur-
face type (such as occurs in a brick wall) and a texture
mimicking hardwood floor (woodplanks) (Figure 5).

• Cut and polished Wood surfaces, implemented with vary-
ing base structures – woodlines, woodplanks and a one
parameter woodstreaks model (Figure 6).

• Rings with turbulent lines of variable width, as in some
wood and marble-like structures (Figure 7, rings).

Noisy queries (Figure 3) yield good results for each of the
texture models in many cases. Perlin does not support iso-
lated peaks, and turbulenceridge does not support very high
frequencies. In these cases, anisotropic stretch is chosen as
compromise, and the results are automatically downranked
and better results from other models preferred.

As grid queries (Figure 4), we have used a mixture of tar-
gets intended to illustrate the behavior when abstraction of
shapes is required. Neither of our grid texture implementa-
tions support diamond shapes; rotated rectangular grids are

c� 2014 The Author(s)
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Figure 4: Results with automatic model selection for grids.
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Figure 5: Results with automatic model selection for tiles.
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Figure 6: Results with automatic model selection for wooden surfaces.
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Figure 7: Results for the texture class rings for different numbers of random samples in the database.

chosen as best-effort match. Both the grid and cellular grid
implementations have a large underlying parameter space to
search in; cellular grid illustrates the behavior for stronger
quantization of scales, grid demonstrates random sampling
of the larger space; as a result, exact reproductions of scales
may not be possible; however, the resulting scales are always
similar to the scales in the target image, and would only re-
quire minimal modifications by an artist to finalize.

The tiled textures (Figure 5) woodplanks and brick imple-
ment models where spacing parameters need to be selected.
In the presence of hard-coded design choices – not uncom-
mon in production textures – a selection needs to be made
between wood-like and stone-like surface appearance. Ex-
cepting the blue cartoon tiles, which are outside the appear-
ance space of the texture models, grid spacings are robustly
found. The optional phase-shift between rows and columns
plays a less important role in the texture descriptor.

For the wooden examples (Figure 6), we have tested im-
plementations with small parameter space volumes in ad-
dition to the wooden planks from the tiled textures. Even
though woodlines has only two, and woodstreaks only one
parameter which needs to be sampled, targets which are
close to the appearance space of the textures are approx-
imated well, and in those where additional structures are
present (such as the fence or wooden planks), the orientation
and scale of estimated structures provide plausible matches.

The rings texture (Figure 7) illustrates results for a com-
plex texture, the parameter of space of which cannot be ex-
haustively precomputed, requiring random sampling. As can
be seen, the results with 106 randomly sampled database en-
tries match the structures of the target pictures closely. For an
interactive application, a smaller sample with 105 entries re-
sults in fast approximations an artist could use interactively.

In order to test extreme mismatches between target query
and texture model appearance space, we implemented a sym-
bol texture model arranging symbols from the Wingdings
font, and a star model showing regular arrangements of stars

of variable number of tips. As Figure 8 shows, structures
are still recognizable even when the appearance space of the
model and the target have no overlap. Matching marguerites,
we even get a lucky result of an arrangement of flowers.

In total, our results show that our technique is successful:
for each requested target picture, the preferred match is a
feasible approximation of the input, requiring at most min-
imal fine-tuning by an artist for optimal results (note that
all results shown are the direct, automatic result of the al-
gorithms as-is, though). Also, the selected texture model ap-
proximates the input best from the models in the same class.

Sizes and Timings

Table 2 shows the size of the precomputed database for the
texture models we tested and the associated retrieval times.
While implementing the texture models, we set limits for
the scales so as not to generate structures which are either
finer than the sampling limit or too large for multiple rep-
etitions in the 2562 pixel texture window we experimented
with. We chose this size as we expect it to sufficiently cover
procedural models with any practical number of parameters:
higher resolutions would only be useful to define procedural
models with both very fine (pixel scale) features and very
large features (in excess of half of the image size), but are
certainly possible, increasing the number of descriptors ap-
proximately linearly with the larger image dimension.

We only roughly distributed the parameter space percep-
tually uniformly, for instance, using exponential scales for
structure sizes. An automatic scaling, such as investigated
by Lasram et al. [LLD12b], is outside the scope of this arti-
cle. We discretized the parameter space so as to create visible
differences between stops on each parameter scale.

The precomputation time of the sampling ranges from one
minute single thread CPU time for an exhaustive search on
simple models to 1377 hours for a 106 random sampling.
While we parallelized the precomputation – an easy opti-
mization on industrial render farms – performance would
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Figure 8: Results for mismatches between query texture and
supported model appearance.

texture model # entries db size time / s
brick 224 422 645.5 MB 0.80
cellular grid 101 871 293.0 MB 0.80
grid 106⇤ 2876.3 MB 7.79
grid 105⇤ 287.6 MB 0.8
perlin 12 221 35.1 MB 0.11
star 44 0.1 MB < 0.01
symbol 16 830 48.3 MB 0.14
turbulence 23 331 67.0 MB 0.22
turbulenceridge 4 851 13.9 MB 0.07
woodlines 121 0.3 MB < 0.01
woodplanks 20 402 58.6 MB 0.2
woodstreaks 11 < 1 MB < 0.01
rings 106⇤ 2887.7 MB 7.97
rings 105⇤ 288.8 MB 0.80

Table 2: Database dimension, size and retrieval times, sin-
gle precision floating point values. Retrieval time excludes
the computation of the target texture descriptor (about 0.6
s) and is reported for an Intel R� Core

TM
i7-2600K CPU @

3.40GHz. * denotes random sampling.

further benefit from a GPU implementation. We do not con-
sider these timings practical concerns, but rather one-time
investments. The resulting databases fit in-core at runtime
and a retrieval time of well below 1s for an exhaustive search
of the entire parameter space for most textures is achieved.

7. Limitations and Future Work

Our sample-and-retrieve approach is fundamentally different
from continuous methods. They may apply non-linear opti-
mization and interpolation methods [BD04], and thus pre-
cisely find a local optimum in the parameter space. However,
the numerical evaluation of the gradient of a cost function
alone, involving several computations of an image differ-
ence function, may take more time than our entire retrieval
step. Additionally a continuous approach needs at least lo-
cally continuous maps from the parameter into the distance

function space. In choosing a discrete, sampled model, we
believe to have found a compelling alternative.

When designing our texture descriptor we focused on
maintaining relevant texture features while enabling fast
evaluation. As a consequence, it does not reach the full
expressivity which could be expected from state-of-the art
texture analysis but follows our intent to construct a com-
pactly storable descriptor vector. Modeling the distributions
as Gaussians, disregarding phase sensitivity and covariances
between the individual responses, may seem as a coarse
oversimplification. Procedural models are, however, usually
constrained in the effect of their parameters: a brick model,
for instance, may offer expressive control on brick size,
placement, and dimensions of mortar, but will not permit in-
dependent phase shifting of low and high frequencies at its
edges. A representation of correlations between features on
different scales and orientations would require scaling the
descriptor vector length quadratically in the filter bank size,
but could be expected to improve the automatic selection of
texture models across the different texture classes.

A more general challenge in aligning automatic texture
analysis with perceptual expectations of a human observer
lies in semantic understanding: searching for a picture con-
taining a happy smiley, we obtained the result shown in Fig-
ure 8: objectively, a good match for the input in terms of
density, line structure, global and local contrast – but a bad
match taking into account semantic associations of a human
observer. Nonetheless, we believe to have found a useful bal-
ance of accuracy and efficiency.

Following the idea of pre-processing the color matching
within our pipeline, it could be promising to estimate a con-
tinuous rotation before employing a structural texture de-
scriptor. This might result in more accurate matches and
faster retrieval performance.

Individually implemented texture metrics for cluster of
texture types, combined in a common pipeline could enable
the application to determine a texture class automatically.
This would be useful for computing the layering of different
texture models into one rendering, determining the influence
of each texture model to match a target.

Many textures, which cover an application-relevant space,
are representable with two-tone models – almost two-thirds
of our target images come from online resources of the in-
dustry. Without general restrictions for the structural design
of a texture model, our presented texture classes exemplify
the large variety of classes we support. Nevertheless, an
extension to the texture model could be investigated which
still allows for the separation of color and structure, but also
spans a colorful appearance space beyond two-tone textures.

Finally, it would be certainly worthwhile to integrate our
technique into commercial rendering packages – Figure 9
shows a proof of concept that such an integration is feasible.
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Figure 9: 3D scene rendered in Maya with procedural tex-
tures controlled by input pictures.

8. Conclusion

In this work we have introduced an interactive parameter re-
trieval technique for parameter sets of two-tone procedural
textures. Based on our achievements in improving the re-
trieval performance we believe to have come one step closer
towards the actual programming of procedural textures by
example, a goal we would like to pursue further.
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