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ABSTRACT

Today, discriminative local features are widely used in different fields of computer vision. Due to their strengths, discriminative
local features were recently applied to the problem of traffic sign recognition (TSR). First of all, we discuss how discriminative
local features are applied to TSR and which problems arise in this specific domain. Since TSR has to cope with highly structured
and symmetrical objects, which are often captured at low resolution, only a small number of features can be matched correctly.
To alleviate these issues, we provide an approach for the selection of discriminative and robust features to increase the matching
performance by speed, recall, and precision. Contrary to recent techniques that solely rely on density estimation in feature space
to select highly discriminative features, we additionally address the question of features’ retrievability and positional stability
under scale changes as well as their reliability to viewpoint variations. Finally, we combine the proposed methods to obtain a
small set of robust features that have excellent matching properties.

Keywords: Discriminative Local Features, Traffic Sign Recognition, SIFT.

1 INTRODUCTION
Over the past years, local features have become the
preferred method in different fields of computer vision.
Today they are applied in many tasks like panoramic
imaging [BL07] or object recognition [Low04]. In
this work we especially focus on scale-invariant and
discriminative local features like the popular SIFT
(scale-invariant feature transform) [Low04] or SURF
(Speeded up robust features) [BTG06]. Such local
features are commonly calculated in two stages. First,
an interest point detector is used to find salient image
regions at their characteristic scale. Then, a robust
descriptor is extracted for each region.

Their ability to represent an image by the means of
local patch descriptors, might be the reason for their
success. Using local features, two images can be com-
pared very fast, since only some salient regions are con-
sidered instead of the whole images. Besides this, lo-
cal features like SIFT are more robust to various im-
age transformations than global methods are. On the
one hand, this is due to the extraction of image patches
around salient interest points using a scale-invariant de-
tector. On the other hand, the feature description is of-
ten covariant to a variety of image changes, too, includ-
ing rotation or lighting changes. In contrast to global
methods, local features can inherently cope with par-
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tial occlusions in the image. As result to their depicted
strengths, discriminative local features have found their
way into the field of traffic sign recognition (TSR), too.
In literature, TSR is often split into the problems of
traffic sign detection (TSD) and traffic sign classifica-
tion (TSC). These applications are highly relevant to
many recent advanced driver assist systems (ADAS),
since the information annotated to the streets is pri-
marily visually encoded in traffic signs. Due to the
fact, that drivers tend to trust in the information pro-
vided by ADAS [BT05], TSR has to be reliable. This
demand grows with the emergence of active ADAS-
technologies like brake-by-wire. The demand for relia-
bility leads to the application of local features for their
illustrated vantages. But local feature approaches also
involve weaknesses, like slow matching performance
on large databases or mismatches due to features with
poor saliency. In this work, we address these shortcom-
ings and propose a method able to cope with them.

In detail, our contribution is the introduction of a
novel method for the selection of a small but highly
discriminative set of local features for TSR. We do not
solely consider their discriminative power regarding a
single image, but also their saliency regarding the traffic
sign domain. In addition to their high saliency, the se-
lected features have to be positionally stable and robust
under large scale changes. Also the features’ stability
under viewpoint changes is evaluated in order to reduce
the influence of features violating the local planarity as-
sumption. Finally, a greedy algorithm is introduced to
select a small and optimal set of local features accord-
ing to their properties. Although, the feature set can be
of arbitrary size, we go for a small amount to achieve
fast feature matching.



The remainder of this paper is structured as follows:
First, we briefly introduce how local features are ap-
plied to TSR and which specific problems arise within
the traffic sign domain. In section 3, we then discuss
research related to our work. As our main contribution,
we propose in section 4 a new selection scheme that is
able to gather a small and robust set of local features.
Based on our approach the mentioned shortcomings of
local features are alleviated, which we finally prove in
section 5 by empirical results on two different datasets.

2 DISCRIMINATIVE LOCAL FEA-
TURES FOR TRAFFIC SIGN
RECOGNITION

Traditionally, the task of TSR is divided into 3 stages:
i) TSD, the detection of traffic sign candidates, ii) TSC,
the classification of the candidate to the proper traffic
sign class (i.e. the type of the road sign, e.g. a specific
speed limit), and iii) the tracking of the candidate within
the video sequence (cf. Fig. 1(a)).

Local features can be applied to all three stages of
TSR. Since our considerations hold for every stage, we
do not focus on a single one in this paper. The same
applies to the choice of a specific local feature method.
Although, the proposed selection approach is valid for
several methods, for the evaluation of our approach we
restrict ourselves to SIFT, since we identified SIFT to
be most suitable for TSR. We make this decision based
on the evaluation of feature descriptors provided by
Mikolajczyk and Schmid [MS05]. In their evaluation,
SIFT pointed out to be the strongest local feature in
terms of recall and precision of all tested approaches.
Additionally, we tested some recent local feature ap-
proaches for their suitability to TSR, among them SIFT
[Low04], GLOH (gradient location and orientation his-
togram) [MS05] and some variants of SURF [BTG06].
The results are summarized in Table 1 and show the
matching performance of these local feature approaches
between sensed traffic sign images and traffic sign fea-
tures stored in a database. This evaluation was done
on a challenging testset (degraded traffic signs at low
resolution) of 46 images with 99 traffic signs extracted
from a 30 minute video sequence, captured while driv-
ing on a highway. Note that we do not provide a com-
plete evaluation of local feature methods also consider-
ing more discriminative color versions of the mentioned
techniques, since this is out of scope for this paper and
does not affect our selection approach.

The common fashion, discriminative local features
are used, is depicted in the 3 stages of Fig. 1(b). Ba-
sically the descriptors of both images, the sensed and
the reference image, are calculated and compared to
each other. Often the descriptors of the reference im-
age are previously extracted and stored in a database.
Note that we derive the terminology of sensed and ref-
erence image from the field of image registration. In

Recall Precision
SIFT 33.68 % 78.05 %

GLOH 22.11 % 52.50 %
SURF 7.37 % 35.00 %

USURF128 25.26 % 72.73 %
Table 1: Performance of recent local feature approaches
in the context of TSR.

the context of TSR, sensed images are the images of
the traffic scene, which are commonly gathered by a
front-view camera behind the car’s windshield, while
the term reference image refers to the image of which
the descriptors are extracted from that define the traffic
sign class.

(a) (b)
Figure 1: (a) Structure of TSR. (b) Stages of local fea-
ture matching.

As illustrated in Fig. 1(b), the matching process of
two images can be divided into 3 parts. We now have a
closer look into these parts and point out the specific is-
sues arising with the application of discriminative local
features in the domain of TSR.

First of all, an interest point detector is used to ex-
tract interest points that are likely retrievable. In the
case of SIFT, this detector searches for extrema within
the difference-of-gaussian pyramid, an approximation
of the laplacian of the 2+1D scale-space. In common,
these regions are very salient and thus likely to be re-
trieved. An issue arises with the region’s retrievabil-
ity under different image scales. For example regions
around coarse image structures can be retrieved from
images with low resolution, while others cannot. This
is due to the loss of detail caused by decreasing spa-
tial resolution or increasing distance from the captured
object (e.g. the traffic sign). Furthermore, salient re-
gions may appear at certain scales of an image due to
sampling artifacts. Feature descriptors calculated from
these regions are often ambiguous and weakly discrim-
inative and may cause false positive matches (FP) (cf.
Fig. 5(e)). Hence, robustness to the image scale is im-
portant. Besides this, the regions extracted by an inter-
est point detector have to be located at corners to be po-
sitionally stable, especially if the sensed image is cap-
tured from another perspective. In the traffic sign do-
main the positional stability is challenging, since traffic
signs often include circular symbols, so that corners are



quite rare. This leads to unstable regions’ locations and
thus to feature descriptors that do not match with the
corresponding features of the reference sign.

The second step in Fig. 1(b) depicts the descriptor
calculation, which is performed after region detection.
In the case of SIFT, the region patch is expressed by a
128 dimensional feature vector that is calculated from
the region’s edge orientation histogram. These features
are often salient, that is rare in feature space, if they are
calculated on a textured region. Unfortunately, in the
domain of traffic sign recognition we have to deal with
highly structured objects, which means the regions only
include a few, very basic geometrical shapes. This leads
to features with weak discriminative power. These fea-
tures are unsuitable for TSR, since the following two
problems may occur. If the sensed image does not con-
tain the according object of the reference image, these
features are likely to be confused with other features,
resulting in false positive matches. The other problem
is the inhibition of correct matches depending on the
similarity measure used. Also challenging are the fea-
ture descriptions of regions that violate the planarity as-
sumption, since they are viewpoint dependent. In the
context of TSR, this issue is reduced to regions that
overlap the traffic sign border, so that their features par-
tially describe the background. This leads to features
varying with the background captured around the traf-
fic sign.

Finally, the feature descriptors of the reference im-
age are compared with those extracted from the sensed
image, as illustrated in the last stage of Fig. 1(b). This
introduces a similarity measure to distinguish the fea-
tures. Among the Mahalanobis distance, the Euclidean
distance is very popular and was used for object recog-
nition with SIFT by Lowe [Low04]. Lowe proposes a
matching scheme with distance ratio Tratio = 0.8 to the
second nearest neighbor. So, matches have to satisfy

|v−w1|
|v−w2|

< Tratio

where w1 is the nearest neighbor and w2 the second
nearest neighbor to feature vector v. We compare every
feature of the sensed image with those extracted from
the reference sign (or stored in a database). Applying
this order we receive a higher recall, than by matching
vice versa. Additionally, this matching direction can
more easily benefit from approaches for approximate
nearest neighbor retrieval like Best Bin First [BL97].

A large number of FP may occur if this matching di-
rection is used with a small number of features repre-
senting the reference image. This originates from the
sparse feature space and can be alleviated by the intro-
duction of an additional a distance threshold. We identi-
fied a distance threshold of Tdist = 0.425 to suit best the
needs of TSR. This threshold is derived as 30% of the
maximal distance (

√
2) in the normalized feature space
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Figure 2: Matching performance in TP and FP (com-
pared to TP and FP using only distance ratio matching)
with additional distance threshold.

of Rd
+ (d > 1) using the euclidean metric. Fig. 2 illus-

trates the dependency of true positive matches (TP) and
FP according to the distance threshold Tdist obtained
on a subset of the “Affine Covariant Regions Datasets”
[MTS+05]. The problems arising in the matching stage
are not restricted to the traffic sign domain only, but
are rather common for most local feature applications.
The main issue is the time spent for feature compari-
son, especially when the reference feature database is
large. This is due to the search of the nearest neighbor
for each feature vector of the sensed image. Hence, the
number of features stored in the database for each traf-
fic sign class is an important factor for the duration of
the feature comparison. This number directly depends
on the reference image’s size and the complexity of the
content as it is depicted in Fig. 3 for three different traf-
fic signs. Thus, the issue is to select the right resolution
of the reference image to receive a manageable number
of features: not too many, due to speed reasons, but also
not too few in order to safely recognize the traffic signs
of the sensed image, even if the image is captured under
severe conditions or is partially occluded.
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Figure 3: The number of features extracted from a ref-
erence image depends on the content as well as on its
resolution.

3 RELATED WORK
Now that we have depicted the problems arising with
the application of discriminative local features in the
traffic sign domain, we give an overview of the research
in this field. Recently, local features are utilized in the
context of TSR in different ways. They are applied to
the detection of traffic signs as well as to their classifi-
cation.



In the field of TSD, weakly discriminative rectan-
gle features in combination with a boosted classifier
cascade are used to detect potential sign candidates
[BV04, ERP07, BEV+09]. In the works of Bahlmann
et al. [BZR+05] and Keller et al. [KSB+08] this tech-
nique is extended and the Haar-like features are calcu-
lated on 7 different chromatic bands to increase the dis-
criminative power of these approaches. In contrast to
the mentioned approaches, Höferlin and Zimmermann
[HZ09] apply highly discriminative SIFT features to the
problem of TSD. In their approach, a subsequent classi-
fication stage benefits from the estimation of the traffic
sign class of the preceding SIFT detector. Contrary to
this, Kus et al. [KGEU08] apply SIFT in combination
with color features to the detection as well as to the
classification of traffic signs.

Discriminative local features are adopted by Farag
and Abdel-Hakim [FAH04] to classify traffic signs.
They use SIFT features to classify the previously de-
tected candidates. Ruta et al. [RLL07] introduce a dis-
tance transform based on color and use the resulting
image representation for their local feature selection.
Their approach for TSC was inspired by the trainable
similarity measure used by Paclík et al. [PND06].

Local features are also applied to object tracking in
video sequences. This topic is covered by the survey of
Trucco and Plakas [TP06], to which we refer.

To reduce the amount of time spent in feature match-
ing two methods are possible. First: the retrieval of the
nearest neighbor can be accelerated. And second: the
number of features can be reduced. For the first option a
large number of methods already exist in literature. The
problem is known as Nearest Neighbor Search and al-
gorithms based on data structures like the kd-tree exist,
which retrieves the nearest neighbor averagely in log-
arithmic time complexity for low dimensional spaces.
But it is shown [IM98], that with the number of di-
mensions the nearest neighbor search approaches the
expense of an exhaustive search. This issue is called
the Curse of Dimensionality and can be alleviated by
easing the restrictions and by avoiding the assurance
of retrieving the exact nearest neighbor. The altered
problem is called the Approximate Nearest Neighbor
Search. There are also well-known methods to solve
this problem like Best Bin First [BL97], which in most
cases finds the nearest neighbor and otherwise retrieves
another close candidate.

The second option is covered by Joly and Buisson,
they extract Harris interest points from video data and
consider only those features for matching, that are
salient among all features in their database [JB05].
This way they speed-up the comparison process and
obtain features of high quality. Their work inspired
our method for the selection of discriminative features.
They define the saliency of a feature according to
Walker et al. [WCT98] as the likelihood of being

misclassified with another feature. This definition
leads towards density estimation in feature space to
receive the probability density function of feature
misclassification. In contrast to Joly and Buisson we
also consider the robustness and the retrievability of
features, that increases the matching performance, too.

Viewpoint invariance of local features is only little
covered by research so far, e.g. [VS06].

4 SELECTION OF FEATURES
Based on the application of local features in TSR in sec-
tion 2, we develop in this section a method for the selec-
tion of a set of robust and discriminative local features.
We choose these features optimally with respect to the
mentioned issues.

4.1 Retrievability and Localization Sta-
bility under Scale Changes

The retrievability as well as the positional stability of
scale-adapted interest regions vary with the image scale
and depend on the image structure that is covered by
the region. Interest regions that can be retrieved un-
der multiple scales are mostly located at coarse image
structures (i.e. areas of low detail or low image fre-
quency). The idea is to select those features which show
the highest robustness and retrievability under scaling.
We measure the retrievability of a feature by counting
its occurrences at several scales. For every resolution
we extract the features and match them to the features
of the previous scales. Matching is done by searching
for the nearest neighbor in a combined distance space
of the feature vector and the keypoint’s position, scale,
and orientation. The distances are euclidean and both
are separately thresholded to avoid false matches. If
coinciding features are found, the arithmetical mean is
calculated for their descriptors and positions, weighted
by the number a feature was extracted in the previous
scales (Fig. 4). The arithmetical mean centers the fea-
ture in image space and in feature space to reduce the
influence of the interest point’s localization instabilities
and the variance of the region’s descriptor.

Figure 4: Selection of a region’s descriptor that is robust
to the change of image resolution.

Further, we measure the localization stability of a in-
terest point under image scale changes. Brown et al.
show, that common interest point detectors like SIFT
lack of accuracy in repeatability of the interest point’s



position, scale and orientation [BSW05]. They illus-
trate that such detectors extract the majority of their in-
terest points with a positional variation between 0 and 3
pixels. In our tests, we experienced in average a jitter of
about 0.4% of the interest point’s position, according to
the image resolution. This corresponds to an expecta-
tion value of about 1 pixel based on the considered res-
olution range of 20 to 500 pixels in width. There is also
a strong relation between the tapering of corners in the
image and the accuracy of interest point localization.
Hence, the average of the positional accuracy for traf-
fic signs is about three times worse than for the natural
images that we tested, although the maximal standard
deviation of the interest point’s position is quite similar
among all tested examples (about 3%). A similar effect
is observed for the accuracy of scale and orientation.
The regions’ scales calculated by SIFT are disturbed in
average by 0.2% and we observed a maximal standard
deviation of 0.5% (0.05%,2.44% for orientation).

Since the positional accuracy of interest points de-
pends on the underlying image structure and varies be-
tween interest points, we also rate their quality in or-
der to select a robust feature set. We derive the rating
score from the standard deviation of the interest point’s
position, scale, and orientation, which is calculated on
scaled instances of the reference image. Fig. 5(a) and
(b) show the 5 best and the 5 poorest features according
to their retrievability and positional stability under im-
age’s scale changes. As expected, features that are well
retrievable among different image scales do more likely
cover regions of coarse image structures. In contrast re-
gions with poor retrievability are located at structures
that show higher frequencies. Regions with high stabil-
ity of position, scale, and orientation are small in size
and generally extracted at tapering corners, while the
regions of poor stability are located at less distinct cor-
ners (see Fig. 5(b)).

4.2 Viewpoint Variant Features
Recent discriminative local feature approaches like
SIFT are invariant to rotation, scale and to some degree
to affine deformations. In contrast to this, the most
of these approaches are sensitive to the change of
viewpoint under which the image is captured. This is
especially a problem if the image patch of the detected
interest point strongly violates the local planarity
assumption, which is the case at ridges, corners, and
occluding boundaries. Vedaldi and Soatto [VS06] try
to cope with such regions by considering the scene
geometry. But since the scene geometry is not always
available or could be made available, we head for
another method.

In our approach, we avoid additional knowledge of
the scene geometry, even if it is simple like in the case
of traffic signs. Therefore, we utilize a small set of
training images that are captured from different view-

points in order to measure the variation of the feature’s
descriptor. This method yields the additional advantage
that the variation intensity is considered, too. Thus, vi-
olations to the local planarity assumption may be ne-
glected, if they marginally affect the feature vector.

We determine the robustness to viewpoint changes
of a feature by considering the spatial distribution of
the distances between instances of features within the
training set. For example, the subdivision of the feature
patch into 16 subregions represents the spatial informa-
tion of the SIFT descriptor. Thus, we measure the sub-
regions’ distance variation σdist for every instance of a
particular descriptor within the training set:

σdist =

√
r

∑
k=1

(Dk,k− Ê)2

For the 128-dimensional SIFT descriptor, the distance
of regions between two feature instances i and j is
defined by D1..r,1..r = ∗

√
(Mi−M j)T (Mi−M j), where

Mi and M j are their reshaped 8× 16 feature matrices.
The component-wise square root function is ∗√· and
Ê = tr(D)/r represents the mean distance of the r = 16
subregions. The idea behind this concept is that patches
with small distance variations are in common just jit-
tered or misaligned, whereas large distance variations
often indicate the inclusion of ridges, corners, and ob-
ject boundaries. We use the maximum standard devia-
tion max(σdist) of all instances of a single feature within
the training set as measure for the region’s stability to
viewpoint changes. In the case of traffic signs, only
occluding boundaries affect the region’s stability with
the change of viewpoint or background. Hence, stable
region patches may only inclose the traffic sign area,
while patches with poor stability to viewpoint changes
overlap the sign boundaries (c.f. Fig. 5(c)).

4.3 Analyzing the Discriminative Power
Generally, it is desirable to select a set of highly dis-
criminative features. This raises the probability for cor-
rect matches and reduces the likelihood of feature vec-
tors to constrain each other’s matching performance.
During the evaluation of interest point detectors, we no-
ticed the occurrence of features with marginal discrim-
inative power at certain image sizes, originating from
sampling artifacts. In Fig. 5(e) the matching perfor-
mance of SIFT features at different scales is visualized.
It points out that certain scales show sudden peaks of
FP. These peaks originate from highly indiscriminative
features as depicted in the bottom row of Fig. 5(e).

The discriminative power of a feature vector can be
expressed by its saliency, which is equivalent to its rar-
ity in feature space. Therefore, the probability density
function of retrieving the wrong nearest neighbor is di-
rectly correlated with the density of the feature’s neigh-
borhood. This introduces kernel density estimation as
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Figure 5: The 5 best rated features (circles, top row), the 5 poorest regions (circles, bottom row). Both depicted on
an exemplary reference sign. (a) Retrievability under scale changes, (b) positional stability, (c) descriptor stability
on viewpoint changes and (d) saliency of reference features among the features extracted from MIT-Highway set.
Further explanation in the text. (e) Features with low discriminative power. Top: occurrence of these features at
some scales. Bottom: interest point relation of these features.

appropriate measure for the discriminative power of a
feature. We estimate the density function f̂ at point v
using a Gaussian kernel by

f̂ (v) =
1
|M|

1

σ(2π)
d
2

∑
x∈ξ

e
‖v−x‖2

2σ2 (1)

The set of features is represented by ξ and d refers to
the dimensionality of the feature space which is 128
in the case of SIFT descriptors. We choose bandwith
σ = 0.3

√
2 to be equal to the distance threshold Tdist .

That corresponds to a window radius of 30% of the
maximum distance in normalized feature space. We
populate the feature space ξ with features from typical
traffic scene images, harvested from the MIT-Highway
set. The bottom row of Fig. 5(d) shows an example of
features with poor saliency. These are located along the
traffic sign border and do not contain any discrimina-
tive image structures, while the top row regions include
salient structures.

Besides feature’s domain specific saliency, there are
two other groups of features that are important in or-
der to obtain a high matching performance. First, am-
biguous features within the reference image should be
avoided, since similar descriptors tend to inhibit each
other, when nearest neighbor matching with distance ra-
tio is used. Same holds for the second case: the saliency
of features across the traffic sign classes. Obviously, a
higher recall performance and also a better distinction
between the sign classes can be achieved if features are
selected that are discriminative across all classes. For
both cases, we also apply the Parzen window approach
according to 1, but either ξ is populated with the fea-
tures of one traffic sign class or with the descriptors of
all other traffic sign classes.

4.4 Choosing the Optimal Feature Set
Now that we have introduced a variety of criteria for
robust and discriminative features, we select an optimal

set of n features to represent the traffic sign class. We
define the overall quality q of feature f by a weighted
sum of its scores achieved for each criterion ci:

q( f ,S) = ∑
i

wici( f ,S)

The feature set can be adapted to a particular problem
by adjusting the weights wi of each criterion. Since the
quality q of a feature depends on the other features se-
lected for the representation set S, we have to solve a
non-linear optimization problem. There are various ap-
proaches to approximate the solution of a non-linear op-
timization problem, e.g. evolutionary algorithms. We
use a greedy algorithm to choose in every iteration step
the feature with the highest fitness quality q, with re-
spect to the features S selected in previous steps. For
initialization, we start with an empty set S. This simple
approach is very fast and yields good results, even if the
detection of the global optimum is not ensured and thus
the set may only be locally optimal.

5 EVALUATION
For the evaluation of the proposed method we first com-
pare the feature sets obtained by several feature selec-
tion approaches for an exemplary traffic sign. Then, we
compare the performance of our approach with that of
the conventional representation of the traffic sign class
as reference image of a certain size.

Fig. 6 shows the sets of 5 features selected by three
different approaches: (a) the proposed approach, (b)
selection by choosing a proper image resolution, and
(c) selection of the most discriminative features, sim-
ilar to Joly and Buisson [JB05]. Fig. 6(a) points out
that the features retrieved by the proposed method are
located on discriminative and coarse image structures,
while the other both approaches either lack of the one
or the other property. In Fig. 6(d) the matching per-
formance of the 3 approaches is compared for the ex-
emplary traffic sign class. It points out that especially



(a) (b) (c)

(d)
Figure 6: Exemplary feature set on a reference sign.
Only 5 features shown for clarity. (a) Proposed method,
(b) extracted for a certain reference image resolution,
(c) selected at low density in feature space and (d) per-
formance of these methods for increasing number of
features. TP (solid line), FP (dashed line).

the features retrieved by method (c) have poor matching
performance, since the most discriminative features of
the reference sign often show low retrievability under
scale changes.

We use two different testsets for further evaluation.
The first contains 12 images (640x480 px) with 9 traffic
sign classes, among them images captured under ad-
verse conditions: blur, noise, perspective deformation
and chromatic lighting. We call it the “German” test-
set, since it covers German traffic signs. The second
set includes 30 images (360x270 px) of 3 classes. It is
introduced in [GP03]. We refer to it as the “Dutch”
set for the same reason. We compare the matching
performance of the features selected with the proposed
method (a set of training images per sign class) to those
extracted from reference images of a certain size, as it
is the conventional method to limit the number of fea-
tures. That means, the selection parameter is the image
resolution. For evaluation we restrict the number of se-
lected features to 20. The results of 3 experiments for
both testsets are presented in Fig. 7. The performance
measure is provided by means of TP and FP.

The first experiment (Fig. 7(top row)) shows the
matching performance of both methods with increasing
feature count. The reference image’s size was adapted
in case of the conventional method in order to provide
the proper number of features. Obviously, the matching
performance benefits from the features selected by the
proposed method. Especially, the low number of false
positives for the “German” testset is remarkable, while
the conventional method suffers from indiscriminative
features at some resolutions. For the chart presented
in the middle row of Fig. 7 we do not longer fix
the number of features selected by the conventional
method (for the proposed method we use a set of 20
features) but show the performance of the features
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Figure 7: Average matching performance. Top and
middle row: TP in blue/dark gray, FP in yellow/light
gray. Bottom row: Recall in blue/dark gray, precision
in yellow/light gray. Proposed method (solid line), con-
ventional method (dashed line). (a) “German” testset,
(b) “Dutch” testset.

extracted at different scales. We see that it is difficult
to choose a certain reference image size with high TP
and low FP. This becomes even more obvious if we
involve the number of features and thus express the
performance by means of recall and precision (c.f.
Fig. 7(bottom row)). Our method also reduces the
time spent for matching, since the desired number
of features can be defined by the user (cp. Fig. 3).
Hence, feature dependencies to the reference image’s
resolution are eliminated and the matching duration
becomes appreciable.

6 CONCLUSION
We presented a method to select a small set of discrimi-
native local features (e.g. SIFT features) with excellent
matching properties. Applying our approach we were
able to increase the matching performance by speed, re-
call and precision. Hence, issues inherent to local fea-
ture matching were alleviated. Further work has to con-
sider other selection approaches to retrieve the globally
optimal set of features. In addition, new criteria like the
spatial distance of the interest points or the coverage of
the reference object by the set of features can be intro-
duced, to increase robustness against occlusion, too.
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