Dieses Bild zeigt Lukas Mehl

Lukas Mehl

Herr M. Sc.

Wiss. Mitarbeiter
Institut für Visualisierung und Interaktive Systeme (VIS)
Abteilung Computer Vision

Kontakt

Universitätsstraße 38
70569 Stuttgart
Deutschland
Raum: 1.465

  1. 2023

    1. Mehl, L., Jahedi, A., Schmalfuss, J., & Bruhn, A. (2023, Januar). M-FUSE: Multi-frame Fusion for Scene Flow Estimation. Proc. Winter Conference on Applications of Computer Vision (WACV). https://doi.org/10.48550/arXiv.2207.05704
    2. Schmalfuss, J., Mehl, L., & Bruhn, A. (2023, Oktober). Distracting Downpour: Adversarial Weather Attacks for Motion Estimation. Proc. International Conference on Computer Vision (ICCV). https://arxiv.org/abs/2305.06716
    3. Mehl, L., Schmalfuss, J., Jahedi, A., Nalivayko, Y., & Bruhn, A. (2023). Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow, Optical Flow and Stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://spring-benchmark.org/
  2. 2022

    1. Schmalfuss, J., Mehl, L., & Bruhn, A. (2022). Attacking Motion Estimation with Adversarial Snow. Proc. ECCV Workshop on Adversarial Robustness in the Real World (AROW). https://doi.org/10.48550/arXiv.2210.11242
    2. Jahedi, A., Mehl, L., Rivinius, M., & Bruhn, A. (2022). Multi-Scale RAFT: combining hierarchical concepts for learning-based optical flow estimation. IEEE International Conference on Image Processing (ICIP). https://doi.org/10.48550/arXiv.2207.12163
  3. 2021

    1. Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2021). An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 140--152. https://doi.org/10.1007/978-3-030-75549-2_12

Summer term 2022

  • Tutorial Correspondence Problems in Computer Vision (Coordination)
  • Seminar Recent Advances in Computer Vision (Supervision)

Winter term 2021/2022

  • Lecture Computer Vision (Coordination)

Summer term 2021

  • Tutorial Correspondence Problems in Computer Vision (Tutor)

Winter term 2020/2021

  • Tutorial Correspondence Problems in Computer Vision (Tutor)
  • Seminar Bildverarbeitung und Computer Vision (Supervision)

Summer term 2020

  • Tutorial Correspondence Problems in Computer Vision (Tutor)
  • Seminar Recent Advances in Computer Vision (Supervision)
  • Multi-Frame Approaches for Learning Optical Flow Predictions: Master's Thesis, 2020. (co-supervision)
  • Zwischenbildinterpolation mit optischem Fluss: Bachelor's Thesis, 2020. (co-supervision)
  • Occlusion-Aware Variational Optical Flow Refinement: Master's Thesis, 2021.
  • Motion-compensated Frame Interpolation using Multiple Frames: Bachelor's Thesis, 2021.
  • Diffusion-Based Refinement of Optical Flow: Bachelor's Thesis, 2021.
  • Pre-training ProFlow: Research Project, 2022.
  • Variationelle Verfeinerung zur Schätzung von Szenenfluss: Master's Thesis, 2022.
  • A Global Adversarial Attack on Scene Flow: Master's Thesis, 2023. (co-supervision)
Zum Seitenanfang